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Abstract

We describe an agent architecture in terms of general principles of organization of com-
ponents for an autonomous agent that functions in the world. This architecture is described
independent of computational components of the agent that are used to generate behavior. It
specifies an integration of explicit representation and reasoning mechanisms, embodied semantics
through grounding symbols in perception and action, mechanisms for finding and maintaining a
correspondence between symbols and sensory-perceived objects, and implicit representations of
special-purpose mechanisms of sensory processing, perception, and motor control for the agent.
We then present components that we place in our general architecture to build an agent that
exhibits situated activity and learning.

1 Overview

In this article we present both a general multi-level architecture for an autonomous cognitive agent
with integrated sensory and motor capabilities, GLAIR!, and an instantiation of that architecture
for a particular situated cognitive agent, GLAIR-agent.

By an architecture we mean an organization of components of a system, what is integral to
the system, and how the various components interact.? Which components go into an architecture
for an autonomous agent has traditionally depended to a large extent on whether we are building
a physical system, understanding/modeling behaviors of an anthropomorphic agent, or integrating
a select number of intelligent behaviors. The organization of an architecture is also influenced
by adopting the modularity assumption of Fodor [Fodor, 1983], or a connectionist point of view,
e.g. [McClelland et al., 1986], or an anti-modularity assumption as in Brooks’s subsumption ar-
chitecture [Brooks, 1985]. The modularity assumption supports (among other things) a division of
the mind into a central system, i.e., cognitive processes such as learning, planning, and reasoning,
and a peripheral system, i.e., sensory and motor processing [Chapman, 1990]. Our architecture
is characterized by a three-level organization into a Knowledge Level, a Perceptuo-Motor Level,
and a Sensory-Actuator Level. This organization is neither modular, anti-modular, hierarchical,

*The first author thanks the Al Programs at the University of Georgia and its director professor Donald Nute for
providing resources for his use during his 1992 summer scholar visit at the Al Programs
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2Qur discussion of architecture in this paper extends beyond any particular physical or software implementation.



anti-hierarchical, nor connectionist in the conventional sense. It integrates a traditional symbol
system with a physically grounded system, i.e., a behavior-based architecture. The most impor-
tant difference with a behavior-based architecture like Brooks’s subsumption architecture is the
presence of three distinct levels with different representations and implementation mechanisms for
each, particularly the presence of an explicit Knowledge Level. Representation, reasoning (includ-
ing planning), perception, and generation of behavior are distributed through all three levels. Qur
architecture is best described using a resolution pyramid metaphor as used in computer vision work
[Ballard & Brown, 1982, rather than a central vs. peripheral metaphor.

Architectures for building physical systems, e.g., robotic architectures [Albus et al., 1981], tend
to address the relationship between a physical entity, (e.g., a robot), sensors, effectors, and tasks
to be accomplished. Since these physical systems are performance centered, they often lack gen-
eral knowledge representation and reasoning techniques. These architectures tend to be primarily
concerned with the body, that is, how to get the physical system to exhibit intelligent behavior
through its physical activity. We say these systems are not concerned with consciousness. These
architectures address what John Pollock calls Quick and Inflezible (Q&I) processes [Pollock, 1989].
We define consciousness for a robotic agent operationally as being aware of one’s environment, as
evidenced by (1) having some internal representations that are causally connected to the environ-
ment through perception, (2) being able to reason explicitly about the environment, and (3) being
able to communicate with an external agent about the environment. 3

Architectures for understanding/modeling behaviors of an anthropomorphic agent, e.g., cogni-
tive architectures [Anderson, 1983, Pollock, 1989, Langley et al., 1991], tend to address the rela-
tionships that exist among the structure of memory, reasoning abilities, intelligent behavior, and
mental states and experiences. These architectures often do not take the body into account. In-
stead they primarily focus on the mind and consciousness. Our architecture ranges from general
knowledge representation and reasoning to body-dependent physical behavior, and the other way
around.

We are interested in autonomous agents that are embedded? in a dynamic environment. Such an
agent needs to continually interact with and react to its environment and exhibit intelligent behavior
through its physical activity. To be successful, the agent needs to reason about events and actions
in the abstract as well as in concrete terms. This means combining situated activity with acts based
on reasoning about goal-accomplishment, i.e., deliberative acting or planning. In the latter part
of this paper, we will present an agent based on an application of our general architecture. This
agent is designed with a robot in mind, but its structure is also akin to an anthropomorphic agent.
Figure 1 schematically presents our architecture. There are several features that contribute to the
robustness of our architecture. We highlight them below (an in-depth discussion follows later).

¢ We differentiate conscious reasoning from unconscious Perceptuo-motor and sensori-actuator
processing.’

3A machine like a vending machine or an industrial robot has responmses, but it is unconscious. See
[Culbertson, 1963] for a discussion of independence of consciousness from having a response. Also, intelligent behavior
is independent of consciousness in our opinion.

*“Embedded agents are computer systems that sense and act on their environment, monitoring complex dynamic
conditions and affecting the environment in goal-oriented ways.” ([Kaelbling & Rosenschein, 1990] page 1).

5We consider body-related processes to be unconscious, but that is not meant to imply anything about their
complexity or importance to the architecture as a whole. Indeed, we believe that the unconscious levels of our
architecture (the Perceptuo-Motor Level and the Sensori-Actuator Level) are at least as important to the architecture
as the conscious one (the Knowledge Level). We reserve the term sub-conscious for implicit cognitive processes such
as category subsumption in KRR systems. See [Shapiro, 1990} for a discussion of sub-conscious reasoning.
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Figure 1: Schematic representation of the agent architecture. Width of control
and data paths suggests the amount of information passing through (bandwidth).
Sensors include both world-sensors and proprio-sensors.

¢ The levels of our architecture are semi-autonomous and processed in parallel.®

 Conscious reasoning takes place through explicit knowledge representation and reasoning.
Unconscious behavior makes use of several different mechanisms.

¢ Conscious reasoning guides the unconscious behavior, and the unconscious levels, which are
constantly engaged in perceptual and motor processing, can alarm the conscious level of
important events, taking control if necessary. Control and generation of behavior are layered
and not exclusively top-down.

o There is a correspondence between terms in the Knowledge Representation and Reasoning
(KRR) system on one hand, and sensory perceived objects, properties, events, and states of
affairs in the world and motor capabilities on the other hand. We call this correspondence
alignment.

5This autonomy is similar to Brooks’s subsumption architecture [Brooks, 1985], but at a more macroscopic level.
Brooks does not distinguish between the three levels we describe, as his work is solely concerned with behaviors whose
controlling mechanism we would situate at the Perceptuo-Motor Level.



