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ABSTRACT* 

The problem of Intelligent Machine Drafting is presented, and a 
description of an existing implementation as part of a graphical 
generator function is given. The concept of Graphical Deep 
Knowledge is defined as a representational basis for Intelligent 
Machine Drafting problems as well as for physical object 
displays. A (partial) task domain analysis for Graphical Deep 
Knowledge is presented. Primitives that are necessary to deal 
with a world of 2-D forms and colors are introduced. Among 
them are primitives for describing forms, positions, parts, attri 
butes, sub-assemblies, and an abstraction hierarchy. The use of 
the "linearity principle" for knowledge structure derivation from 
natural language utterances is shown. 

I INTRODUCTION 
Traditional computer graphics systems have been criticized 

in the literature for being a poor environment from a knowledge 
representation point of view [Ii In graphics as well as in other 
areas of software development, programmers have been taught 
not to code any items that are irrelevant to the actual execution 
of a given task. Over the last several years it has been an essen 
tial goal of Al programming to reverse the process of elimination 
of knowledge from the coding process. The AI programmer tries 
to make his knowledge conscious and tries to incorporate much of 
it in his program. 

The use of Al techniques in other areas of computer science 
has led to the replacement of the "eliminate knowledge" para 
digm by the "add knowledge paradigm" outside of AI proper. In 
this sense we interpret Brown et al., and in this sense we want 
our work to be understood. 

In the setting of the VMES project (Versatile Maintenance 
Expert System) for printed wiring board maintenance [2] we 
have been working on a knowledge based graphics system. In this 
paper a new class of layout/routing problems that we have 
encountered will be described (Intelligent Machine Drafting), and 
a task domain analysis of what we call Graphical Deep 
Knowledge will be given. 

A. The Display Proi:ram 
A major part of the VMES user interface is a display pro 

gram (named TINA), which is called by the maintenance reasoner 
of VMES and keeps the user constantly informed what VMES is 
currently "thinking" about. For this purpose it displays, using 
certain symbol colors, a logical diagram of the circuit board 
currently being analyzed. Suspected components are displayed in 
green. Components found faulty are displayed in red. Violated 
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expectations are shown 'm magenta. Objects about which nothing 
negative is (yet) known are displaved in blue. Blinking is used 
to indicate the current focus object of the system. 

VMES is implemented on top of SNePS the "Semantic Net 
work Processing System" [3L The display program is conceived 
of as a generator that creates pictures from a knowledge base. 
This is in total analogy to the generation of natural language 
from a knowledge base. 

B. The Linearity Principle of KR 
One preliminary idea that has been guiding our work is 

what we call the lineariry principle. Let there be two systems 
S 1 and S 2 consisting both of a parser (Pi, P 2) and a knowledge 
representation formalism (K 1, K 2). Let there also be a function 
01 that can be applied to any natural language expression and a 
function 01 that can be applied to any knowledge structure of 
Ki, K 2• 01 and 01 compute some unspecified complexity meas 
ure of their arguments. 

Both systems S 1 and S 2 impose a mapping from a natural 
language input to a knowledge structure. We will call these two 
mappings M 1 and M ! respectively. We now compute two func 
tions / 1, / 2 such that 

In the above formulas "u" describes a syntactically valid and 
semantically meaningful natural language utterance contained in 
the domains of both P 1 and P 2• We will call the system S 1 
better than the system S 2 if / 1(u) can be approximated better by 
a constant than / i(u). A practical judgement about the con 
stancy of / 1 and / 2 could be done by computing mean and stan 
dard deviation of f 1 and f 2 for a large number of different u 
values, however we will limit ourselves to intuitive judgement.'>. 
The Linearity Principle: 

The quotient of the complexity of a knowledge structure 
and the natural language utterance that it represents should 
be approximately a constant for any given parser and KR 
system. 

Intuitively the linearity principle says that we do not want to 
represent most five word sentences of a language with three or 
four semantic network nodes, but have one five word sentence of 
this language represented with 25 nodes. An implicit application 
of the linearity principle (LP) can be seen in Shapiro's work on 
non-standard connectives [4 

Before we present an example application of the I P it 1s 

necessary to say that the arc labels in SNePS networks l Fig. I. 
more explanations will be given in the next section) are seen as 
system primitives. The number of different arc labels is not fixed 
and can be extended by the user. It is assumed that the number 
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Figure 1 

A SNePS network giving (partial) 
information about an Adder-Multiplier 

of arc labels necessary for one limited domain will converge 
towards a stable set, therefore identifying this set is a way of 
task domain analysis [5]. 

