
KQML Prototype Interface
Final Report

for
Paramax Subcontract No. V20275

Interface Standards for Knowledge Representation Systems

Stuart C. Shapiro and Hans Chalupsky
Department of Computer Science
and Center for Cognitive Science

State University of New York at Buffalo
226 Bell Hall

Buffalo, New York 14260

May 15, 1992

1

2

Contents

1 Status and Scope 5

2 Overall Design 5

3 General Assumptions 5

4 Class Definitions 6

5 Interpretation of Packages
5.1 General discourse methods .
5.2 SNePS Specific sneps-discourse Methods

7

7

8

6 Inference Control
6.1 Suspending Backward Inference
6.2 Suspending Forward Inference .

12

12
12

7 KQML Networking and Client/Server Protocol
7 .1 Enabling and Disabling the KQML Service
7.2 Connecting to a KQML Server .
7.3 Sending and Receiving Packages
7.4 Input Interpretation ..
7.5 Client/Server Discourse

13
13
13
14
14
14

8 Local Execution 16

9 The SNePSLin Package
9.1 Naming Maps

9.2 Translation Functions

16

16
17

10 Error Handling, Tracing and Debugging 17

11 A SNePSUL Interface to KQML
11.1 An Example Demonstration Using Remote Commands .

18

19

A Appendix
A.1 Installation
A.2 File load-kqml. lisp .
A.3 File packages. lisp .

A.4 File error-handling. lisp
A.5 File snepslin. lisp

A.6 File package-access. lisp

23

23
24
25
26
28

32

3

A.7 File discourse.lisp .

A.8 File kqml-server. lisp .

A.9 File inference-control.lisp

A.10 File kqml-performatives.lisp.

A.11 File remote-sneps. lisp

...

4

34

36
42
45

58

1 Status and Scope

This report documents an implementation of a KQML (Knowledge Query and Manipulation Language)
prototype interface for SNePS-2.1 (the Semantic Network Processing System [Shapiro, 1979; Shapiro and
Rapaport, 1987; Shapiro and Rapaport, 1992]). The interface allows two SNePS-2.1 applications to connect
to each other via an Internet stream and exchange information by sending and receiving KQML packages
and performatives as they are defined in [Shapiro and Chalupsky, 1991]. In this scenario, one application
acts as a KQML server (or provider), and the other as a client (or requester) who can query the server
about various things. The server maps received KQML requests into appropriate SNePS-2.1 commands to
achieve the desired actions, executes them in its SNePS-2.1 knowledge base, and sends appropriate KQML
replies back to the client.

All of the performatives defined in [Shapiro and Chalupsky, 1991] with exception of control messages
have been implemented. Bidirectional translation of content sentences in SNePSLin (a linear representation
of SNePS networks) and SNePSUL (the SNePS User Language) is fully supported. Proper handling of
various classes of error exceptions is provided, too. The networking part of the interface is built on top
of a TCP /IP package written by Rich Fritzson. An example set of SNePSUL remote commands has been
written to show how a SNePS-2.1 application can request information from a KQML server by sending and
receiving KQML packages.

2 Overall Design

The main part of the interface is implemented in Common-Lisp as specified in [Steele, 1990]. It uses
the Common-Lisp Object System (CLOS) as well as the condition system (both of these parts of the
language are not defined in the first edition of the Common-Lisp specification). The networking and server
part make use of non-standard extensions such as foreign function calls to establish TCP /IP streams, and
asynchronous processes for the servers to be run in. These non-standard extensions are available in Sun
(Lucid) Common-Lisp 4.0.1.

The interface is designed to enable a KQML client application to communicate with multiple KQML
servers (or providers), as well as allow a KQML server to communicate with multiple KQML clients.
Even though an application can communicate with multiple other applications simultaneously, every such
discourse is managed strictly in a one-to-one fashion. The state information necessary for every such
discourse is held in instances of a general discourse class (a CLOS object). 'The methods defined on this
class handle the operations that are applicable to a certain discourse instance. A subclass of discourse
called sneps-discourse handles KQML discourse carried out with SNePS applications. Implementations
of KQML performatives that have to perform operations that are SNePS specific are defined as methods
on this subclass. This design should make it possible to extend the applicability of the KQML interface
to a new knowledge representation system (KRS) by simply adding another subclass to discourse whose
methods handle the KQML performatives that have to interact with the new KRS in a special way.