2 The Architecture

In this section we discuss in detail our autonomous agent architecture for integrating perception
and acting with grounded, embodied, symbolic reasoning.

2.1 Related Work

Architectures proposed in the literature do not fall into neatly separable classes, mainly because the
scope of the models and the motivations vary widely. However, we can divide a review of related
work into theoretical issues of agent architectures, on the one hand, and implemented architectures,
on the other.

2.1.1 Theoretical Issues

A situated agent, at any moment, attends to only a handful of entities and relationships in its imme-
diate surroundings. In this type of setting, the agent often does not care to uniquely identify ob jects.
It is sufficient to know the current relationship of the relevant objects to the agent, and what roles
the objects play in the agent’s activities. Agre and Chapman in [Agre & Chapman, 1987] proposed
indexical-functional representations (which [Agre, 1988] refers to as deictic representations) to be
the more natural way agents refer to objects in common everyday environments. They called en-
tities and relationships of interest entities and aspects, respectively. With respect to its current
activities, the agent needs only to focus on representing those entities and relationships. Although
the objects in the environment come and go, the representations of entities and relationships re-
mains the same. For example, the-cup-that-I-am-holding” is an indexical-functional notation that
abstracts the essentials of what the agent needs to know in its interaction. These representations
serve to limit the scope of focus on entities. For example, if the agent wants to pick up a cup, it
does not need to know who owns the cup or how much coffee the cup can hold; only the relevant
attributes of the cup apply. The main use of this representation is its ability to narrow the focus
of attention about the cup.

To our knowledge, research prior to ours created indexical-functional representations by hand.?
We suggest that systems endowed with general KRR abilities can and should generate deictic
representations to create and maintain a focus on entities in the world. Since we are concerned
with an integrated agent architecture, we will sketch a solution to this problem (section 2.3).

The issue of focusing on the relevant information about objects differs from two other concepts
that Agre used together with indexical-functional representation for focusing attention. These are
indezing and marking, and we still need these concepts. Indexing refers to choosing an object in
the environment of the agent that will be of interest because of its properties, e.g., the block that
can be used to hit the bee with. Marking refers to remembering an entity for the purpose of tracking
its properties over time, e.g., tracking the position of a moving penguin.

We believe that behavior-based AI has adopted the right treatment of every day behavior for
agents that function in the world. However, this has been done at the expense of ignoring cognitive
processing such as planning and reasoning. Clearly, what is needed is an approach that allows for
both. We believe that our architecture meets this need. As in behavior-based AI, GLAIR gains
validity from its being grounded in its interaction with the environment, while it benefits from a

"This kind of designation is merely a mnemonic representation intended to suggest the entity and aspect under
consideration, for the purpose of our exposition. It is not the actual representation that would be used by an agent.

®This is perhaps because in the application environments, only a limited number of entities are ever of interest for
the agent. For example, see [Agre & Chapman, 1987] and [Whitehead, 1992].



knowledge level that, independent of reacting to a changing environment, performs reasoning and
planning.

The Model Human Processor (MHP) is a cognitive model [Card et al., 1983] that suggests the
three components of perception, cognition, and motor. Cognition consists of working memory, long-
term memory, and the cognitive processor. Perception is a hierarchy of sensory processing. Motor
executes the actions in the working memory. This is a traditional symbol-system decomposition
of human information processing. This type of decomposition has shown only limited success in
building physical systems. Despite this, systems like SOAR adhere to this cognitive model. In
our architecture, we purposively avoid this kind of top-down problem decomposition by allowing
independent control mechanisms at different levels to take control of the agent’s behavior, and
pre-empt higher level control while doing so.

2.1.2 Implemented Architectures

Albus et al’s hierarchical control architecture [Albus et al., 1981] is an example of a robotic archi-
tecture; we would say it is body centered. This architecture proposed abstraction levels for behavior
generation, sensory processing, and world modeling. At higher levels, tasks were decomposed and
passed to lower levels. By descending down the hierarchy, tasks were decomposed into robot-motion
primitives. This differs from our architecture, which is not strictly top-down controlled. Concur-
rently, at each level of the hierarchy, feedback processing modules extracted the information needed
for control decisions at that level from the sensory data stream and from the lower level control
modules. Extracted environmental information was compared with the expected internal states to
find differences. The differences were used for planning at higher levels.

Payton in [Payton, 1986] introduced an architecture for controlling an autonomous land vehicle.
This architecture has four levels: mission planning, map-based planning, local planning, and reflex-
ive planning. All levels operated in parallel. Higher levels were charged with tasks requiring high
assimilation and low immediacy. The lower levels operated on tasks requiring high immediacy and
low assimilation. This feature is similar to our architecture. The reflexive planning was designed
to consist of pairs of the form (virtualsensor,reflezivebehavior). Each reflexive behavior had a
priority and a central blackboard style manager arbitrated among the reflex behaviors. Some of
the problems with the earlier implementation due to using the blackboard model were solved in
[Rosenblatt & Payton, 1989).

Rosenschein and Kaelbling’s work [Kaelbling, 1988, Kaelbling & Rosenschein, 1990] describes
tools (REX, GAPP, RULER) that, given task descriptions of the world, construct reactive con-
trol mechanisms termed situated automata. Their architecture consists of perception and action
components. The robot’s sensory input and its feedback are inputs to the perception component.
The action component computes actions that suit the perceptual situation. We should note that
unlike Brooks’s behavior modules, situated automata use internal states. They are mainly intended
to produce circuits that operate in realtime, and they can prove properties about their operation.
So their decisions are not Markovian (i.e., they are not ahistoric). The mechanism for generating
situated automata, although impressive, seems unrealistic in an anthropomorphic sense. Perhaps
the operation of our Perceptuo-motor level can be modeled by a situated automaton, but we are
not convinced that this is the right formalism to use.

Gat in [Gat, 1991] describes ATLANTIS, an architecture for the control of mobile robots. This
architecture has three components: control, sequencing, and deliberation. The control layer is
designed as a set of circuit-like functions using Gat’s language for circuits, ALPHA. The sequencing
is a variation of Jim Firby’s RAP system [Firby, 1987]. The deliberation layer is the least described



layer. As for situated automata, we are not convinced that this is the right kind of formalism to
use.

