
I
GRAPHICAL DEEP KNOWLEDGE FOR INTELLIGENT MACHINE DRAFrING

James Geller and Stuart C. Shapiro
Department of Computer Science

State University of New York at Buffalo
Buffalo, NY 14260

geller%buffalo@Csnet-relay

ABSTRACT*

The problem of Intelligent Machine Drafting is presented, and a
description of an existing implementation as part of a graphical
generator function is given. The concept of Graphical Deep
Knowledge is defined as a representational basis for Intelligent
Machine Drafting problems as well as for physical object
displays. A (partial) task domain analysis for Graphical Deep
Knowledge is presented. Primitives that are necessary to deal
with a world of 2-D forms and colors are introduced. Among
them are primitives for describing forms, positions, parts, attri
butes, sub-assemblies, and an abstraction hierarchy. The use of
the "linearity principle" for knowledge structure derivation from
natural language utterances is shown.

I INTRODUCTION
Traditional computer graphics systems have been criticized

in the literature for being a poor environment from a knowledge
representation point of view [Ii In graphics as well as in other
areas of software development, programmers have been taught
not to code any items that are irrelevant to the actual execution
of a given task. Over the last several years it has been an essen
tial goal of Al programming to reverse the process of elimination
of knowledge from the coding process. The AI programmer tries
to make his knowledge conscious and tries to incorporate much of
it in his program.

The use of Al techniques in other areas of computer science
has led to the replacement of the "eliminate knowledge" para
digm by the "add knowledge paradigm" outside of AI proper. In
this sense we interpret Brown et al., and in this sense we want
our work to be understood.

In the setting of the VMES project (Versatile Maintenance
Expert System) for printed wiring board maintenance [2] we
have been working on a knowledge based graphics system. In this
paper a new class of layout/routing problems that we have
encountered will be described (Intelligent Machine Drafting), and
a task domain analysis of what we call Graphical Deep
Knowledge will be given.

A. The Display Proi:ram
A major part of the VMES user interface is a display pro

gram (named TINA), which is called by the maintenance reasoner
of VMES and keeps the user constantly informed what VMES is
currently "thinking" about. For this purpose it displays, using
certain symbol colors, a logical diagram of the circuit board
currently being analyzed. Suspected components are displayed in
green. Components found faulty are displayed in red. Violated

• This work was supported in part by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air
Force Office of Scientific Research, Bolling AFB DC 20332 under Contract No.
F30602-8S-<:-0008, which supports the Northeast Artificial Intelligence Consor
tium (NAIC).

expectations are shown 'm magenta. Objects about which nothing
negative is (yet) known are displaved in blue. Blinking is used
to indicate the current focus object of the system.

VMES is implemented on top of SNePS the "Semantic Net
work Processing System" [3L The display program is conceived
of as a generator that creates pictures from a knowledge base.
This is in total analogy to the generation of natural language
from a knowledge base.

B. The Linearity Principle of KR
One preliminary idea that has been guiding our work is

what we call the lineariry principle. Let there be two systems
S 1 and S 2 consisting both of a parser (Pi, P 2) and a knowledge
representation formalism (K 1, K 2). Let there also be a function
01 that can be applied to any natural language expression and a
function 01 that can be applied to any knowledge structure of
Ki, K 2• 01 and 01 compute some unspecified complexity meas
ure of their arguments.

Both systems S 1 and S 2 impose a mapping from a natural
language input to a knowledge structure. We will call these two
mappings M 1 and M ! respectively. We now compute two func
tions / 1, / 2 such that

In the above formulas "u" describes a syntactically valid and
semantically meaningful natural language utterance contained in
the domains of both P 1 and P 2• We will call the system S 1
better than the system S 2 if / 1(u) can be approximated better by
a constant than / i(u). A practical judgement about the con
stancy of / 1 and / 2 could be done by computing mean and stan
dard deviation of f 1 and f 2 for a large number of different u
values, however we will limit ourselves to intuitive judgement.'>.
The Linearity Principle:

The quotient of the complexity of a knowledge structure
and the natural language utterance that it represents should
be approximately a constant for any given parser and KR
system.