If people can describe a simple arrangement of objects by a 
short sentence then it should be possible to describe it with a rea 
sonably simple SNePS structure. If this is not the case then the 
number of user defined primitives has to be extended to accom 
modate the sentence. (Of course new primitives will also have to 
be used if the sentence is not representable at all). 

For instance if two people are sitting in front of a graphics 
terminal displaying the Adder-Multiplier (which has been used 
in maintenance research, Fig. 2), and one of them asks: 

"Tell me the names of all multipliers." 

then the other person will presumably be able to do that. There 
fore we would want our graphics interface to be able to do the 
same thing. We also want the knowledge, base to contain infor 
mation on all multipliers in a format approximately linear in 
size with respect to the answer given by a person. This leads 
directly to an old idea, the implementation of a class hierarchy. 
(Less obvious examples will be given throughout this paper} 

C. Notational Conventions for SNePS networks 
Fig. 1 shows an example of a typical SNePS network in 

order to provide some intuition for the reader not familiar with 
SNeJ'S. The syntax and semantics of SNePS have been carefully 
defined [6]. SNePS is also a "neat" KR system that incorporates 
full first order predicate calculus. We will use Fig. 1 to intro 
duce the network notation that will be used in this paper. 

The nodes ml, m2, m3, m4, m5 represent propositions. m2 
expresses the fact that the object Dl A 1 is of type Adder. An 
equivalent first order predicate calculus representation for Fig. 1 
would be the following one: 

type(ml,Adder-Multiplier) & object(ml,Dl) 
type(m2,Adder) & object(m2,D1Al) & part-ofCm2,Dl) 
type(m3,Multiplier) & object(m3,D1Ml) & part-of(m3,Dl) 
type(m4,Full-Adder) & object(m4,D1AlF2) & part-of(m4,D1Al) 

• type(m5,Full-Adder) & object(m5,D1AiF1) & part-of(m5,D1Al) · 
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This representation is unnecessarily redundant, and we will 
introduce a pseudo-predicate notation according to the following 
formal scheme. Given a conjunction of a number of binary 
predicates with identical first arguments, transform the first 
argument into a pseudo predicate. Transform all binary predi 
cates into arguments at odd numbered positions, and insert all 
second arguments at even numbered positions. In symbols: 

n 
& p;(ao, a;) ->aoCP1 a1 P2 a2 ... ) 
; 1 

This transformation is syntactic sugar and has no influence on 
the meaning of the representation which depends on the combina 
tion of system primitives (arcs). Therefore all the a;'s that will 
be given in the following sections are to be understood as exam- 
ples. 

II INTELLIGENT MACHINE DRAFTING 
The creation of logical circuit board diagrams from a 

knowledge base is not addressed by a number of commercially 
available Computer Aided Drafting systems as well as research 
on CAD, layout systems, and routers [7, 8]. Work has concen 
trated on layout and routing of physical diagrams, Logical 
diagrams are usually created with a graphics editor or by com 
puter from hand sketches [9]. 

We are interested in layout and routing of logical circuit 
diagrams. Physical diagrams created by CAD systems have to be 
realized in hardware, and therefore the layout is usually optim· 
ized for signal length, area consumption, power consumption or 
heat dissipation. None of these requirements exist for logical 
diagrams. Rather one wants to create pictures that are optimized 
in a "human factors" sense [JO]. The described difference can best 
be compared with the shift in attention in programming 
language research from space and time efficient programs to read 
able and maintainable languages. 

Physical and logical routers also differ in their initial prob 
lem setting. A physical router prohibits wire crossings and 
makes use of different layers and "vias" to avoid them. A logical 
router permits wire crossings. It uses a special symbol (usually a 
dark dot at an intersection) to mark clearly whether a crossing is 
meant to be an electrical connection or not. 

Def: Intelligent Machine Drafting (IMD). 
Intelligent Machine Drafting is the activity of automatic 
creation of a cognitively appealing logical diagram of a sys 
tem from a knowledge base which contains no numerical 
coordinates of the components of the system. 

The application of JMD to circuit boards implies the need for a 
module that creates cognitively appealing layouts of all com 
ponents and a logical (as opposed to physical) router that connects 
them. 