An architecture for low-level and high-level reactivity is suggested in [Hexmoor, 1989]. High-
level reactivity is reactivity at the conceptual level. This architecture suggests that an autonomous
agent maintains several different types of goals. High-level reactivity is charged with noticing
impacts of events and actions in the environment on the agent’s goals. Subsequently, high-level
reactivity needs to guide the agent’s low-level reactivity. Low-level reactivity is at the sensory,
perceptual, and motor level. The mechanism for low-level reactivity is similar to other reactive 5ys-
tems that have components for perception and action arbitration. The novelty of this architecture
is the incorporation of high-level reactivity and a supervisory level of planning and reasoning, which
guides the choice of low-level reactive behaviors. In our present conception of agent architecture,
we avoid a sharp separation between the two types of reactivity. We also relax the top-down nature
of interaction between levels. Reactivity may be initiated at any level of our architecture either
due to interaction with other levels or in direct response to external stimuli.

Brooks’s subsumption architecture, [Brooks, 1985, Brooks, 1987, Brooks, 1990, clusters behav-
lors into layers. Low-level behaviors, like deciding the direction of motion and speed, can be
interrupted by behaviors determined at higher levels, such as avoiding obstacles. Subsumption be-
haviors are written as finite state machines augmented with timing elements. A compiler is used to
simulate the operation of finite state machines and parallelism. This architecture is implemented
on a variety of mobile robots. Frequently used behaviors are placed at a lower level than less
frequently-used behaviors. This organization of behaviors gives the system fast response time and
high reactivity. Our architecture is similar to Brooks’s in our intra-level implementations of be-
haviors. However, the subsumption architecture lacks the separation we have made into conscious
and non-conscious spheres. In anthropomorphic terms, Brooks’s agents are all non-conscious. Pat-
tie Maes has experimented with a version of a behavior-based architecture, which she calls ANA
[Maes, 1991]. This architecture consists of competence modules for action and a belief set in a net-
work relating modules through links denoting successors, predecessors, and conflicts. Competence
modules have activation levels. Activations are propagated and the competence module with the
highest activation level is given control. Maes has explored learning and has applied her architecture
to robotic systems.

The Servo, Subsumption, Symbolic (SSS) architecture [Connell, 1992] is a hybrid architecture
for a mobile robot that integrates three independent layers of servo control, Brooksian behavior
based modules of a subsumption architecture, and a symbolic layer. This architecture is similar
to ours in its general spirit of identification and integration of three distinct levels corresponding
to levels of affinity-of-interaction (i.e., the rate at which it is in real-time contact with the world)
with the outside world. This similarity also constitutes a point of departure, however, in that SSS
is defined with respect to specific (and different) implementation techniques. For example, the
symbolic layer in SSS seems to be a decision table versus a general KRR as intended in GLAIR.
Unlike GLAIR, SSS assigns particular tasks for each layer and uses a hard-wired interconnection
channel among layers.

SOAR [Laird et al., 1987] was designed to be a general problem solving architecture. SOAR
integrates a type of learning known as chunking in its production system. Recently, SOAR has
been applied to robotic tasks [Laird et al., 1991]. In this framework, planning and acting is uni-
formly represented and controlled in SOAR. This approach lacks the ability of our architecture for
generating behavior at non-conscious levels as well as the conscious level (or at different levels in
general), and for having different-level behaviors interact in an asynchronous fashion. It also lacks
our multi-level representations.



Simmons’s Task Control Architecture (TCA) [Simmons, 1990] interleaves planning and acting
by adding delay-planning constraints to postpone refinement of planning until execution. For exam-
ple, a plan for a robot to collect used cups for trash is decomposed into: navigate to the cup; pick it
up; navigate to trash bin; deposit the cup. Since the robot does not have sensory information about
the cup yet, the plan to pick it up is delayed until the robot gets close enough. Selectively delaying
refinement of plans allows for reactivity. This type of “stepwise refinement” follows effortlessly from
our architecture, without the need to explicitly implement it. Since conscious planning which goes
on at the Knowledge Level uses a more coarse-grained world model, there is simply no possibility
to express fine details of planning and execution. These can only be represented and/or computed
at the lower Perceptuo-Motor Level and Sensori-Actuator Level. Planning and execution in our
architecture may proceed in a lock-step fashion, but they need not (see the discussion of engaged
vs. disengaged reasoning in section 2.5). TCA used a message-passing scheme among modules that
allows concurrent execution of tasks. TCA has been used to control the six-legged walking robot
‘Ambler and a cup-collecting robot.

2.2 Architecture Levels
2.2.1 Motivation

The three levels of our architecture are of organizational as well as theoretical importance. Organi-
zationally, the layered architecture allows us to work on individual levels in a relatively independent
manner, although all levels are constrained by the nature of their interactions with the adjoining
level(s). The architecture is hierarchical, in that level i can only communicate with levels i — 1 and
¢+ 1, if any. This hierarchical architecture simplifies modularity of implementations.®

The levels of our architecture are semi-independent. While control flows mainly top-down and
data mainly bottom-up, local control mechanisms at any level can preempt higher-level control, and
these local mechanisms filter the data stream for their own purpose, in parallel with higher-level
ones. Representations become coarser-grained from bottom to top, while control data becomes
more fine-grained from top to bottom. The terms in the Knowledge Level’s KRR system model
conscious awareness of the world (and the body), and the perception and motor capabilities in the
other levels provide the grounding for an embodied semantics of the former. Routine, reflex-like
activities are controlled by close coupling of perception with motor actions at the (unconscious)
Perceptuo-motor Level. This close coupling avoids having to exert control over these activities from
the conscious level, as in purely top-down structured architectures with a symbol level at the top
of the hierarchy. In the latter kind of system, signals must first be transformed to symbols and vice
versa.!® The low-level coupling provides for better real-time performance capabilities, and relieves
the Knowledge Level of unnecessary work.

In general, we have multi-level layered representations of objects, properties, events, states of
affairs, and motor capabilities, and the various levels are aligned. By alignment we mean a corre-
spondence between representations of an entity at different levels. This organization contributes
to the robustness and computational efficiency of implementations. The semi-autonomous nature
of the levels allows for graceful degradation of system performance in case of component failure or
situation-dependent incapacitatedness. Lower levels can function to some extent without higher-
level control, and higher levels can function to some extent without lower-level input.!!

Not to be confused with a modular architecture as such, e.g., [Fodor, 1983]

00ur lower-level coupling is similar to Brooks-style behaviors where he constructs competence modules.

"For instance, in the context of autonomous vehicles, if obstacle avoidance or returning to the base is a lower-
level behavior than planning exploration strategies, then a failure of the hardware implementing the latter does not



Our architecture allows us to elegantly model a wide range of behaviors: from mindless, spon-
taneous, reflex-like, and automatic behavior, e.g., “stop if you hit an obstacle”, to plan-following,
rational, incremental, and monitored behavior, e.g., “Get in the car now, if you want to go to LA
on Friday”.!?

