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Abstract

A method of deductive learning is proposed to con-
trol deductive inference. Our goal is o improve prob-
lem solving time by ezperience, when that ezperience
monotonically adds knowledge to the knowledge base.
Accumulating and ezploiting experience are done by
the schemes of knowledge migration and knowledge
shadowing. Knowledge migration generates specific
(migrated) rules from general (migrating) rules, and
accumulates deduction experience represented by speci-
ficity relationships between migrating and migrated
rules. Knowledge shadowing recognizes rule redun-
dancies during a deduction, and prunes deduction
branches activated from redundant rules. Three prin-
ciples for knowledge shadowing are suggested depend-
ing on the details of deduction experience representa-
tion.

1 Introduction

Learning in deduction became an active area re-
cently by the emergence of several deductive learn-
ing methods such as explanation-based learning (EBL)
[4]gand chunking {2]. Deductive learning attempts to
improve a system’s performance by exploiting past
problem-solving experience. However, one of major
drawbacks of previous deductive learning methods was
that they spent a considerable amount of time to learn
new rules or apply learned rules to subsequent reason-
ing, for instance, to traverse an explanation structure
to build a new description in EBL, and to match a
number of complex chunks in chunking.

This paper proposes an experience-based deductive
learning mechanism that controls deductive inference
and improves the performance of a deductive reason-
ing system. Our system unifies learning with reason-
ing, i.e. the learning process is incorporated within the
inference engine, and consequently a low-cost learning
module is maintained that is strong enough to show
significant differences in the system’s behavior. We
focus on deductive reasoning systems where partial
results are saved during a deduction and at least some
partial results are, themselves, deduction rules. In this
environment, the general issue would be how maximal
advantage can be taken of old partial results and how
the regeneration of partial results can be avoided when
solving new problems.

In this paper, the problems of accumulating past
deduction experience and using it in subsequent de-
ductions are tackled by the schemes of knowledge mi-
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gration and knowledge shadowing. Knowledge migra-
tion generates specific (migrated) rules from general
(migrating) rules, and accumulates deduction experi-
ence represented by specificity relationships between
migrating and migrated rules. Knowledge shadow-
ing exploits past experience to make future inferences
faster. Knowledge shadowing recognizes rule redun-
dancies during a deduction, and prunes deduction
branches activated from redundant rules.

The major contribution of this work is to improve
a system’s performance ﬁespecially deduction speed
over time for similar problems, even though the searc!
space (or branching factor) is increased by monotoni-
cally adding derived knowlcdge to the knowledge base
that creates redundancies.

2 Knowledge Migration
Knowledge migration is a process of acquiring spe-
cific rules from general rules, and is defined as below.

Definition Let G = (A, C) be a nested rule, where
A = {A;,As,...,An} 15 a set of antecedents, C =
{C1,Cs,...,Cr} is a set of consequents, and each
Ci(l < j < m) is a rule. Knowledge migration
is defined as a process of acquiring a set of rules
8§ ={S51,S2,...,Sn} from G during a deduction when
(1) G is involved in the deduction, and (2) there is a
substitution ¢, called a migrating substitution, such
that A;0(1 < ¢ < n) is in the knowledge base, and
S;=Cijo(1 <j<m).

As an example, consider a knowledge base con-
taining a general transitive rule R1 = VR [trans(R)
— Vz,y,2 [R(z,y) & R(y,2) — R(z, z)g, and facts
trans(on), on(a,b), on{b,c), on(c,d). A deduction of
on(a,c) from this knowledge base activates R1, and
generates a specific rule R2 = Vz,y,z [on(z,y) &
on(y, z) — on(z,z)] from R1 with a migrating sub-
stitution o = {on/R}, since trans(R)o = trans(on)
is in the knowledge base. This migration process pro-
duces deduction experience that is represented by the
specificity relationship between the migrating rule and
the migrated rule. The details of the representation
are described in the next section.

3 Knowledge Shadowing

Knowledge shadowing is a way of exploiting de-
duction experience acquired in previous inferences to
make subsequent similar deductions more efficient.
The main job of knowledge shadowing is to recognize
unnecessary and redundant rules and to block them



from the inference by investigating the specificity re-
lationships between rules that are represented in de-
duction experience.