Intuitively the linearity principle says that we do not want to
represent most five word sentences of a language with three or
four semantic network nodes, but have one five word sentence of
this language represented with 25 nodes. An implicit application
of the linearity principle (LP) can be seen in Shapiro's work on
non-standard connectives [4

Before we present an example application of the I P it 1s

necessary to say that the arc labels in SNePS networks l Fig. I.
more explanations will be given in the next section) are seen as
system primitives. The number of different arc labels is not fixed
and can be extended by the user. It is assumed that the number

Geller and Shapiro 545

. \f.,:_

4'
;(_'' p~o~

: /ype :s, I tyr object'- . type~

~ ~ ~ rnIB1] ~, -x-aa-e-r--M-u-it-,e-1t_e_r I
part-Of part-Of

~A A;~,
~ ~

Figure 1

A SNePS network giving (partial)
information about an Adder-Multiplier

of arc labels necessary for one limited domain will converge
towards a stable set, therefore identifying this set is a way of
task domain analysis [5].

If people can describe a simple arrangement of objects by a
short sentence then it should be possible to describe it with a rea
sonably simple SNePS structure. If this is not the case then the
number of user defined primitives has to be extended to accom
modate the sentence. (Of course new primitives will also have to
be used if the sentence is not representable at all).

For instance if two people are sitting in front of a graphics
terminal displaying the Adder-Multiplier (which has been used
in maintenance research, Fig. 2), and one of them asks:

"Tell me the names of all multipliers."

then the other person will presumably be able to do that. There
fore we would want our graphics interface to be able to do the
same thing. We also want the knowledge, base to contain infor
mation on all multipliers in a format approximately linear in
size with respect to the answer given by a person. This leads
directly to an old idea, the implementation of a class hierarchy.
(Less obvious examples will be given throughout this paper}

C. Notational Conventions for SNePS networks
Fig. 1 shows an example of a typical SNePS network in

order to provide some intuition for the reader not familiar with
SNeJ'S. The syntax and semantics of SNePS have been carefully
defined [6]. SNePS is also a "neat" KR system that incorporates
full first order predicate calculus. We will use Fig. 1 to intro
duce the network notation that will be used in this paper.

The nodes ml, m2, m3, m4, m5 represent propositions. m2
expresses the fact that the object Dl A 1 is of type Adder. An
equivalent first order predicate calculus representation for Fig. 1
would be the following one:

type(ml,Adder-Multiplier) & object(ml,Dl)
type(m2,Adder) & object(m2,D1Al) & part-ofCm2,Dl)
type(m3,Multiplier) & object(m3,D1Ml) & part-of(m3,Dl)
type(m4,Full-Adder) & object(m4,D1AlF2) & part-of(m4,D1Al)

• type(m5,Full-Adder) & object(m5,D1AiF1) & part-of(m5,D1Al) ·

546 KNOWLEDGE REPRESENTATION

This representation is unnecessarily redundant, and we will
introduce a pseudo-predicate notation according to the following
formal scheme. Given a conjunction of a number of binary
predicates with identical first arguments, transform the first
argument into a pseudo predicate. Transform all binary predi
cates into arguments at odd numbered positions, and insert all
second arguments at even numbered positions. In symbols:

n
& p;(ao, a;) ->aoCP1 a1 P2 a2 ...)
; 1

This transformation is syntactic sugar and has no influence on
the meaning of the representation which depends on the combina
tion of system primitives (arcs). Therefore all the a;'s that will
be given in the following sections are to be understood as exam-
ples.

II INTELLIGENT MACHINE DRAFTING
The creation of logical circuit board diagrams from a

knowledge base is not addressed by a number of commercially
available Computer Aided Drafting systems as well as research
on CAD, layout systems, and routers [7, 8]. Work has concen
trated on layout and routing of physical diagrams, Logical
diagrams are usually created with a graphics editor or by com
puter from hand sketches [9].

We are interested in layout and routing of logical circuit
diagrams. Physical diagrams created by CAD systems have to be
realized in hardware, and therefore the layout is usually optim·
ized for signal length, area consumption, power consumption or
heat dissipation. None of these requirements exist for logical
diagrams. Rather one wants to create pictures that are optimized
in a "human factors" sense [JO]. The described difference can best
be compared with the shift in attention in programming
language research from space and time efficient programs to read
able and maintainable languages.

Physical and logical routers also differ in their initial prob
lem setting. A physical router prohibits wire crossings and
makes use of different layers and "vias" to avoid them. A logical
router permits wire crossings. It uses a special symbol (usually a
dark dot at an intersection) to mark clearly whether a crossing is
meant to be an electrical connection or not.