In anthropomorphic terms, we identify the Knowledge Level with consciously accessible data
and processing; the Perceptuo-Motor Level with “hardwired”, not consciously accessible processing
and data involved with motor control and perceptual processing; and the Sensori-Actuator Level
with the lowest-level muscular and sensor control, also not consciously accessible. The substrate
of grounding and embodiment [Harnad, 1990, Lakoff, 1987, Suchman, 1988] of actions, concepts,
and reasoning is mainly the Perceptuo-Motor Level and to some extent the Sensori-Actuator Level.
Grounding is accomplished through the alignment of the Knowledge and Perceptuo-Motor Levels.

We will now explore representation and computation at the individual levels in more detail.

2.2.2 The Knowledge Level

The Knowledge Levelis the level of a traditional KRR or planning system, using a relatively course-
grained representation of objects, events (including actions), and states of affairs. For instance,
objects are represented at this level as unique identifiers, typically without further detail about
their physical characteristics or precise locations. It is possible to represent such detail explicitly
at this level, but not required. Only if the detail becomes important to the reasoning at this level
will it be represented, though not necessarily in the same way as it is represented at a lower level.
For example, knowledge about the physical size and weight of an object might become available
at the Knowledge Level through the agent’s actively using measuring devices like a ruler or a
scale, but this knowledge is not the same as the embodied knowledge about dimensions and weight
represented at the Perceptuo-Motor Level for the particular object or its object class. As a rule
of thumb, representations at this level are limited to objects, events, and states of affairs that the
agent needs to be consciously aware of in order to reason and plan, and in order to communicate
with other agents at the grain size of natural language. The Knowledge Level can be implemented
using different KRR and/or planning systems.

Traditional use of the concept of world modeling refers to building models of interactions be-
tween the agent and its environment at the conscious level. These models maintain internal states
for the agent. The difference in our use of the term “world model” is that we do not intend to
have a precise model of all objects in the environment. Instead, we want to model only the entities
relevant to the agent’s interaction with its world. This requires filtering out some details accessible
at the Perceptuo-motor Level as the entities are aligned with their counterparts on the Knowledge
Level. This is known as “perceptual reduction”. Physical details of interaction with entities are
handled at the Perceptuo-motor Level. Representations at the Knowledge Level are needed only
for explicit reasoning about entities, and contain only the information necessary for doing so. That
might include details about physical characteristics in some cases, but it need not. In other cases,
it may be limited to a nondescript intensional representation of an object.!®* Conversely, some en-
tities may be represented at the Knowledge Level but not at the Perceptuo-Motor Level (abstract
concepts, for instance). Knowledge Level representations are needed for reasoning about entities;
Perceptuo-Motor Level representations are needed for physically interacting with entities.

necessarily prevent the former.

2The plan is to get in the car to go to the travel agency to get a ticket to fly to LA on Friday. Today is Thursday
and it is near the end of the business day. Also, the agency won’t accept telephone reservations. This example is
suggested in [Pollock, 1992].

138ee [Shapiro & Rapaport, 1987] for our use of “intensional representation”.



Our architecture at the knowledge level comprises a general KRR system. All knowledge about
cognitive behaviors for reasoning, planning, learning, as well as knowledge about the agent itself, is
uniformly represented in the KRR system. Knowledge about the agent includes knowledge about
its capabilities, i.e., primitive and complex actions. We will say more about agent capabilities in
our discussion of our application of our architecture in building an agent (section 3; for a discussion
of agent capabilities see [Shapiro et al., 1988]). Cognitive behaviors may produce behaviors that
need to be realized by the agent in the world, but realization is in the realm of the lower levels in
our architecture.

As is pointed out in [Shapiro et al., 1988], from the perspective of a general KRR system,
external entities are extensions of concepts in the agent’s mind. However, as we will discuss in
section 2.3, we need not maintain an extension for each entity in the agent’s mind. Instead, we
need to identify objects in terms of how they relate to the agent and the agent’s current task.

2.2.3 The Perceptuo-Motor Level

The Perceptuo-Motor Level uses a more fine-grained representation of events, objects, and states
of affairs. For instance, they specify such things as size, weight, and location of objects on the
kinematic side, and shape, texture, color, distance, pitch, loudness, smell, taste, weight, and tactile
features on the perceptual side. At this level, enough detail must be provided to enable the precise
control of actuators, and sensors or motor memory must be able to provide some or all of this
detail for particular objects and situations. The Perceptuo-Motor Level is partly aligned with the
Knowledge Level, in that there is a correspondence between object identifiers at the Knowledge
Level and objects at the Perceptuo-motor Level.

Kinematic and perceptual representations of particular objects or typical object class instances
may be unified or separate, and both kinds of representations may be incomplete. Also at this
level are elementary categorial representations, which may unify kinematic and perceptual repre-
sentations. By “elementary categorial representations”, we mean the kinds of representations that
function as the grounding for elementary grounded symbols at the Knowledge Level, i.e., sensory-
invariant representations constructed from sensory data by the perceptual processor [Harnad, 1990].

The representations at the Perceptuo-Motor Level are embodied (cf. [Lakoff, 1987]). That
means that the representations depend on the body of the agent, its particular dimensions and
characteristics. Robots will therefore have different representations at this level than people would,
and different robots will have different representations as well. These representations are agent-
centered and agent-specific. For instance, they would not be in terms of grams and meters, but in
terms of how much torque to apply to an object to lift it,'* or what percentage of the maximum to
open the hand to grasp an object. Weights of things in this kind of representation are relative to
the agent’s lifting capacity, which is effectively the maximum weight representable. An agent may
have a conscious (Knowledge Level) understanding and representation of weights far exceeding its
own lifting capacity, but that is irrelevant to the Perceptuo-Motor Level. When it comes to lifting
it, a thousand-pound object is as heavy as a ten-thousand-pound one, if the capacity is only a
hundred or so. Similarly, sizes are relative to the agent’s own size. Manipulating small things is

0Of course this also depends on how far the object is removed from the body, or how far the arm is stretched
out, but that can be taken into account (also in body-specific terms, of course). People’s Perceptuo-Motor Level idea
of how heavy something is is most likely not in terms of grams, either (in fact, a conscious estimate in grams can
be far off), but in terms of how much effort to apply to something to lift it. That estimate can be off, too, which
results in either throwing the object in the air or not being able to lift it at the first attempt, something we have
all experienced. On the other hand, having a wrong conscious estimate of the weight of an object in grams does not
necessarily influence one’s manipulation of the object.



not the same as manipulating large things, even if they are just scaled versions of each other. A
consequence of using embodied representations is that using different “body parts” (actuators or
sensors) requires different representations to be programmed or (preferably) learned. While that
may be a drawback at first, once the representations are learned they make for faster processing and
reactive potential. Representations are direct; there is no need to convert from an object-centered
model to agent-centered specifications. This makes the computations at this level more like table
lookup than like traditional kinematics computations, which can be quite involved. Learning new
representations for new objects is also much simpler; it is almost as easy as trying to grasp or
manipulate an object, and merely recording one’s efforts in one’s own terms. The same holds,
mutatis mutandis, for perceptual representations.