D1 
Figure 2 



IMO has turned out to be an interesting problem from a 
theoretical point of view. It used to be the working method of 
engineering (and is still common) that a design engineer would 
send a hand sketch to a draftsman who would then draw a 
nicely laid out version of iL The job of the draftsman is usually 
considered a "low intelligence" position, requiring only a minor . 
level of technical education. l lowever this "low intelligence prob 
lem" differs from many "hard" Al problems because it cannot be 
translated easily into a symbolic representation. Solving IMD 
problems by humans requires use of (part ot) the perceptual sys 
tem, and possibly of the imagery system, both domains which 
researchers have not yet related well to the domain of problem 
solving. 

A. IMD for circuit board display 
We have defined a very limited class of objects called A*M* 

which is a simple generalization of the Adder-Multiplier of Fig. 
2, and we have implemented a fully automatic layout and logi 
cal routing program for this class. A formal description of the 
class A*M* has been formulated. However, we will limit our 
selves in this paper to an intuitive explanation. 

A device of class A*M* consists of at most one main object 
which is assumed to be a large box graphically containing 
all objects asserted as its parts. In the absence of this main 
object the screen itself is considered the main object, 
Signal flow in an object of the class A*M* as well as in its 
parts is strictly from left to right, with no feedback at any 
stage. 
The "signal length" (maximum number of components a 
signal has to pass through from system input to system out· 
put) and the "signal width" (maximum number of com 
ponents that are active in parallel, assuming constant delay 
for every component) are small enough that linear chains 
of components can be constructed that will fit into the 
given main object, leaving enough additional space for wir 
ing. 
The main object as well as all its parts have ports. Besides 
that there is no second level of the part hierarchy. (The 
ports of the main object are shown as little black boxes in 
Fig. 2.) 
The current implementation makes a few additional 

assumptions which are not part of the A*M* definition, which 
however do not impose severe loss of generality and will be 
eliminated in the future. Among these assumptions are the con 
stancy of the port size for all components and the assumption of 
small variation of size among components. Forward jumps of 
connections have not yet been implemented. 

For efficiency reasons there is no backtracking programmed 
into the router, therefore one can design pathologically unsolv 
able cases rather easily, which does not currently. concern us, 
given that the "general purpose routing problem" has not yet 
been solved either [7l Work on IMO as well as on· the display of 
physical board diagrams from a knowledge base have motivated 
our work on graphical deep knowledge (which will be defined in 
the next sections). 

m GRAPIIlCAL DEEP KNOWLEDGE 

A. Definition of Graphical Deep Knowledee 
A large number of scientific fields make marginal to exten 

sive statements about the representation of knowledge dealing 
with forms and colors. Space limits us to mention three main 
areas, natural language graphics [1 I], knowledge based graphics 
(12. 13l and the imagery debate between "imagists" (14, 15] and 
"propositionalists" (16, 17l The existence of some propositional 
representations is now widely accepted in all camps. However, 

many researchers seem to gloss over the details of their represen 
tation, just stating that problem so and so could be done with a 
list of propositions. Kosslyn's implementation, a notable excep 
tion· [14l implies an important criterion for a propositional 
representation of forms, namely that. it can be used to create 
actual pictures. We want to call this criterion projective ade 
quacy. 

A system that also permits reasoning based on shapes or 
positions of objects will be said to demonstrate deductive graphi 
cal adequacy. The type of reasoning permitted is either analogi 
cal or propositional. In order to avoid any possible terminological 
confusions we will shun the terms "spatial knowledge", "visual 
knowledge" and even "graphical knowledge" and use the term 
"graphical deep knowledge". 

Def: Graphical Deep Knowledge 
A knowledge base is said to contain graphical deep 
knowledge if at least part of its knowledge exhibits deduc 
tive graphical adequacy, and part of its knowledge exhibits 
projective adequacy. 

The term "deep" is used in analogy with deep structures in 
linguistics. 

One major goal of our research is to create a base of graphi 
cal deep knowledge that is adequate for displaying and reasoning 
about objects in general and about the domain of circuit boards in 
particular. Our current analysis of graphical deep knowledge is 
given in the following sections. 