Def: Intelligent Machine Drafting (IMD).
Intelligent Machine Drafting is the activity of automatic
creation of a cognitively appealing logical diagram of a sys
tem from a knowledge base which contains no numerical
coordinates of the components of the system.

The application of JMD to circuit boards implies the need for a
module that creates cognitively appealing layouts of all com
ponents and a logical (as opposed to physical) router that connects
them.

D1
Figure 2

IMO has turned out to be an interesting problem from a
theoretical point of view. It used to be the working method of
engineering (and is still common) that a design engineer would
send a hand sketch to a draftsman who would then draw a
nicely laid out version of iL The job of the draftsman is usually
considered a "low intelligence" position, requiring only a minor .
level of technical education. l lowever this "low intelligence prob
lem" differs from many "hard" Al problems because it cannot be
translated easily into a symbolic representation. Solving IMD
problems by humans requires use of (part ot) the perceptual sys
tem, and possibly of the imagery system, both domains which
researchers have not yet related well to the domain of problem
solving.

A. IMD for circuit board display
We have defined a very limited class of objects called A*M*

which is a simple generalization of the Adder-Multiplier of Fig.
2, and we have implemented a fully automatic layout and logi
cal routing program for this class. A formal description of the
class A*M* has been formulated. However, we will limit our
selves in this paper to an intuitive explanation.

A device of class A*M* consists of at most one main object
which is assumed to be a large box graphically containing
all objects asserted as its parts. In the absence of this main
object the screen itself is considered the main object,
Signal flow in an object of the class A*M* as well as in its
parts is strictly from left to right, with no feedback at any
stage.
The "signal length" (maximum number of components a
signal has to pass through from system input to system out·
put) and the "signal width" (maximum number of com
ponents that are active in parallel, assuming constant delay
for every component) are small enough that linear chains
of components can be constructed that will fit into the
given main object, leaving enough additional space for wir
ing.
The main object as well as all its parts have ports. Besides
that there is no second level of the part hierarchy. (The
ports of the main object are shown as little black boxes in
Fig. 2.)
The current implementation makes a few additional

assumptions which are not part of the A*M* definition, which
however do not impose severe loss of generality and will be
eliminated in the future. Among these assumptions are the con
stancy of the port size for all components and the assumption of
small variation of size among components. Forward jumps of
connections have not yet been implemented.

For efficiency reasons there is no backtracking programmed
into the router, therefore one can design pathologically unsolv
able cases rather easily, which does not currently. concern us,
given that the "general purpose routing problem" has not yet
been solved either [7l Work on IMO as well as on· the display of
physical board diagrams from a knowledge base have motivated
our work on graphical deep knowledge (which will be defined in
the next sections).

m GRAPIIlCAL DEEP KNOWLEDGE

A. Definition of Graphical Deep Knowledee
A large number of scientific fields make marginal to exten

sive statements about the representation of knowledge dealing
with forms and colors. Space limits us to mention three main
areas, natural language graphics [1 I], knowledge based graphics
(12. 13l and the imagery debate between "imagists" (14, 15] and
"propositionalists" (16, 17l The existence of some propositional
representations is now widely accepted in all camps. However,

many researchers seem to gloss over the details of their represen
tation, just stating that problem so and so could be done with a
list of propositions. Kosslyn's implementation, a notable excep
tion· [14l implies an important criterion for a propositional
representation of forms, namely that. it can be used to create
actual pictures. We want to call this criterion projective ade
quacy.

A system that also permits reasoning based on shapes or
positions of objects will be said to demonstrate deductive graphi
cal adequacy. The type of reasoning permitted is either analogi
cal or propositional. In order to avoid any possible terminological
confusions we will shun the terms "spatial knowledge", "visual
knowledge" and even "graphical knowledge" and use the term
"graphical deep knowledge".

Def: Graphical Deep Knowledge
A knowledge base is said to contain graphical deep
knowledge if at least part of its knowledge exhibits deduc
tive graphical adequacy, and part of its knowledge exhibits
projective adequacy.

The term "deep" is used in analogy with deep structures in
linguistics.

One major goal of our research is to create a base of graphi
cal deep knowledge that is adequate for displaying and reasoning
about objects in general and about the domain of circuit boards in
particular. Our current analysis of graphical deep knowledge is
given in the following sections.