There are a number of behaviors that originate at this level: some are performed in service of
other levels (deliberative behaviors), some are performed in service of other behaviors at this level,
a few are ongoing, and some others yet are in direct response to external stimuli. An agent may
consciously decide to perform Perceptuo-motor actions such as looking, as in look for all red objects,
or to perform a motor action, such as grasp a cup. These actions originate at the Knowledge Level
and are propagated to this level for realization. An agent has to perform special perceptual tasks
to serve other behaviors, such as to find the grasp point of a cup in order to grasp a cup. These
perceptual tasks may originate at this or another level.

An agent embedded in an environment always senses its immediate surroundings, e.g., sees its
surrounding.'® This is an ongoing process, since the agent does not decide to perform it; rather, it
can’t help doing it. We also differentiate reflexive action from reflex actions. We suggest that the
perceptual sub-systems of an embedded agent continuously (a) create and maintain a representation
for objects in the agent’s immediate surrounding, i.e., indexing [Agre, 1988], (b) arbitrarily focus
on objects of interest, i.e., marking [Agre, 1988], (c) track properties and attributes of objects, e.g.,
positions of objects.

At the Perceptuo-Motor Level, an agent has a close coupling between its behaviors, i.e., re-
sponses, and stimuli, i.e., significant world states. We observe that, for a typical agent, there are
a finite (manageably small) number of primitive (“innate”) behaviors available. As the agent in-
teracts with its environment, it may learn sophisticated ways of combining its behaviors and add
these to its repertoire of primitive behaviors. We will consider only an agent’s primitive abilities
for now. We further assume that the agent starts out with a finite number of ways of connecting
world states to behaviors, i.e., reflex/reactive rules. Following these observations, we suggest that
at this level, the agent’s behavior-generating mechanism is much like a finite state automaton.
As we noted earlier, learning will change this automaton. What we want to point out is that at
this level, the agent starts with an automaton with limited acuity. The agent uses its conscious
level to deal with world states not recognizable at the Perceptuo-Motor Level. For instance, the
Perceptuo-Motor Level of a person beginning to learn how to drive, is not sophisticated enough to
respond to driving conditions automatically. As the agent becomes a better driver, the conscious
level is freed to attend to other things while driving. This is called automaticity in psychology. We
discuss an implementation mechanism for these automated behaviors in section 3.5.

2.2.4 The Sensori-Actuator Level

The Sensori-Actuator Level is the level of primitive motor and sensory actions, for instance “move
from (z,y, z) to (z’,y’, 2’) or “look at (z,y,2)”. At this level, there are no object representations as
there are at the Knowledge Level and the Perceptuo-Motor Level. There are no explicit declarative

15 As opposed to looks at it.
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representations of any kind, only procedural representations (on the actuator side) and sensor data
(on the sensory side). Primitive motor actions may typically be implemented in a robot control
language like VAL, and some elementary data processing routines may be implemented in a sensory
sub-system, like dedicated vision hardware. At this level, we also situate reflezes, which we consider
to be low-level loops from sensors to actuators, controlled by simple thresholding devices, operating
independently of higher-level mechanisms. We see reflexes as primitive mechanisms whose main
purpose is prevention of damage to the hardware, or to put it in anthropomorphic terms, survival of
the organism. As such they take precedence over any other behavior. When reflexes are triggered,
the higher levels are made “aware” of this by the propagation of a signal, but they have no control
over the reflex’s execution, which is brief and simple (like a withdrawal reflex seen in people when
they stick their hand into a fire).!® After the completion of a reflex, the higher levels regain control
and must decide on how to continue or discontinue the activity that was interrupted by the reflex.
Reflex-like processes may also be used to shift the focus of attention of the Knowledge Level.

2.3 Deictic (Indexical-Functional) Representations

Objects may be present for the first time in the agent’s environment. Objects may be in motion.
There may be several objects that are perceptually identical. In general, there may be a large
number of objects in the environment of the agent. In these circumstances, it is inappropriate to
assign unique names for each object, as is presupposed in traditional model theory. In this section,
we describe a class of representations that address the reference problem in interacting with a
dynamic world. This problem is to find and to maintain a correspondence between an agent’s
representations and objects in its surroundings. In planning, this type of representation is called
indezical-functional [Agre & Chapman, 1987), or deictic [Agre, 1988] since it relates the referent of
a representation to its situation of use (indexicality [Chapman, 1990]), and it relates the referent
of a representation to the activity in which the agent is is engaged (functionality).

The advantages of using deictic (indexical-functional) representation over traditional KRR tech-
niques are that:

¢ In realistic domains, there will be a large number of objects. There is no need to have a
representation for each object in the world.

o There is no need for instantiation of object symbols to their extensions in the world.1”

The referent in the world is (by necessity) only indirectly considered via its Perceptuo-Motor
Level representation, hence the problem becomes one of aligning the Knowledge Level represen-
tations with the Perceptuo-Motor Level representations. Deictic representation is appropriate for
this task. In our treatment of a situated agent (section 3), we give an account of a KRR system
using deictic representations. In the remainder of this section, we will (for the purpose of our
discussion) consider physical objects as referents of symbols, keeping in mind that the real referents
of Knowledge Level symbols are Perceptuo-Motor Level representations.

Using deictic representation, objects are not uniquely identified with symbols. Instead, a deictic
symbolic name is constructed for each object, as if to answer three questions about it:

®An appropriate reflex for a robot {arm) might be to withdraw or stop when it meets too much mechanical
resistance to its movement, as evidenced for instance by a sharp rise in motor current draw. Such a reflex could
supplant the more primitive fuse protection of motors, and make an appropriate response by the system possible.
Needless to say, a robot that can detect and correct problems is much more useful than one that merely blows a fuse
and stops working altogether.

'"This is a complaint against traditional KRR systems. Our concept of alignment between levels is immune to this
objection.
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1. What type of object is it? E.g., a coin, a cup, a saucer.
2. What is the relation/relevance of the object to the agent? E.g., in the pocket, in front of.

3. What is the role of the object in the agent’s current task? E.g.,if the agent is drinking from
a cup, the cup’s role is drinking-from; if the agent is using a fork to lift an object, the fork is
used-in-lifting-an-object.