B. Form Knowled&e 
Objects may have individual forms or inherited forms. 

ml( object dl form xand modality function) (1) 

m2( object d2 type and-gate modality function) (2) 
m3( sub-class and-gate class boolean modality function) (3) 
m4( class boolean form xboolean modality function) (4) 

(1) describes an object (individual) dl that has a form xand. The 
last binary predicate "modality" is used to discriminate between 
different display modes. Circuit boards permit display of their 
wire plan (logical or functional representation) and of their phy 
sical structure. The forms used for these two displays are usu 
ally different, therefore the form proposition must be qualified by 
the display modality for which this item of knowledge is valid. 

A form like "xand" is at the same time a node in the 
semantic net and a LISP function that, if executed, would draw a 
specific form. Form functions are parameterized by the starting 
position. Therefore one form function can display the same 
object at different positions, but no other modification is possible. 

(2) assigns d2 to the class of and-gates which are by (3) 
recognized as a sub-class of the class of boolean components 
which by (4) are all assigned the same form, namely xboolean. 
We have never found it necessary to inherit a form using an 
intermediate class. 

c. Position Speciftcation 
A large number of representations for positions is possible. 

All object positions refer to the position of an object's fixed refer 
ence point, 

1. Concrete and Fuzzy Absolute Positions 

ms< object dl abspos m6( x 100 y 200) modality function) (5) 

(5) describes an absolute position of dl. The position is given by 
the substructure m6 which contains actual coordinate values. 
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The pseudo predicate m6 has to be read as a structured indivi 
dual, not as a proposition [6). The implicit assumption of this 
representation is that coordinates are given in pixels of a graphics 
display device and are "relative to the screen", and therefore 
called absolute. 

When people give a description of a picture, they typically 
do not use coordinate values but rather talk about objects in the 
center, at the top, or at the left of the screen. According to the 
linearity principle it is therefore necessary to represent' these 
"fuzzy" absolute positions. (6) shows an example of a fuzzy 
absolute position. 

m7( object d2 fabspos center modality function) 

Currently the exact meaning of the fuzzy terms is still under 
investigation. We have done a psychological pilot study with 20 
subjects to find out what people think "lef'tness" means, which 
has not yet been totally evaluated. Fuzzy absolute positions used 
in this experiment are top, bottom, left, right, center, upper left 
corner, upper right corner, lower left corner, and lower right 
corner. The term "fuzzy" is not related to Zadeh's fuzzy logic 
[18]. 

2. Relative Positions 
Propositions about relative positions can be divided into 

different groups, according to a number of criteria. The first dis· 
tinction is between numeric positions (what we refer to as "con· 
crete" positions) and fuzzy positions. For numeric positions there 
are at least three different ways to interpret coordinate values. 
Values can be given in pixels, or they can be multiples of the 
sizes of either the object or the reference object involved. 

The reference object might be given explicitly or implicitly. 
In the second case there must be a "super-part" of the object 
which will be used as the reference object. Finally it might be 
the case that a relative position is inherited from a class of 
objects. Many of the given representational possibilities can be 
combined with each other. 

a. Fuzzy Relative Positions··As for fuzzy absolute 
positions the analysis of the semantics of fuzzy relative positions 
is still under way and based on experimental data. 

m8( object d3 frelpos left rel-to dl modality function) (7) 

(7) describes the proposition that d3 is left of d l. 
Unfortunately there are a number of fuzzy relative posi 

tion descriptions which do not rely on binary relations. A 
representation for "between", which has two reference objects is 
shown in (8). More difficult are "on-one-line", "together", and 
"forming-a-circle". 

m9( object d99 
frelpos between 
rel-to l d98 
rel-to2 d97 
modality function) 

b, Concrete Relative Positions--We will begin this 
section with an example for a relative position measured in pixel 
coordinates. Fig. 3 shows as example a multiplier. The little 
black boxes in the picture are ports (sic!) of the multiplier and 
have their own forms. 

mlO( object port3 
relpos mll( x 24 y 4) 
rel-to D1Ml 
modality function) 
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A Multiplier with 3 Ports 
in 2 sizes. In both sizes 
port3 is one bodylength away from R 

(9) describes the relative position of port3 as being 24 to the right 
of D1Ml, and 4 above it. Distances refer to the reference point R. 
If the relative position of a part of an object is given in pixel 
coordinates then a problem with scaling results: not only objects 
have to be scaled, but also relative positions. This is unsatifying 
because it does not express the fundamental invariance of the 
position of the sub-part to its super-part. Fortunately it is possi 
ble to represent the relation between an object and its sub-parts 
preserving the conceptual positional invariance by using "body 
coordinates". These coordinates represent a relative position as 
multiples of the size of the relevant object. 

m 12( object port3 
relpos mt3( bx 3 by I) 
rel-to DIM1 
modality function) 

(10) 

(10) shows the same relative position as (9), however assuming 
that object port3 has a length of 8 pixels and a width of 4 pixels. 
The relative position "3", is a multiple of the size of port3. The 
length and width of an object are the length and width of the 

·: smallest surrounding rectangle of it which has Jines parallel to 
the coordinate axes ("extent" ). 