B. Form Knowled&e
Objects may have individual forms or inherited forms.

ml(object dl form xand modality function) (1)

m2(object d2 type and-gate modality function) (2)
m3(sub-class and-gate class boolean modality function) (3)
m4(class boolean form xboolean modality function) (4)

(1) describes an object (individual) dl that has a form xand. The
last binary predicate "modality" is used to discriminate between
different display modes. Circuit boards permit display of their
wire plan (logical or functional representation) and of their phy
sical structure. The forms used for these two displays are usu
ally different, therefore the form proposition must be qualified by
the display modality for which this item of knowledge is valid.

A form like "xand" is at the same time a node in the
semantic net and a LISP function that, if executed, would draw a
specific form. Form functions are parameterized by the starting
position. Therefore one form function can display the same
object at different positions, but no other modification is possible.

(2) assigns d2 to the class of and-gates which are by (3)
recognized as a sub-class of the class of boolean components
which by (4) are all assigned the same form, namely xboolean.
We have never found it necessary to inherit a form using an
intermediate class.

c. Position Speciftcation
A large number of representations for positions is possible.

All object positions refer to the position of an object's fixed refer
ence point,

1. Concrete and Fuzzy Absolute Positions

ms< object dl abspos m6(x 100 y 200) modality function) (5)

(5) describes an absolute position of dl. The position is given by
the substructure m6 which contains actual coordinate values.

Geller and Shapiro 547

The pseudo predicate m6 has to be read as a structured indivi
dual, not as a proposition [6). The implicit assumption of this
representation is that coordinates are given in pixels of a graphics
display device and are "relative to the screen", and therefore
called absolute.

When people give a description of a picture, they typically
do not use coordinate values but rather talk about objects in the
center, at the top, or at the left of the screen. According to the
linearity principle it is therefore necessary to represent' these
"fuzzy" absolute positions. (6) shows an example of a fuzzy
absolute position.

m7(object d2 fabspos center modality function)

Currently the exact meaning of the fuzzy terms is still under
investigation. We have done a psychological pilot study with 20
subjects to find out what people think "lef'tness" means, which
has not yet been totally evaluated. Fuzzy absolute positions used
in this experiment are top, bottom, left, right, center, upper left
corner, upper right corner, lower left corner, and lower right
corner. The term "fuzzy" is not related to Zadeh's fuzzy logic
[18].

2. Relative Positions
Propositions about relative positions can be divided into

different groups, according to a number of criteria. The first dis·
tinction is between numeric positions (what we refer to as "con·
crete" positions) and fuzzy positions. For numeric positions there
are at least three different ways to interpret coordinate values.
Values can be given in pixels, or they can be multiples of the
sizes of either the object or the reference object involved.

The reference object might be given explicitly or implicitly.
In the second case there must be a "super-part" of the object
which will be used as the reference object. Finally it might be
the case that a relative position is inherited from a class of
objects. Many of the given representational possibilities can be
combined with each other.

a. Fuzzy Relative Positions··As for fuzzy absolute
positions the analysis of the semantics of fuzzy relative positions
is still under way and based on experimental data.

m8(object d3 frelpos left rel-to dl modality function) (7)

(7) describes the proposition that d3 is left of d l.
Unfortunately there are a number of fuzzy relative posi

tion descriptions which do not rely on binary relations. A
representation for "between", which has two reference objects is
shown in (8). More difficult are "on-one-line", "together", and
"forming-a-circle".

m9(object d99
frelpos between
rel-to l d98
rel-to2 d97
modality function)

b, Concrete Relative Positions--We will begin this
section with an example for a relative position measured in pixel
coordinates. Fig. 3 shows as example a multiplier. The little
black boxes in the picture are ports (sic!) of the multiplier and
have their own forms.

mlO(object port3
relpos mll(x 24 y 4)
rel-to D1Ml
modality function)

548 KNOWLEDGE REPRESENTATION

(6)

(8)

(9)

~port3

R

e
n
f

ti

' 0
t
a
t:
n

" e
i-

D1M1

R
Figure 3

A Multiplier with 3 Ports
in 2 sizes. In both sizes
port3 is one bodylength away from R