As an example, consider the example shown in
the previous section. After deducing on(a,c), R2 and
on(a,c) are added to the knowledge base. Now, an-
other deduction of on(b,d) from the changed knowl-
edge base proceeds in two branches since both R1 and
R2 are applicable. However, by recognizing that R2 is
more specific than R1, the branch from R1 can be re-
garded as redundant in the sense that on(b,d) can be
derived solely by the branch from R2 with fewer steps.
As a result, the branch activated from R1 is pruned.

Knowledge shadowing is made possible by three
ways of representing experience, i.e., by using instance
sets, by using origin sets, and by using common in-
stances.

In the first method, an instance set I*% is main-
tained for each rule R to memorize migrated instances.
A migrated instance is represented by a pair (r,0),
where r is a rule migrated from R by a migrating sub-
stitution 0. For example, after the migration from
R1 occurs during the derivation of on(a,c), TF!< be-
comes {(R2, {on/R})}, where Rl = Vz,y,z [R(z,y)
& R(y,z) — R(z,z)] is the consequent of R1. Knowl-
edge shadowing by using instance sets can be accom-
plished by the following principle.

Shadowing Principle 1 Let Ry, Rs,..., Ry be
rules that are all applicable by a query q at some point
during a deduction. This implies the existence of sub-
stitutions @1, ¢z, ..., px obtained by pattern match-
ings between q and a consequent of R;,1 < i <k
Then, a deduction branch activated by a rule R; is
shadowed from the inference when there is an in-
stance (Rj, o) € T such that 1 < j < k,j # 4, and
$ido.

In the transitive example, the query on(b,d) makes
both R1 and R2 applicable but shadows R1 by the prin-
ciple 1, since the pattern matching between the query
on(b,d) and R(z,z), which is the consequent of Ric,,
produces a unifier ¢; = {on/R, b/z, d/z}, and there is
a migrated instance (B2, {on/R}) in T satisfying
¢1 D {on/R}.

The second method of shadowing uses an origin
set (OS) that is associated with each proposition to
keep track of and propagate propositional dependen-
cies in an assumption based truth maintenance system
SNeBR [3]. In the above example, OS of R1 is {R1} and
OS of R2 is {R1, trans{;)rn)} since R2 is derived from
the two propositions. From the viewpoint of deduc-
tive learning, propositional dependencies represented
by OS can be regarded as a type of experience. A
subset-superset comparison between OSs of two rules
can be used to shadow a redundant rule. For instance,
R1 can be regarded as more general than R2 since OS
of R1 is a proper subset of the OS of R2. A general
shadowing principle using OS is described below.

Shadowing Principle 2 Let Ry, Ry,...,Rx be
rules that are all applicable by a query q at some point

during a deduction. Also let 01,0,,...,0k be origin
sets of each Rj,1 < i < k. Then, a deduction branch
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activated by a rule R; is shadowed from the infer-
ence when (1) there is a rule R; (j # i,1 < j < k)
such that O; D O;, and (2) the outermost quantifier
variables of R; which also appear in R; are bound by
the pattern matching of q and a consequent of R;.

The third method of shadowing uses the concept
of common instances between two patterns. Matching
between two patterns S and T produces the source
binding o and the target binding 7 that satisfies So =
Tr. Essentially, o and 7 are factored versions of the
most general unifier (mgu). By using the factorized
mgu, we now define the most general common instance
(mgci) of two patterns S and T such that mgcisy =
So = Tr. For example, a matching between P(z,b)
and P(a,y), where z and y are variables, produces o
= {a zb} and 7 = {b/y}, and the mgci of these two
is P(a,b). We are striving to find a way of blocking
deduction chains by using the mgei of two patterns,
and obtain the following principle.

Shadowing Principle 3 A deduction branch ini-
tiated by a rule R is shadowed when the mgci of the

query q and a consequent of R is ground and already
asserted in the knowledge base.

In the transitive rule example when R1 and R2 co-
exist, the query R(a,c), where R is a variable, will
shadow R2 since the mgci of R(a,c) and on(z,z) is
on(a,c) which is a ground instance and already as-
serted.

For all the three shadowing principles, we claim
that a deduction branch shadowed by any shadowing
principle would never have produced any new results
that cannot be produced by non-shadowed branches.

Implementation of knowledge migration and shad-
owing in SNeP$S (5] is in progress, and a preliminary
result of performance improvement is shown in [1].
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