3 General Assumptions

Throughout this document all variables, functions, macros, classes, methods and symbols of any kind
are assumed to be in the KQML package unless explicitly noted otherwise. Only a small portion of these
symbols are exported from the KQML package (refer to the file packages. lisp for more detailed package
information). Hence, to use these functions they either have to be within the scope of an (in-package
"KQML") declaration, or they have to be qualified with the package KQML and the double colon syntax.

5

4 Class Definitions

Instances of the following classes with their associated methods define how discourse between a local and
a remote KQML application is carried out:

discourse [Class]
This class describes KQML discourse of the most general kind. It has the following instance variables:

request-content-language - Contains a string that specifies the language used in content sentences of
requests. The default value is "interlingua".

reply-content-language - Contains a string that specifies the language used in content sentences of
replies. If this instance variable is unbound its value defaults to the value of request-content-
language. The standard method slot-unbound has been redefined for instances of class discourse
to achieve this default behavior.

local-content-language - Contains a string that specifies the language used for content sentences by
the local application (or provider).

local-address - A string that specifies the Internet address of the local application.

remote-address - A string that specifies the Internet address of the remote application of this particular
discourse.

stream - The Internet stream object via which the local application can communicate with the remote
application. "Uttering" is performed by writing onto this stream, "listening" is done by reading from
it.

control - A flag that specifies who is in control of this discourse. If this flag is t the local application is
in control and can "utter" messages such as requests or replies, if it is nil it has to "listen" for the
remote application to say something, for example, if the requester waits for replies to a particular
request.

history - A list of packages exchanged by the local and remote application. It contains all packages sent
and received with the most recent package at the beginning of the list.

sneps-discourse [Class]
This class is a subclass of discourse. It describes SNePS specific KQML discourse carried out with a
SNePS application. It has the following instance variables:

request~content-language - See discourse. The default value is "snepslin".

local-content-language - See discourse. The default value is "sneps".

variable-mapping- Contains a mapping between SNePSLin variables and SNePS variable nodes. The
default value is an empty mapping (mapping is a special datatype specified by the SNePSLin trans
lation package).

discourse-context - Contains the name of a SNePS context used for this particular discourse. Adding
or removing sentences from the discourse context will be achieved by adding or removing nodes from
the SNePS context specified by this slot. Using a different SNePS context for every discourse instance
should make it possible to have multiple and completely separated conversations with a single SNePS
knowledge base. The default value is a new symbol created bythe Common-Lisp function gentemp.

6

5 Interpretation of Packages

Once two applications have established a discourse stream with each other, they communicate by sending
and receiving requests and replies encoded as KQML packages. When an application receives a package
from the discourse stream it has to interpret it and perform some actions depending on the type of the
content expression of the package. In the implementation of this prototype interface the following strategy
has been adopted: For every KQML performative defined in [Shapiro and Chalupsky, 1991] there exists
a corresponding CLOS method defined on some subclass of discourse with almost identical argument
structure which handles all the necessary actions required by that particular performative. I.e., an incoming
package of any type can be handled by calling the appropriate KQML performative method with the
particular discourse instance and the content arguments as parameters. If the execution of a particular
performative generates replies then sending of these replies will also be handled by the KQML performative
method. The various KQML performative methods and related auxiliary methods are described below.

KQML performatives have to be defined with the following construct:

defperformative name .trest definition [Macro]
The syntax of definition is identical to that of a normal CLOS method definition. Using this definitional
construct will add name to the following variable:

•performatives• [Variable]
The set of names stored in this variable is used by the package interpreter to determine whether a particular
KQML message refers to a bonafide performative.