(9) describes the relative position of port3 as being 24 to the right
of D1Ml, and 4 above it. Distances refer to the reference point R.
If the relative position of a part of an object is given in pixel
coordinates then a problem with scaling results: not only objects
have to be scaled, but also relative positions. This is unsatifying
because it does not express the fundamental invariance of the
position of the sub-part to its super-part. Fortunately it is possi
ble to represent the relation between an object and its sub-parts
preserving the conceptual positional invariance by using "body
coordinates". These coordinates represent a relative position as
multiples of the size of the relevant object.

m 12(object port3
relpos mt3(bx 3 by I)
rel-to DIM1
modality function)

(10)

(10) shows the same relative position as (9), however assuming
that object port3 has a length of 8 pixels and a width of 4 pixels.
The relative position "3", is a multiple of the size of port3. The
length and width of an object are the length and width of the

·: smallest surrounding rectangle of it which has Jines parallel to
the coordinate axes ("extent").

Intuitively, the representation expresses the fact that a big
man has his arms far away from his neck, and a small child has
its arms near to the neck, but the ratio of the distance and the
size of the person should be approximately a constant.

Usually there will be a number of objects given with rela
tive positions to the same reference object. This makes it desir
able to specify relative positions in body coordinates of the refer·
ence object, shortly called reference object coordinates (denoted by
the arcs brx and bry).

m14(object port3
relpos mts< brx 1 bry 0.33)
rel-to D1Ml
modality function)

(ti)

(11) can be interpreted in the same way as (10), except that this
time the factors (after "brx", "bry") apply to the size of the refer·
ence object, which is assumed to be 24 pixels long and 12 pixels
high.

c. Explicit versus Implicit Reference Objects+ In
all cases so far the reference object of a relative position state·
ment was given with a rel-to arc. In the circuit board mainte·
nance domain a flat part hierarchy is used. There is one major
object, the board, which has many different parts which should
reasonably be placed relative to this main object. It would be
redundant to assert the reference object for all the parts. and
therefore a default assumption is practical.

m16(object d5 relpos ml 7(x 100 Y-:-20)
modality function) ·

mls(object d6 sub-parts d5 modality function)

(12)

(13)

(13) shows a part assertion, a descriptive tool that will be
reviewed later on. Because of (13) the relative position asserted
by (12) will be interpreted as being relative to d6.

Combinations of the representational constructs introduced
are in general possible. For instance an implicit reference object
may be used with all types of relative coordinates, including
fuzzy ones (14, 15).

m19(object d7 frelpos left modality function)
m2o(object dB sub-parts d7 modality function)

(14)
(15)

d. Inherited Relative Positions-·lf one adder has its
first port at half a body length from its reference point, then this
will presumably hold true for all the adders in the system, and
one would not want to assert this over and over again. A solu
tion to this problem is to make the relative position itself inherit
able. This option is exemplified by the following set of proposi
tions. The relative position is given in reference object coordi
nates and inherited through an intermediateclass "half-adder".

m21(object d9 type half-adder modality function) (16)
m22(object d10 sub-parts d9 modality function) (17)
m23(sub-class half-adder class adder modality function) (18)
m24(object d10 form xadd modality function) (19)
m2S(class adder relpos m26(brx 2 bry .5) (20)

modality function)

(16), (18), and (20) specify the relative position of d9
which is inherited from the class "adder"; (17) specifies the refer
ence object d10 by force of its super-part relationship to d9. (19)
is necessary to permit the derivation of the size of dlO which in
turn is necessary for the computation of reference object coordi
nates.

3. Logical Reasoning with Fuzzy Positions
The following structure is a SNePS rule that expresses the

fact that "if one object is left of another object, then the other
object must be right of the first object and vice versa". For a
detailed explanation of the structure of SNePS rules, see [19]

m27(avb (vl v2 v3) (21)
thresh 1
arg (m28 object v 1 rel-to v2 modality v 3 frelpos left)
arg (m29 object v2 rel-to v 1 modality v 3 frelpos right))

If the knowledge base contains the absolute position of Band the
fuzzy position of B relative to A but no positional information
about A itself, then A's fuzzy position can be derived with rule

(21) or a variation of it.

D. Parts. Clusters. and Assemblies
Part hierarchies are a commonly used construct in AI [20i

Our research has indicated that a part hierarchy alone is not
sufficient for graphical deep knowledge representations. We have
added two other types of part-like hierarchies, called assemblies
and clusters.

The display of a complicated object with several levels of
parts might be impossible on a limited resolution display device.
A natural way to limit the complexity of such a display task is
to limit the number of levels of the hierarchy that are actually
displayed. This is a very elegant solution because it does not
require the introduction of any new representational construct.