Intuitively, the representation expresses the fact that a big 
man has his arms far away from his neck, and a small child has 
its arms near to the neck, but the ratio of the distance and the 
size of the person should be approximately a constant. 

Usually there will be a number of objects given with rela 
tive positions to the same reference object. This makes it desir 
able to specify relative positions in body coordinates of the refer· 
ence object, shortly called reference object coordinates (denoted by 
the arcs brx and bry ). 

m14( object port3 
relpos mts< brx 1 bry 0.33) 
rel-to D1Ml 
modality function) 

(ti) 

(11) can be interpreted in the same way as (10), except that this 
time the factors (after "brx", "bry") apply to the size of the refer· 
ence object, which is assumed to be 24 pixels long and 12 pixels 
high. 

c. Explicit versus Implicit Reference Objects+ In 
all cases so far the reference object of a relative position state· 
ment was given with a rel-to arc. In the circuit board mainte· 
nance domain a flat part hierarchy is used. There is one major 
object, the board, which has many different parts which should 
reasonably be placed relative to this main object. It would be 
redundant to assert the reference object for all the parts. and 
therefore a default assumption is practical. 



m16(object d5 relpos ml 7(x 100 Y-:-20) 
modality function) · 

mls( object d6 sub-parts d5 modality function) 

(12) 

(13) 

(13) shows a part assertion, a descriptive tool that will be 
reviewed later on. Because of ( 13) the relative position asserted 
by (12) will be interpreted as being relative to d6. 

Combinations of the representational constructs introduced 
are in general possible. For instance an implicit reference object 
may be used with all types of relative coordinates, including 
fuzzy ones ( 14, 15). 

m19( object d7 frelpos left modality function) 
m2o( object dB sub-parts d7 modality function) 

(14) 
(15) 

d. Inherited Relative Positions-·lf one adder has its 
first port at half a body length from its reference point, then this 
will presumably hold true for all the adders in the system, and 
one would not want to assert this over and over again. A solu 
tion to this problem is to make the relative position itself inherit 
able. This option is exemplified by the following set of proposi 
tions. The relative position is given in reference object coordi 
nates and inherited through an intermediateclass "half-adder". 

m21( object d9 type half-adder modality function) (16) 
m22( object d10 sub-parts d9 modality function) (17) 
m23( sub-class half-adder class adder modality function) (18) 
m24( object d10 form xadd modality function) (19) 
m2S( class adder relpos m26( brx 2 bry .5) (20) 

modality function) 

(16), (18), and (20) specify the relative position of d9 
which is inherited from the class "adder"; ( 17) specifies the refer 
ence object d10 by force of its super-part relationship to d9. (19) 
is necessary to permit the derivation of the size of dlO which in 
turn is necessary for the computation of reference object coordi 
nates. 

3. Logical Reasoning with Fuzzy Positions 
The following structure is a SNePS rule that expresses the 

fact that "if one object is left of another object, then the other 
object must be right of the first object and vice versa". For a 
detailed explanation of the structure of SNePS rules, see [19] 

m27( avb (vl v2 v3) (21) 
thresh 1 
arg (m28 object v 1 rel-to v2 modality v 3 frelpos left) 
arg (m29 object v2 rel-to v 1 modality v 3 frelpos right)) 

If the knowledge base contains the absolute position of Band the 
fuzzy position of B relative to A but no positional information 
about A itself, then A's fuzzy position can be derived with rule 

(21) or a variation of it. 

D. Parts. Clusters. and Assemblies 
Part hierarchies are a commonly used construct in AI [20i 

Our research has indicated that a part hierarchy alone is not 
sufficient for graphical deep knowledge representations. We have 
added two other types of part-like hierarchies, called assemblies 
and clusters. 