5.1 General discourse methods

As already mentioned, there are two types of methods: KQML performative methods which interpret a
particular KQML message (request or reply) whose :TYPE slot has the name of the method as its value,
and standard methods. Both types are implemented as standard CLOS methods.

valid-request-language (discourse discourse) [Method]
language

Returns true if language is a valid language for content sentences in requests. The only requirement for
general discourse is that language is a string.

valid-reply-language (discourse discourse) [Method]
language

Returns true if language is a valid language for content sentences in replies. The only requirement for
general discourse is that language is a string.

declare-content-languages (discourse discourse)
.tkey request-content-language

reply-content-language
id

Handles a KQML message of that :TYPE. It checks whether the specified languages are valid (using the
methods described above), and if so assigns them to the according instance variables of discourse. id is
the ID of the package which had this request as its content expression. All KQML methods that handle
requests are required to have this argument (see section on error handling).

[KQML performative]

7

send-success-reply (discourse discourse) [Method]
tkey value

request-id
explanation

Generates a KQML message of : TYPE success-reply from the supplied arguments and sends it back to
the requester using the information stored in discourse.

success-reply (discourse discourse) [KQML performative]
tkey value

request-id
explanation
id

Handles a KQML message of that : TYPE. If explanation was supplied it simply prints that string. Its main
purpose is to reset the value of the control flag of discourse to tell the local application that a certain
request has been handled completely.

send-content-reply (discourse discourse) [Method]
tkey request-id

reply-number
reply-content-language
content

It translates all sentences in content from the local content language into the language specified by reply
content-language or the according slot value of discourse (using the method translate-reply-content),
and sends a KQML message of : TYPE content-reply generated from the translated content sentences and
the other arguments back to the requester.

content-reply (discourse discourse) [KQML performative]
tkey request-id

reply-number
reply-content-language
content
id

Handles a KQML message of that :TYPE. It uses the assert KQML performative method to assert all
sentences in content in the local discourse context (how KQML performative methods can be used locally
for things other than interpreting incoming packages is explained in Section 8).

5.2 SNePS Specific snaps-discourse Methods

The following methods handle SNePS specific KQML discourse. They are defined on the class sneps-
discourse.

valid-request-language (discourse snaps-discourse)
language

Returns true if language is either "snepslin" or "snepsul".

[Method]

valid-reply-language (discourse snaps-discourse)
language

Returns true if language is either "snepslin" or "snepsul".

[Method]

8

translate-request-content (discourse snaps-discourse) [Method]
tkey content

content-language
Translates content (a string specifying a SNePS node) into a SNePSUL (the SNePS User Language) rep
resentation of the node (a list). The SNePSUL representation looks just like the SNePSUL command that
would have been used to find or assert the node in question, but with the command name removed.
Hence, depending on the performative in question, the SNePSUL command that implements the perfor
mative in SNePS can be built by simply consing the appropriate command into the list returned by this
method.

If the request content language is "snepsul", then the translation is obtained by simply reading the
content string using the proper package and read table. If it is "snepslin", then the translation is
obtained by using the translation function provided by the SNePSLin package. For SNePSLin sentences,
all previously undefined relations that occur in the SNePSUL translation of the sentence will be implicitly
defined before the translated sentence is returned. This is necessary, because SNePS requires all relations
referenced in a SNePSUL command to be defined.

translate-reply-content (discourse snaps-discourse) [Method]
tkey content

content-language
Translates content (a SNePS node) into a sentence of content-language. If the specified content language is
"snepsul", then simply a list containing the node and the (flat) cable set that defines it will be returned.
For SNePSLin, the translation is obtained by using the back-translation function provided by the SNePSLin
package.

set-discourse-context (discourse sneps-discourse)
tkey request-content-language

(content 'all)
id

Handles a KQML message of that : TYPE. Translates content according to request-content-language or the
request content language specified for discourse (using the method translate-request-content), and
modifies the SNePS context specified for discourse with help of the function modify-snaps-context.

[KQML performative]

add-to-discourse-context (discourse snaps-discourse)
ltkey request-content-language

(content 'all)
id

Handles a KQML message of that :TYPE. Similar to set-discourse-context.

[KQML performative]

remove-4om-discourse-context (discourse snaps-discourse)
tkey request-content-language

(content 'empty)
id

Handles a KQML message of that : TYPE. Similar to set-discourse-context.