(f7) showed our representation of a simple part relation.
An object can of course have more than one part. ·The ubiquitous
modality attains a special importance for part hierarchies. Cir
cuits Iike AND gates, OR gates etc. are displayed as single objects
in a logical diagram. In real hardware there are usually four
binary AND gates in a single chip. These four gates might be
parts of different logical units. However, in a physical represen
tation all four of them must be parts of the same .integrated cir·
cuit.

1. Assemblies
Work on the maintenance part of the VMES project has led

to the realization that certain objects should never be displayed
without their parts. For instance, a port is a part of a multiplier,
but a multiplier should never be displayed without its ports.

. Sub-assemblies are therefore objects that have a real part-whole
relation to a specific object and which are supposed to be
displayed whenever the object they are part of is displayed.

The representation of sub-assemblies is similar to part·
whole relations, except that the arc "sub-asserns" is used instead
of "sub-parts".

mJo(object dlO sub-asserus d9 modality function) (22)

2. Clusters
Printed circuit boards sometimes show groups of objects

that stand in a logical relation to eachother, comparable to a
part-whole relation. Nevertheless they are neither sub-parts nor
sub-assemblies. Sub-parts and sub-assemblies have a main object
that is itself displayable, i.e, that has a form. However, a group
ing of components might consist of objects of the same size and
importance, none of which deserves the status of main object,
Fig. 4 shows a voltage divider and a T filter which are typical
examples of such circuits.

A grouping which exists only as an abstraction is called a
cluster. If one combines the concept of cluster with the concept
of level a dilemma emerges. Either the abstract object is left out
of the hierarchy (which is undesirable, because anything that
seems natural to a person should be directly representable in the
network (LP!)), or the abstract object is put in the hierarchy and
the objects of the cluster are made its parts. But now the idea of
creating simplified displays by limiting the number of levels
displayed does not work any more, because the abstract object is
not displayable in the same sense as real objects are. Moreover if
one is willing to give an abstract object a symbolic form, then
both the symbolic form as well as the cluster elements would be
displayed if one wants to see all the levels of the part hierarchy.
This would complicate the display unnecessary.

Our answer to this problem is to create an additional hierar
chy which stands somewhere in between a part hierarchy and an
abstraction hierarchy. If A is an object (without form) which
has sub-clusters B, C, and)) then A will he displayed only by
displaying B, C, and D. However if a partial display is enforced
in a way that would exclude the level of B, C, and D from
showing, A will 'be displayed symbolically by a box, akin to the
display format in block diagrams. Fig. 5 shows the new display
format for Fig. 4; The network representation of a sub-cluster is
shown by (23).

m3H object d!O sub-clusters d9 modality function) (23)

E. Attributes and Attribute Mappini:;s
One important factor in designing a system based on graphi·

cal deep knowledge is a clear separation between icons and the
objects that are represented by these icons, an observation that
has been made by others also [21). This separation forces one to

Geller and Shapiro 549

l ~ l~I ~

Figure 4

A Voltage A "T"-Filter
Divider

Voltage T -Filter
divider

Figure 5

Abstract Representations for
Figure4

distinguish between attributes of objects and attributes of pic
tures. A typical example of an attribute of a picture is bllnking.
On the other hand, faultiness is an attribute of a component, not
of the picture of a component. Attributes like faultiness cannot
be displayed directly and therefore have to be symbolized with
pictorial attributes.

Attributes are represented by the name of an attribute-class
with O to 3 positions for attribute values. The following exam·
pies show an attribute with no attribute-value (24), an attribute
with one position containing the value "faulty" (25), and an
attribute with two positions containing the values "left" and
"90" (26). No need for any attributes with more than three posi·
tions for attribute-values has arisen yet.

m32(object d t (24)
attr m33(atrb-cls new modality function))

m34C object d 1 (25)
attr m35C atrb-cls state

atrb faulty modality function)
m36(object d2 (26)

attr m37(atrb-cls rotated
atrbl left atrb2 90 modality function)

The attribute statements (24) - (26) apply to objects as opposed to
pictures.