Putting it together, we have descriptions like a-cup-in-front-of-me-i-am-drinking-from. Deictic
names are useful only in so far as they limit the focus for processing and reasoning. A mnemonic
form can be generated for human inspection of the functioning of the agent under development.

Let’s consider two cases of how indexical-functionals can be generated and used.!® In the first
case, let’s consider an object that is in the immediate sensing range; and in the second case, we
seek an object in the field of view. In the first case, we assume that the agent’s sensori-perceptual
mechanism automatically identifies the ob ject and creates a representation for it. This is what we
refer to as an on going behavior in the Perceptuo-Motor Level. Furthermore, we assume that at
the Knowledge Level, the first and second questions about the object are trivially answered, e.g.,
so far generating an-apple-on-the-table. Since (as a simplifying assumption) we indez all objects in
the visual field, this eliminates the need to indez objects as suggested in [Agre, 1988] in response
to actions involving objects already in the visual field. Indezxing an object refers to selecting an
object that has properties of interest, which Agre called indezable. Let’s also assume that all
moving objects are marked. Marking refers to placing a marker on an object or a location for
future reference. This is used in tracking a moving object. When the agent decides to execute an
act, let’s say grasping(apple), if the required types of objects of the act match the type of object
thus far identified, the third question is answered by a form of functional unification (fu). In our
example, the argument of grasping is of the same type as the object sensed; they are both apple
types. Using fu, the object at the Knowledge Level is identified indexico-functionally as an-apple-
on-the-table-I-want-to-grasp. Note that all representations are from the perspective of the agent,
so ‘T’ is automatically integrated into indexical-functional representations. It is at this stage that
the agent propagates its decision to grasp down to the Perceptuo-Motor Level.

In the second case, the agent has decided to execute grasping(apple) but it does not yet know
the referent of the argument of the function grasping(). The agent must postpone executing its
grasping until it situates itself in an environment where it can sense objects of the type matching
the object types of the action. This is in effect an active vision task. Assuming the agent has found
an object of the desired type, it can proceed as in the first case. The only difference in the second
case is that the agent has to first plan and execute finding an object before it can proceed with fu.

2.4 Symbol Grounding: A Non-Tarskian Semantics

Tarskian Semantics has nothing to say about how descriptions of objects in plans
relate to the objects in the world [McDermott, 1991, p. 13].

One problem an agent has to solve is how to find and maintain a correspondence between a
referent in the world and a symbol in an agent’s world model. As noted above, the referent in the
world is (by necessity) only indirectly considered via its embodied Perceptuo-Motor Level repre-
sentation, hence the problem becomes one of aligning the Knowledge Level representations with
the Perceptuo-Motor Level representations. We have proposed that Deictic (indexical—functional)

®We have not yet tested our suggestions in this section.
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representation is appropriate for this task (section 2.3). From the perspective of cognitive science,
the problem has been labeled the symbol grounding problem [Harnad, 1990]. The question is how
to make the semantics of a robot’s systematically interpretable Knowledge Level symbols cohere
equally systematically with the robot’s interactions with the world, such that the symbols refer
to the world on their own, rather than merely because of an external interpretation we place on
them. This requires that the robot be able to discriminate, identify, and manipulate the objects,
events, and states of affairs that its symbols refer to [Harnad, 1992]. Grounding is accomplished in
our architecture through the alignment of the Knowledge and Perceptuo-Motor Levels. Elementary
symbols at the Knowledge Level are grounded in the sense that they can only attach to “the right
kind” of representations at the Perceptuo-Motor Level. If we think of the Perceptuo-Motor Level as
implementing categorial perception (and perhaps “categorial action”), then the elementary symbols
of the Knowledge Level are the names attached to the categories. In other words, the alignment
of the Knowledge and Perceptuo-Motor Level constitutes an internal referential semantic model
of elementary symbols. Note that, like McDermott, we do not take the Tarskian stance which re-
quires the referents of symbols to be in the world; rather, they are system-internal, similar to what
Hausser proposes [Hausser, 1989], or what Harnad calls iconic representations: “proximal sensory
projections of distal objects, events, and states of affairs in the world” [Harnad, 1990]. The Knowl-
edge Level is the only level that is accessible for conscious reasoning, and also the only level that
is accessible for inter-agent communication. Access to the Perceptuo-Motor Level and the Sensori-
Actuator Level would not be useful for communication, as the representations and processing at
these levels are too agent-centered and too agent-specific to be informative to other agents.

Since the Perceptuo-Motor Level representations serving as the grounding for symbols of the
Knowledge Level are embodied (section 2.2.3), equivalent symbols may have somewhat different
semantics for different agents having different bodies. We don’t see that as a problem, as long as the
differences are not too large.!® Indeed, we believe that this is quite realistic in human terms as well;
no two persons are likely to have ezactly the same semantics for their concepts, which nevertheless
does not prevent them from understanding each other, grosso modo at least (cf. [Rapaport, 1988]).
The problems of translation and communication in general consist at least in part of establishing a
correspondence between concepts (and symbols) used by the participants. It is helpful to be able
to use referents in the external world as benchmarks, but one consequence of embodied semantics is
that even if it is possible to establish these common external referents for symbols, there is still no
guarantee that the symbols will actually mean exactly the same thing, because in effect the same
referent in the world is not the same thing to different agents. If we accept this view, it is clear
that approaches to semantics based on traditional logical model theory are doomed to fail, because
they presuppose “identity of referents” and an unambiguous mapping from symbols to referents,
the same one for all agents. Another problem is of course the presupposition that all objects are
uniquely identifiable. The use of deictic representations does not impose such a condition; as far as
our agents are concerned, if it looks and feels the same, it is the same. Nothing hinges on whether or
not the objects in the agent’s surroundings are really extensionally the same as the identical-looking
ones that were there a moment ago or will be there a moment later.

2.5 Engaged and Disengaged Reasoning

Our architecture allows us to elegantly model two different modes of reasoning and planning, which
we call engaged reasoning and disengaged reasoning. Engaged reasoning takes place when all the

'°Tt is mever a problem as long as agents need not communicate with the outside world (other agents), of course,
cf. [Winston, 1975].
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elementary symbols at the Knowledge Level that are involved in the current reasoning activity are
aligned with representations at the Perceptuo-Motor Level. In practical terms, this means that the
agent is reasoning about objects within its field of perception. This may require active perception
to keep track of objects, or to shift attention to new objects as the reasoning progresses. For the
purpose of object tracking and attention shifting, Knowledge Level sensory actions are defined and
can be reasoned about like ordinary actions. Engaged reasoning can be done while the actions being
reasoned about are actually being carried out, in a kind of plan-as-you-go mode with continuous
monitoring of progress being made, or in a more hypothetical mode with no actions being carried
out, but potentially affected objects being gauged while the plan is being developed.