The display of a complicated object with several levels of 
parts might be impossible on a limited resolution display device. 
A natural way to limit the complexity of such a display task is 
to limit the number of levels of the hierarchy that are actually 
displayed. This is a very elegant solution because it does not 
require the introduction of any new representational construct. 

(f7) showed our representation of a simple part relation. 
An object can of course have more than one part. ·The ubiquitous 
modality attains a special importance for part hierarchies. Cir 
cuits Iike AND gates, OR gates etc. are displayed as single objects 
in a logical diagram. In real hardware there are usually four 
binary AND gates in a single chip. These four gates might be 
parts of different logical units. However, in a physical represen 
tation all four of them must be parts of the same .integrated cir· 
cuit. 

1. Assemblies 
Work on the maintenance part of the VMES project has led 

to the realization that certain objects should never be displayed 
without their parts. For instance, a port is a part of a multiplier, 
but a multiplier should never be displayed without its ports. 

. Sub-assemblies are therefore objects that have a real part-whole 
relation to a specific object and which are supposed to be 
displayed whenever the object they are part of is displayed. 

The representation of sub-assemblies is similar to part· 
whole relations, except that the arc "sub-asserns" is used instead 
of "sub-parts". 

mJo( object dlO sub-asserus d9 modality function) (22) 

2. Clusters 
Printed circuit boards sometimes show groups of objects 

that stand in a logical relation to eachother, comparable to a 
part-whole relation. Nevertheless they are neither sub-parts nor 
sub-assemblies. Sub-parts and sub-assemblies have a main object 
that is itself displayable, i.e, that has a form. However, a group 
ing of components might consist of objects of the same size and 
importance, none of which deserves the status of main object, 
Fig. 4 shows a voltage divider and a T filter which are typical 
examples of such circuits. 

A grouping which exists only as an abstraction is called a 
cluster. If one combines the concept of cluster with the concept 
of level a dilemma emerges. Either the abstract object is left out 
of the hierarchy (which is undesirable, because anything that 
seems natural to a person should be directly representable in the 
network (LP!)), or the abstract object is put in the hierarchy and 
the objects of the cluster are made its parts. But now the idea of 
creating simplified displays by limiting the number of levels 
displayed does not work any more, because the abstract object is 
not displayable in the same sense as real objects are. Moreover if 
one is willing to give an abstract object a symbolic form, then 
both the symbolic form as well as the cluster elements would be 
displayed if one wants to see all the levels of the part hierarchy. 
This would complicate the display unnecessary. 

Our answer to this problem is to create an additional hierar 
chy which stands somewhere in between a part hierarchy and an 
abstraction hierarchy. If A is an object ( without form) which 
has sub-clusters B, C, and )) then A will he displayed only by 
displaying B, C, and D. However if a partial display is enforced 
in a way that would exclude the level of B, C, and D from 
showing, A will 'be displayed symbolically by a box, akin to the 
display format in block diagrams. Fig. 5 shows the new display 
format for Fig. 4; The network representation of a sub-cluster is 
shown by (23). 

m3H object d!O sub-clusters d9 modality function) (23) 

E. Attributes and Attribute Mappini:;s 
One important factor in designing a system based on graphi· 

cal deep knowledge is a clear separation between icons and the 
objects that are represented by these icons, an observation that 
has been made by others also [21). This separation forces one to 
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distinguish between attributes of objects and attributes of pic 
tures. A typical example of an attribute of a picture is bllnking. 
On the other hand, faultiness is an attribute of a component, not 
of the picture of a component. Attributes like faultiness cannot 
be displayed directly and therefore have to be symbolized with 
pictorial attributes. 

Attributes are represented by the name of an attribute-class 
with O to 3 positions for attribute values. The following exam· 
pies show an attribute with no attribute-value (24), an attribute 
with one position containing the value "faulty" (25), and an 
attribute with two positions containing the values "left" and 
"90" (26). No need for any attributes with more than three posi· 
tions for attribute-values has arisen yet. 

m32( object d t (24) 
attr m33( atrb-cls new modality function)) 

m34C object d 1 (25) 
attr m35C atrb-cls state 

atrb faulty modality function) 
m36( object d2 (26) 

attr m37( atrb-cls rotated 
atrbl left atrb2 90 modality function) 

The attribute statements (24) - (26) apply to objects as opposed to 
pictures. 