Attribute classes are linked to functionals that can be
applied to form functions. Such a functional is called a mLJdtjier
function. (26) asserts that d2 has the attribute-class "rotated"
with two values "left" and "90" (degrees), which requires a
change to its form before it can be displayed correctly. Therefore
a modifier function that rotates forms is bound to this attribute
class and the form of d2 is passed to it .as first argument. The
attribute values (marked by the arcs atrb, atrbl, atrb2 and possi
bly atrb3) are passed in correct order as additional arguments to
the modifier function.

The binding of an attribute-class to a modifier function is
asserted. in the knowledge base. This makes it amenable to easy
change by the user. Utterances like

550 KNOWLEDGE REPRESENTATION

"Represent the state faulty by red color and
the state good by blue color."

(27a)

have led to this representational decision (linearity principle!). In
(27b) the complete mapping necessary for (27a) is given.

m38(attr state
mod-func color
modality function
vall m39(expressed faulty expressed-by red)
vall m40(expressed good expressed-by blue))

(27b)

It binds the attribute-class "state" to the modifier-function "color".
The two sub-structures at the end of the vall arcs show value
mappings between object attributes and picture attributes. The
object attribute of faulty state is represented by the picture attri
bute of red color. va11 corresponds to atrbl and specifies value
mappings that apply to the first attribute position.

Sometimes one encounters numerical attribute values as in
(26). Representing a mapping between two large lists of numbers
would be unwieldy to impossible. Luckily in many practical
cases the relation between the attribute value of a picture and
the attribute value of the corresponding object is an identity
function. This case is taken care of by using the attribute value
of the object if there is no explicit mapping from object value to
picture value. This also can take care of a mapping that is the
identity function except for a few singularities.

If a more complicated function is necessary to transform
from object attribute-value to picture attribute-value then the
mapping function has to be integrated in the attribute functional
itself.

The method used to associate an actual function with an
attribute-class is identical to the method used for form functions.
The node specifying a modifier-function is at the same time the
name of a LISP function.

An important finding of our work has been that there is
inheritance along part hierarchies, something we have not yet

· seen in the literature. For instance, if an object is represented
with an attribute like "scaled", then one would want all its parts
to inherit this attribute. Even more interesting is the fact that
this inheritance does not apply to all attributes and depends on
the attribute-class itself. If one asserts, for instance, the faulti
ness of an object then it would defeat the whole purix- of a
maintenance system to have all its parts inherit faultiness.

Given that one can easily express a fact like "scaling is
inheritable", one should also (linearity principle!) have a
correspondingly simple representation in the network which is
exactly what has been implemented.

m41(inheritable size) (28)

If (28) is part of the current knowledge base then the attribute·
class "size" will apply to the parts of all objects for which the
size attribute has been asserted.

IV IMPLEMENTATIONAL STATE
TINA is going through its fourth cycle of implementation

which is done in Franz I.ISP on top of SNePS. All of the shown
knowledge structures (and more) are representable and retriev·
able from the network knowledge base, and most of them are
interpreted in a way consistent with the descriptive semantics
given in this paper. An older version of "TINA" has been applied
to a real circuit board used for telecommunication purposes ('PCM
board). The IMD system described has been used for the Adder·
Multiplier only.

V CONCLUSIONS

The problem of Intelligent Machine Drafting ·has been intro
duced, and it was argued that it is a theoretically interesting Al
problem which is sufficiently different from other CAD tech-·
niques to deserve separate investigation. The class A *M* has been
defined informally, and a few additional restrictions of the
current !MD implementation for objects of this class have been
given. The definition of Graphical Deep Knowledge and a (par
tial) task domain analysis of this area have been presented. A
number of representational primitives have been introduced by
way of example. These primitives comprise structures for
representing knowledge about forms, concrete and fuzzy posi
tions, and attributes. Positions have been differentiated into abso
lute and relative positions with explicit and implicit reference
objects. Pixel based coordinates, body coordinates and reference
object coordinates have been introduced. Part hierarchies have
been discriminated into real part hierarchies, sub-assemblies, and
abstraction-hierarchy like clusters of objects. The derivation of
some of these structures based on the "linearity principle" has
been demonstrated, by presenting examples for motivating
natural language utterances. A generator function which creates

graphical representations from a knowledge base containing the
indicated structures has been implemented.

References
1. D. C. Brown and B. Chandrasekaran, "Design Consideration

for Picture Production in a Natural Language Graphics Sys
tem," Computer Graphics 15(2) pp. 174-207 (July 1981).