Disengaged reasoning occurs when there is no alignment at all between the Knowledge Level
symbols involved in the current reasoning activity and Perceptuo-Motor Level representations, e.g.,
when developing a plan for another place and/or another time, in a purely hypothetical fashion.
This is the mode that traditional planners used to operate in all the time, by necessity. Intermediate
forms of reasoning, between engaged and disengaged, are possible as well.

3 A Situated Agent: An Application of GLAIR

We now briefly discuss an application of GLAIR that is currently being developed.

3.1 Overview

Our architecture as described in section 2 can be populated with components that make up the
machinery for mapping sensory inputs to response actions, (sensory-input ~ actions), as does
Russell in [Russell, 1991]. Next, we outline the components for a situated agent, GLAIR-agent,

that give content to the levels of the architecture. Figure 2 schematically presents the structure of
GLAIR-agent.

¢ A World model: In the general KRR system, we maintain a conscious world model.?® This
model explicitly represents the agent’s knowledge (or beliefs) about the entities in its world.
Representations at this level may or may not correspond to representations at the Perceptuo-
Motor Level, as explained in section 2.2. As much as it might be desirable to avoid building
internal models of the world,?! having some modeling capacity is necessary, we believe.

¢ Specialized knowledge bases: for instance knowledge about action selection, planning, learn-
ing, experimentation, and perception.??

¢ A Kinematic/Perceptual model: At the Perceptuo-Motor Level, we maintain a model of the
simple agent-level physics of the objects of interest to the agent.?®> The kinematic/perceptual
model models motor capacities and motor memory that might be implemented in different
ways (e.g., purely procedurally or in a network of nodes and weighted links), but we prefer the
declarative approach for its ease of interpretation and debugging. It also contains perceptual

20Albus defines a world model as the agent’s best estimate of objective reality [Albus, 1991].

#'Situated cognition and reactive planning are proponents of avoiding world modeling, e.g., [Brooks, 1990,
Suchman, 1988].

#2The fact that we represent these knowledge bases as separate in figure 2 does not necessarily mean that there is
a sharp dividing line between the two. They are all uniformly represented in a general KRR system.

*Even the prominent advocators of doing away with world models actually use a variety of models, some of which
qualify as kinematic/perceptual models. For instance, see Chapman’s work on Sonja [Chapman, 1990] where Sonja
has to build a convex hull of obstacles and compute angles in order to decide the best way to avoid them.
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Figure 2: Schematic representation of the structure of GLAIR-agent, an agent con-
forming to the GLAIR architecture.

representations of perceived objects. Representations at this level are embodied and agent-
centered (section 2.2.3).

Reactive processes: Also at the Perceptuo-Motor Level, a number of independent processes
monitor perceptual inputs, and control reactive behaviors of the agent.

Primitive motor and sensory actions: At the Sensori-Actuator Level, a number of these
primitive actions are implemented. A primitive motor action might be “move ahead”, and
a primitive sensory action might be “look at position (z,y,z) (which in turn may involve
primitive motor actions). Sensing as such is not considered a primitive sensory action, and it
goes on continuously.

Reflexes: Also at the Sensori-Actuator Level, a number of reflexes are implemented as low-
level independent processes that monitor raw sensory data and can control actuators directly,
temporarily pre-empting higher level control.

Some important features of GLAIR-agent are:

e Varieties of behaviors are integrated: We distinguish between deliberative, reactive, and
reflexive behaviors. At the unconscious level, behavior is generated by mechanisms with
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the computational power of a finite state machine (or less), whereas, at the conscious level,
behavior is generated via reasoning (of Turing Machine capabilities). As we move down the
architectural levels, computational and representational power (and generality) is traded off
for better response time and simplicity of control. Embodied representations aid in this
respect (section 2.2.3).

¢ Learning is incorporated: We specify that a successful agent learns from its successful inter-
action with the world as well as from its mistakes.

¢ Capacity for Engaged and Disengaged Reasoning: Our architecture allows us to model varying
modes of reasoning, which range from what we call engaged to disengaged reasoning. Fully
engaged reasoning occurs when all relevant constant symbols at the Knowledge Level are
aligned with the Perceptuo-Motor Level, which is typical of a “hands-on” or “reason-as-
you-go” mode of reasoning and acting. Fully disengaged reasoning occurs when none of the
relevant constant symbols at the Knowledge Level are aligned with the Perceptuo-Motor Level,
which is typical of a hypothetical or “other-place, other-time” mode of reasoning. Various
intermediate forms are possible as well.

3.2 Agent Capabilities

We assume agents to possess a set of motor capabilities. The motor capabilities are primitive in
the sense that (a) they cannot be further decomposed, (b) they are described in terms of the agent,
and (c) no reference is made to external objects. The second property of motor capabilities is so
that the success of performing an action should depend only on the agent’s bodily functions and
proprioceptive sensing. For example, for a robot arm, we might have the following as its motor
abilities: calibrate, close-hand, raise-hand, lower-hand, move.

We further assume agents to possess motor skills. Unlike human infants, we assume these skills
to be primitive at the start. An example set for a robot arm is: grasp, lift, lower, and carry. Note
that these skills are complex and depend on integration of sensory data with primitive actions. For
example, “grasp” needs the arm to move to the approach point and to approach the object grip
point slowly with the fingers in the open position and then grasp the object (i.e., close fingers) and
try to move it, testing for a secure grip.

3.3 Learning

Learning is an important feature for an agent that has to interact with the world. Since we are
not designing domain-specific agents, we would like the agent to be able to cope with whatever it
finds in the world. We are particularly interested in agents that learn to extend their abilities to
interact with the world. For example, if all an agent knows is picking up square boxes by using its
two fingers to squeeze on opposing faces of the box and lifting it, and now it faces a round ball, it
has to learn to use either more fingers or use its two fingers to squeeze on diametrically opposing
points of the ball.

An agent that is new to performing a particular act, or new to choosing an appropriate act,
consciously reasons about its act and controls its execution. As the agent acquires more experience
with an act, it is able to unconsciously pick the act and execute it. In psychological terms, this
is called automaticity. In terms of our architecture, we say that the locus of choice/control of an
act moves from the Knowledge Level to the Perceptuo-Motor Level. This places learning in the
Knowledge Level.
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3.4 A Repertoire of Behaviors

Our architecture provides a natural framework for modeling four distinct types of behavior, which
we call reflexive, reactive, situated, and deliberative. Reflexive and reactive behaviors are predom-
inantly unconscious behaviors, whereas situated and deliberative actions are conscious behaviors.