[KQML performative]

assert (discourse snaps-discourse)
tkey request-content-language

content
id

Handles a KQML message of that :TYPE. Translates content and uses the SNePS function assert to assert
the translated content sentence in the SNePS context specified for discourse. This method assumes that
all SNePS relations referenced in the SNePSUL specification of content are already defined.

[KQML performative]

9

interpret-literally (discourse sneps-discourse) [KQML performative]
l:key request-content-language

content
id

New KQML message that literally interprets content as a SNePSUL command. This method is a low-level
mechanism that handles all situations that are not taken care of by standard KQML performatives, for
example, it can be used to define new relations if the request content language is SNePSUL.

assign-truth-value (discourse sneps-discourse)
.tkey request-content-language

truth-value
content
id

Handles a KQML message of that type. In the current implementation it simply replies with a failure
message, because SNePS does not deal with truth values. Another way of dealing with this performative
in SNePS would be to assert content or its negation depending on truth-value.

The rest of the KQML performatives deal with different forms of question answering. All of them make
use of the following workhorse:

[KQML performative]

infer-answers (discourse sneps-discourse)
1:key request-content-language

reply-content-language
(work/eve/ 'minimal)
(how-many 1)
(report-mode 'continuous)
(truth-values 'any)
(inference-mode 'backward)
topics
id

Does the actual work for forward, backward and topical queries. It tries to infer answers related to topics
by first translating them into SNePS nodes and then performing either forward or backward inference on
these nodes in the order given in topics.

[KQML performative]

If inference-mode is backward then the sentences in topics are considered queries that should be answered
one after the other by asking them using the SNePS function deduce. If work/eve/ is minimal, then no
actual deduction is done, but only nodes that are already in the network and that match the translated
content will be returned. If work/eve/ is maximal, then an unrestricted deduction is started to generate
answers. The SNePS function deduce is called such that it returns control every time one new answer is
generated. If according to how-many enough new answers were generated then a content reply message with
the new answers will be sent to the requester. If the value of report-mode is continuous then inference will
continue from where it was suspended to report the answers. The SNePS inference mechanism has been
modified to allow proper suspension and continuation of forward and backward inference (see Section 6).
If the value of report-mode is suspend then the deduction will be suspended. The control performative
to continue a suspended deduction has not yet been implemented, however, the suspend mode can be used
to limit the number of answers generated.

If inference-mode is forward then the sentences in topics are considered to be seeds that should trigger
forward inference using the SNePS function add. Once all answers triggered from adding one of the topic
nodes to the network have been generated, the next node will be added and so on until all nodes were
added. For forward inference in SNePS a minimal worklevel does not make sense, hence, forward inference
is always done unrestrictedly and the value of work/eve/ will be ignored. Because the SNePS function
add does not deal with limitation of the number of answers generated (as does deduce), a new function
add-suspendingly has been written to deal with suspending forward inference (see Section 6). The values

10

of how-many and report-mode control the reporting of answers just as described for backward inference.
In both forward and backward inference the value of truth-values is always ignored.

query-sentence-status (discourse sneps-discourse)
A:key request-content-language

reply-content-language
(work/eve/ 'minimal)
(how-many 1)
(report-mode 'continuous)
(truth-values 'any)
content
id

Handles a KQML message of that :TYPE. It calls infer-answers in backward inference mode with a topic
set that contains content as its only element.

[KQML performative]

query-about-topic (discourse sneps-discourse)
A:key request-content-language

reply-content-language
(work/eve/ 'minimal)
(how-many 1)
(report-mode 'continuous)
(truth-values 'any)
content
id

Handles a KQML message of that : TYPE. It first translates content and tries to generate a set of questions
that might be relevant to ask to get topically related answers. It does so by matching the translated topic
node to the network. For every matching node that is not a variable it collects all its dominating nodes and
applies the substitution generated by the match. All nodes generated in this way will be added to a set of
relevant questions, which will then be supplied to infer-answers as a set of questions to be answered by
backward inference. Currently, atomic topic phrases can not be handled.