Attribute classes are linked to functionals that can be 
applied to form functions. Such a functional is called a mLJdtjier 
function. (26) asserts that d2 has the attribute-class "rotated" 
with two values "left" and "90" (degrees), which requires a 
change to its form before it can be displayed correctly. Therefore 
a modifier function that rotates forms is bound to this attribute 
class and the form of d2 is passed to it .as first argument. The 
attribute values (marked by the arcs atrb, atrbl, atrb2 and possi 
bly atrb3) are passed in correct order as additional arguments to 
the modifier function. 

The binding of an attribute-class to a modifier function is 
asserted. in the knowledge base. This makes it amenable to easy 
change by the user. Utterances like 
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"Represent the state faulty by red color and 
the state good by blue color." 

(27a) 

have led to this representational decision (linearity principle!). In 
(27b) the complete mapping necessary for (27a) is given. 

m38( attr state 
mod-func color 
modality function 
vall m39( expressed faulty expressed-by red) 
vall m40( expressed good expressed-by blue)) 

(27b) 

It binds the attribute-class "state" to the modifier-function "color". 
The two sub-structures at the end of the vall arcs show value 
mappings between object attributes and picture attributes. The 
object attribute of faulty state is represented by the picture attri 
bute of red color. va11 corresponds to atrbl and specifies value 
mappings that apply to the first attribute position. 

Sometimes one encounters numerical attribute values as in 
(26). Representing a mapping between two large lists of numbers 
would be unwieldy to impossible. Luckily in many practical 
cases the relation between the attribute value of a picture and 
the attribute value of the corresponding object is an identity 
function. This case is taken care of by using the attribute value 
of the object if there is no explicit mapping from object value to 
picture value. This also can take care of a mapping that is the 
identity function except for a few singularities. 

If a more complicated function is necessary to transform 
from object attribute-value to picture attribute-value then the 
mapping function has to be integrated in the attribute functional 
itself. 

The method used to associate an actual function with an 
attribute-class is identical to the method used for form functions. 
The node specifying a modifier-function is at the same time the 
name of a LISP function. 

An important finding of our work has been that there is 
inheritance along part hierarchies, something we have not yet 

· seen in the literature. For instance, if an object is represented 
with an attribute like "scaled", then one would want all its parts 
to inherit this attribute. Even more interesting is the fact that 
this inheritance does not apply to all attributes and depends on 
the attribute-class itself. If one asserts, for instance, the faulti 
ness of an object then it would defeat the whole purix- of a 
maintenance system to have all its parts inherit faultiness. 

Given that one can easily express a fact like "scaling is 
inheritable", one should also (linearity principle!) have a 
correspondingly simple representation in the network which is 
exactly what has been implemented. 

m41( inheritable size) (28) 

If (28) is part of the current knowledge base then the attribute· 
class "size" will apply to the parts of all objects for which the 
size attribute has been asserted. 

IV IMPLEMENTATIONAL STATE 
TINA is going through its fourth cycle of implementation 

which is done in Franz I.ISP on top of SNePS. All of the shown 
knowledge structures (and more) are representable and retriev· 
able from the network knowledge base, and most of them are 
interpreted in a way consistent with the descriptive semantics 
given in this paper. An older version of "TINA" has been applied 
to a real circuit board used for telecommunication purposes ('PCM 
board). The IMD system described has been used for the Adder· 
Multiplier only. 



V CONCLUSIONS 

The problem of Intelligent Machine Drafting ·has been intro 
duced, and it was argued that it is a theoretically interesting Al 
problem which is sufficiently different from other CAD tech-· 
niques to deserve separate investigation. The class A *M* has been 
defined informally, and a few additional restrictions of the 
current !MD implementation for objects of this class have been 
given. The definition of Graphical Deep Knowledge and a (par 
tial) task domain analysis of this area have been presented. A 
number of representational primitives have been introduced by 
way of example. These primitives comprise structures for 
representing knowledge about forms, concrete and fuzzy posi 
tions, and attributes. Positions have been differentiated into abso 
lute and relative positions with explicit and implicit reference 
objects. Pixel based coordinates, body coordinates and reference 
object coordinates have been introduced. Part hierarchies have 
been discriminated into real part hierarchies, sub-assemblies, and 
abstraction-hierarchy like clusters of objects. The derivation of 
some of these structures based on the "linearity principle" has 
been demonstrated, by presenting examples for motivating 
natural language utterances. A generator function which creates 

graphical representations from a knowledge base containing the 
indicated structures has been implemented. 
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