Reflezive behavior?* occurs when sensed data produces a response, with little or no processing
of the data. A reflex is immediate. The agent has no expectations about the outcome of its
reflex. The reflexive response is not generated based on a history of prior events or projections
of changing events, e.g., a gradual temperature rise. Instead, reflexive responses are generated
based on spontaneous changes in the environment of the agent. These spontaneous changes in one
way or another affect the agent, either overtly as in “fire near skin” or covertly as in peripheral
visual perception. In anthropomorphic terms, this is innate behavior that serves directly to protect
the organism from damage in situations where there is no time for conscious thought and decision
making, e.g., the withdrawal reflex when sticking one’s hand into a fire. Reflexive behavior does not
require conscious reasoning or detailed sensory processing, so our lowest level, the Sensori-Actuator
Level, is charged with producing these behaviors. Our initial mechanism for modeling reflexive
behavior is to design rules of the form T — A, where T is a trigger and A is an action. A trigger
can be a simple temporal-thresholding gate. The action A is limited to what can be expressed at
the Sensori-Actuator Level, and is simple and fast.

Reactive behavior requires some processing of data and results in situated action [Suchman, 1988].
However, its generation is subconscious. Situated action refers to an action that is appropriate in
the environment of the agent. In anthropomorphic terms, this is learned behavior. An example
would be gripping harder when one feels an object is slipping from one’s fingers, or driving a car
and tracking the road. We use the term tracking to refer to an action that requires continual
adjustments, like steering while driving. Examples of this type of reactive behavior are given in
[Payton, 1986, Anderson et al., 1991].

Situated behavior requires assessment of the state the system finds itself in (in some state
space) and acting on the basis of that. In anthropomorphic terms, this is learned behavior that
requires only shallow reasoning. It might be modeled by the workings of a finite state automaton,
for example, the Micronesian behavior described in [Suchman, 1988]. Situated action is used in
reactive planning [Agre & Chapman, 1987, Firby, 1987, Schoppers, 1987]. Reactive planners and
systems of situated behaviors share the following properties:

o Applicability of only one action is decided upon at any one time.

¢ Applicability of an action is decided based on the current situation and not on the history of
what has happened.

¢ No predictions are made about what will be true after completing an action.

Deliberative behavior requires considerable processing of data and reasoning which results in
action. In anthropomorphic terms, this is learned behavior that requires deep reasoning that can
be modeled by a Turing machine (or first order logic), for example explicit planning and action.

3.5 Perceptuo-Motor Automata

In this section we discuss an implementation mechanism for behaviors at the Perceptuo-Motor
Level. To recapitulate, we suggest that, at this level, the behaviors resulting in physical actions

24E.g., visual reflexes in [Regan & Beverly, 1978]: Here responses are generated to certain visual stimuli that do
not require detailed spatial analysis.
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specify an automaton, which we will call a PM-automaton (PMA), [Hexmoor & Nute, 1992]. A
PMA is a implementation mechanism for routine activities at an “unconscious” level. A PMA is
a finite state machine in which each state is associated with an act and arcs are associated with
perceptions. In each PMA, a distinguished state is used to correspond to the no-op act. Each
state also contains an auxiliary part we call Internal State (IS). An IS is used in arbitrating among
competing arcs. Arcs in a PMA are situations that the agent perceives in the environment. Since
perception is a continuous function over time, the arcs are designed to be anytime algorithms. In
contrast to one-shot algorithms, these algorithms improve over time. When a PMA arc emanating
from a state becomes active, it behaves like an asynchronous interrupt to the act in execution in
the state. This causes the PMA to stop executing the act in the state and to start executing the
act at the next state at the end of the arc connecting the two states. This means that in our model
the agent is never idle, and it is always executing an act. We will illustrate the operation of PMA
with an example.

B Not Last ([Drummond, 1989]): Given a table on which to assemble three blocks in a row:
block A on the left, at location 1; block B in the middle, at location 2; and block C on the right,
at location 3. The blocks are initially available for placement, and each block can be placed on the
table once it’s available. The exact means for moving the blocks does not matter: when a block is
available it may be placed. The only constraint on assembly is that block B cannot be placed last:
once A and C are down, there is not enough room to place B. B must be swept in from the left or
from the right, and cannot be placed if A and C are in the way.

We build a PMA for this problem with four acts: placeA, LplaceB, RplaceB, placeC, and our
start state no-op. On the arcs we have perceptions freel, free2, free3, availableA, availableB, and
availableC. State transitions here are triples of the form [current state, perceptions, next state]:

¢ [no-op, (freel, availableA), placeA]

¢ [no-op, (free2, free3, availableB), RplaceB]

[no-op, (freel, free2, availableB), LplaceB]

¢ [no-op, (free3, availableC), placeC|

[placeA, (free2, free3, availableB), RplaceB]

[placeC, (freel, free2,availableB), LplaceB]

[RplaceB, (free3, availableC), placeC]

[LplaceB, (freel, availableA), placeA]

[LplaceB, (free3, availableC), placeC]
¢ [RplaceB, (freel, availableA), placeA]

In this example, IS in each state other than no-op is the conditions perceived in arcs leading
to the state and the previous state. IS at placeA is freel, availableA, and one of (no-op, RplaceB,
LplaceB). IS at RplaceB is free2, free3, availableB, and one of (no-op, placeA). IS at LplaceB is
freel, free2, availableB, and one of (no-op, placeC). IS at placeC is free3, availableC, and one of
(no-op, LplaceB, RplaceB). IS can be interpreted as the situation under which an act is applicable.
This can be used to rewrite the PMA in terms of situation rules where the antecedent is a situation
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(i.e., conditions on arcs and the previous state) and the consequent is an act. The resulting rules
are similar to Drummond’s situation control rules [Drummond, 1989].

Primary mode of acquiring PMA is by converting plans in the Knowledge Level into PMA by
a process described in [Hexmoor & Nute, 1992]. A PMA may become active by an intention to
execte an action at the Knowledge Level. Once a PMA becomes active, sensory perception will be
used by the PMA to move along the PMA arcs (i.e., PMA transitions). The sensory perceptions
that form the situations on the arcs as well as subsequent actions on the PMA may be noticed at
the Knowledge Level. In general, the sensory information is filtered into two streams. One stream
is for the consumption of the PMA, the other for the Knowledge Level.

4 Concluding Remarks

We have presented a general architecture for autonomous agents that integrates behavior-based
architectures with traditional architectures for symbolic systems. This architecture, independent
of advocating a particular style of agent modeling, specifies how an agent establishes and maintains a
conscious connection with its environment while mostly unconsciously processing sensory data, and
filtering information for conscious processing as well as for reflexive and reactive acting. We ended
our paper by instantiating the architecture with a particular agent embedded in its environment.
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