[KQML performative]

assert-and-infer (discourse sneps-discourse)
A:key request-content-language

reply-content-language
(work/eve/ 'minimal)
(how-many 1)
(report-mode 'continuous)
(truth-values 'any)
(assertion-mode 'actual)
content
id

Handles a KQML message of that : TYPE. It first asserts all sentences in content in the current discourse
context using the KQML performative method assert, and then calls infer-answers in forward inference
mode with these sentences as seeds. If assertion-mode was actual, all added nodes and derived results will
be kept in the discourse context. If assertion mode was hypothetical the added nodes will be removed
from the discourse context after inference and reporting of results has completed, and by that, all derived
results will automatically be removed, too.

[KQML performative]

11

6 Inference Control

As mentioned above, the SNIP inference mechanism (SNIP stands for SNePS Inference Package) had to
be augmented so that inference will get suspended whenever a certain number of new answers has been
generated. Inference suspension has to deal with two problems: 1) At what points to suspend the inference,
and 2) saving enough state information such that inference can be continued from where it was suspended.
The way SNIP is built on top of a multi-processing system called Multi makes the second task rather easy.
All that has to be done is to save the process queues when inference gets suspended. To find out the right
point for suspension of inference is rather easy for backward inference, and slightly trickier for forward
inference.

suspend-inference multi:*NAME* [Function]
Saves all the necessary status of the Multi system such that inference can be properly continued from the
point of suspension. This function can also be run as a Multi process. If it gets scheduled at the front of the
high-priority queue it can be used to suspend inference immediately after the current process terminates.

6.1 Suspending Backward Inference

Suspending backward inference can naturally be handled by the number-of-answers argument given to
deduce. Whenever a new answer gets generated it gets reported to the User process (a special Multi
process). Once the User process has enough answers accumulated it calls the function snip:: suspend-
inference and then terminates. All we had to do is to redefine this function to call suspend-inference
to save all the necessary state information. The standard way in which suspending backward inference is
started, is to issue a call of the form (deduce 1 ... node description ...). Further results can then be
obtained by repeatedly using the command continue-inference described below.

6.2 Suspending Forward Inference

Implementing suspending forward inference is slightly more complicated, because here we do not have the
concept of an answer to a query. Whenever a rule fires and possibly asserts a new node, we have a possible
new answer that should get reported and inference suspended. Hence, a natural point to check for newly
derived answers is in the function that broadcasts a single report. The redefined function checks whether
suspending forward inference is in progress, and if so whether after broadcasting the report a new node
has been added to the network. If that was the case, it schedules a suspend-inference process that will
save all the necessary state and suspend inference right after the current process terminates.

add-suspendingly trest snd [SNePSUL Command]
Adds the node defined by the SNePSUL node description snd to the network and starts suspending forward
inference on it. This function will immediately return by reporting the added node. Further results can be
obtained by repeatedly executing the continue-inference command.

continue-inference O [SNePSUL Command]
Determines whether the immediately preceding inference was forward or backward inference, and then con
tinues the suspended inference accordingly until it suspends inference again at the next logical suspension
point. The set of new answers will be returned. Once all inference possibilities have been exhausted and
no more answers can be generated, NIL will be returned.

12

7 KQML Networking and Client/Server Protocol

KQML applications can communicate with each other over the Internet using the TCP /IP protocol. Every
application is identified by an optional application identifier and by an Internet address, for example,
appClhadar. cs. but:falo. edu, or, if there is only one KQML application running on a particular machine,
just hadar. cs. bu:f:falo. edu would be sufficient.

7.1 Enabling and Disabling the KQML Service

An application that wishes to act as a KQML server can enable and disable the KQML service with help
of the following functions:

enable-kqml-service .toptional application-id (discourse-type •discourse) [Function]
Defines a KQML service with name :KQHL-application-idor just :KQKL ifno application id was supplied. For
example, if the value of application-id was "App", then the service name will be : I KQKL-App I. Associated
with this name will be a KQML server function which will be started in a separate process once a client has
connected to this service successfully. discourse-type determines the type of the discourse instance created
by the server to manage the state of the discourse. enable-kqml-service also starts a demon process
that monitors the Internet for KQML service requests.