2. Stuart C. Shapiro, Sargur N. Srihari, Ming-Ruey Taie, and
James Geller, "VMES: A Network Based Versatile Mainte
nance Expert System," Proc. of 1st International Confer·
ence on Applications of Al to Engineering Problems, pp.:
925-936 Springer Verlag, (April 1986).
Stuart C. Shapiro, "The SNel'S Semantic Network Processing
System," pp. 179-203 in Associative Networks: The
Representation and use of Knowledge by Computers, ed.
Nicholas V. Findler,Academic Press, New York (1979).

3.

4. Stuart C. Shapiro, "Using Non-Standard Connectives and
Quantifiers for Representing Deduction Rules in a Semantic
Network," Presented in Tokyo at: Current Aspects of Al
Research, (Aug. 27-28, 1979).

5. Stuart C. Shapiro and James Geller, "Artificial Intelligence
and Automated Design," 1986 SU NY Buffalo Symposium
on CAD: The Computability of Design, SUNY at Buffalo,
(Dec 6-7, 1986).

6. Stuart C. Shapiro and William J. Rapaport, "SNePS Con
sidered as a Fully Intensional Propositional Semantic Net
work," Proceedings of the Fifth National Co7:ference on
Artificial Intelligence, pp. 278-283 (1986). ·

7. Hajimu Mori, Fujita Tomoyuk.i, Masahiro Annaka, Satoshi
Goto, and Tatsuo Ohtsuki, "Advanced Interactive Layout
Design System for Printed Wiring Boards," pp. 495-523 in
Hardware and Software Concepts in VLSJ. ed. Guy
Rabat,Van·Nostrand Reinhold, New York (1983).

8. lsao Shirakawa, "Routing High Density Printed Wiring
Boards," pp. 452:479 in Hardware and Software Concepts
in V LSJ, ed. Guy Rabat.Van Nostrand Reinhold, 1'ie\\ York
(1983). .

9. Helmut Jansen, Erhard Nullmeier, and Karl-Heinz Roediger,
"Handsketching as a Human Factor Aspect in Graphical
Interaction," Computers and Graphics 9(3) pp. 195-210
(1985).

10. M. C. Maguire, "A Review of Human Factors Guidelines and
Techniques for the Design of Graphical Human-Computer
Interfaces," Computers and Graphics 9(3) pp. 221-235
(1985). . . ·

11. Michael Hussman and Peter Schefe, "The Design of SWYSS,
a Dialgue System for Scene Analysis," pp. 143-201 in
Natural. Language Communication with Pictorial. Informa
tion Systems, ed. Leonard Bole, (1984).

12. Frank Zydbel, Noton R. Greenfeld, Martin D. Yonke, and
Jeff Gibbons, "An Information Representation System,"
Proceedings of the Seventh International Joint Confer
ence on Artificial Intelligence, pp. 978-984 (1981).

13. Mark Friedell, "Automatic Synthesis of Graphical Object
Descriptions," Computer Graphics 18(3) pp. 53-62 (1984).

14. Stephen M. Kosslyn and Steven P. Shwartz, "A Simulation
of Visual Imagery," Cognitive Science 1 pp. 265-295 (1977).

15. Stephen Michael Kosslyn, Image and Mind, Harvard
University Press, Cambridge MA (1980).

16. Zenon W. Py lyshvn, "The Imagery Debate: Analogue Media
versus Tacit Knowledge," Psychological Review 88(1) pp.
16-45 (1981).

17. Zenon W. Pv lvshyn. Computation and Cognition. MIT Press,
Cambridge MA (1984).

18. · Lofti A. Zadeh, "Commonsense Knowledge representation
Based on Fuzzy, Logic," Computer, ._pp. 61-65 (Oct. 83).

19. Stuart C. Shapiro and The SNePS Implementation Group,
"SNePS User's Manual," SNeRG Bibliography #31; SUNY at
Buffalo (Sept. 1983).

20. Mary Angela Papalask aris and Lenhart Schubert, "Parts
Inference: Closed and Semi-Closed Partitioning· Graphs,"
Proceedings of the Seventh International Joint Confer·
ence on Artificial Intelligence, pp. 304-309 (1981).

21. Fanya S. Montalvo, "Diagram Understanding: The Intersec
tion of Computer Vision and Graphics," Al Memo 873, MIT
(Nov. 1985).

Geller and Shapiro 551