The actual guts of the TCP /IP networking are handled by a tcp. lisp package written by Rich Fritzson.
The way services are defined is derived from that package.

disable-kqml-service .toptional application-id
Disables the KQML service identified by application-id.

[Function]

7.2 Connecting to a KQML Server

A client can establish a connection to a KQML server with the following functions:

connect-to-kqml-server address [Function]
Opens and returns a bidirectional TCP /IP stream to the KQML server running at address. It first tries
to establish a TCP /IP connection to the remote process. Then it derives a KQML service name from the
address and submits that as the first symbol to the remote process. If a KQML service of that name has
been enabled at the remote host the KQML server there will start up and acknowledge the service request.
Once the acknowledgment has been received the stream object will be returned. If no connection could be
made (e.g., if the address did not exist, or no service of that name was enabled at the remote host) then
an error ~essage will be printed and NIL will be returned. Currently, the waiting for an acknowledgment
from the KQML server does not time out. It should.

open-kqml-discourse address .toptional (discourse-type 'discourse) [Function]
This is the high-level interface to establish a discourse with a KQML server at address. It uses connect-
to-kqml-server to connect to the remote process, and, if successful, creates and initializes a discourse
instance of type discourse-type which will be returned.

close-kqml-discourse discourse
Terminates a KQML discourse by closing the TCP /IP stream stored in discourse.

[Function]

13

7.3 Sending and Receiving Packages

make-package-id address
Generates a unique package identifier (a string) from address and a local time stamp.

[Function]

send-kqml-package package discourse [Function]
Delivers package to the stream specified in discourse, and stores it at the front of the history stored in the
history slot of discourse.

send-request content discourse [Function]
Creates a package with content as its content expression, proper : ID, : FROM, : TO, etc., slots, and delivers
it to the stream specified in discourse.

send-reply content discourse [Function]
Extracts the value of the : REQUEST-ID slot from content and tries to find a request package in the history
of discourse which has that id. If a proper request could be found, it creates a package with content as its
content expression, proper :ID, :FROM, :TO, etc., slots, and delivers it to the stream specified in discourse.
The history check makes sure that no unsolicited replies will be sent.

7.4 Input Interpretation

Tokens transmitted across a TCP /IP stream are divided into the following classes:

Symbols are used to communicate simple commands or states, or to identify services.

Strings are used to transmit low-level error messages.

Packages , i.e., lists for which the predicate is-package is t, are used to transmit KQML messages.

These tokens are read from a TCP /IP stream with the Common-Lisp read function, classified by their
type and interpreted accordingly. All input that does not fall in any of the above categories is considered
illegal.

interpret-tcp-stream-input input discourse [Function]
Does the low-level interpretation of input which is a single token read from the TCP /IP stream specified in
discourse. It classifies the token according to the categories described above and interprets it accordingly.
If the token signals a closing operation or eof, the local stream object will be closed, too. If it was an error
message the message will be printed in the local process. If it was a package it will be submitted to the
function interpret-package. Otherwise, an illegal input error will be signalled to the remote process.

interpret-package package discourse [Function]
Performs the high-level interpretation of a package token. It checks whether package contains a defined
performative in its content slot, and if so constructs a proper argument list from the content of the package
and discourse, to which then the appropriate KQML performative will be applied.

7.5 Client/Server Discourse

Once a connection between a client and a server has been established a complete discourse transaction is
defined by the following protocol (for synchronous and blocking communication):

14

Client Application KQML server
Wait (read) for next request

Send (write) a request
Wait for next reply

Interpret request
Send O or more content replies
without waiting inbetween

Read and interpret O or more
content replies

Read and interpret success reply
and regain discourse control

Send a success reply

Wait for next request

After a connection between a client and a server has been established, the KQML server stays in a
read- request/interpret-request/send- replies loop until the connection gets closed by the remote process,
or some unrecoverable error occurs. The waiting and blocking is done by the Common-Lisp read function.
Because a certain request can trigger multiple content reply messages, there must be a way to tell the client
when it cannot expect any more replies. For this purpose the following policy has been adopted:

Every KQML performative method has to terminate by sending exactly one success-reply
package back to the client, regardless of whether the request triggered any content replies or
not.

Using this policy, after issuing a request the client can simply read and interpret successive incoming
packages until it finally receives a success reply package which will result in the regaining of discourse
control. As a corollary to this policy, in the case of an error during the handling of a request the KQML
server must send an error message back to the client to inform it that something went wrong, otherwise
the client would wait indefinitely.

On the other hand, the KQML server does not wait for any acknowledgment from the server. Because
multiple content replies for a certain request might be generated at a faster rate than the client can process
them, it is assumed that the underlying TCP /IP implementation does the necessary buffering and blocking.

kqml-server stream remote-host application-id discourse-type [Function]
This function implements the server side of the protocol. Once a remote-host has established a TCP /IP
connection, the demon function starts the KQML server function in a separate process (see enable-kqml-
service and open-kqml-discourse). The server then creates and initializes a discourse object of type
discourse'":type, acknowledges a successful connection back to the remote host, and then starts reading from
stream thus waiting for the first request. It terminates if the stream gets closed by the remote host, or if
some unrecoverable error occurs.

send-request-and-interpret-replies content discourse [Function]
This function implements the client side of the protocol. It generates a package with content as its content
expression and delivers it to the KQML server specified by the stream stored in the discourse object. It
then sets the control slot of discourse to nil and reads and interprets reply packages until the value of
that slot is t again (to which it will be set once the success-reply method has been executed as a result of
receiving a package of this type). Once discourse control has been regained, or an error has been signalled
by the KQML server, this function returns.

15

8 Local Execution

Sometimes it is desirable to use KQML performative methods for local execution only, and not just to
interpret a certain package received from a remote application. For example, the content-reply and
assert-and-infer methods use the assert method. To avoid infinite request/reply cycles (the policy
stated above sa.ys t.ha.t. every peeformative method, has to terminate by sending. a. su.ccess-:cepl..y: message
back) the following macros are available:

unless-only-locally tbody body [Macro]
Forms within the scope of this macro will not get executed in local execution mode. The send-success-
reply and send-content-reply methods use this macro to avoid sending replies from locally executed
performatives.

execute-locally lbody body [Macro]
Within the scope of this macro forms that are wrapped within the unless-only-locally macro will not
get executed.

9 The SNePSLin Package

SNePSLin is a linear representation for SNePS nodes. Because SNePS nodes are defined as cable sets, the
syntax ofSNePSLin is very similar to the syntax of cable sets. A SNePSLin sentence can be used to linearly
specify a SNePS node or pattern that should be asserted, queried, etc. Here is a syntax specification for
SNePSLin:

<snepslin sentence>::= (<snepslin cable>)
<snepslin cable>::= (<dovnrel> <snepslin node> <snepslin node>)
<dovnrel> : : A SlePS downward relation
<snepslin node>::= <snepslin sentence> I <base node> I <var node>
<base node> ::= <implicit base node> I <new base node>
<implicit base node> ::= <symbol>
<new base node>::= +<symbol>
<var node> ::= <implicit var node> I <new var node>
<implicit var node> ::= ?<symbol>
<new var node>::= +?<symbol>
<symbol> ::= any Common-Lisp symbol

"Implicit" variable or base nodes refer to a previously existing node with the same name, otherwise
they implicitly define a new variable or base node.

"New" nodes will create a new variable or base node that can be referred to by name. The new node
mechanism makes sure that the referenced nodes are new and not accidentally identical with any previously
existing nodes of that type.

9.1 Naming Maps

Naming maps provide proper translation between SNePSLin atoms and SNePS atoms (i.e., variable and
base nodes), for example, +?person will create a new SNePS variable node - say v10 - that can be referred
to as ?person in subsequent SNePSLin expressions. +arbindv will create a new SNePS base node - say
b52 - that can be referred to as arbindv.

16

A special da.ta. structure ca.lied mapping is used to store these one-to-one naming ma.ps. Mappings are
implemented a.s structures that contain two ha.sh ta.hies, one for mapping SNePSLin a.toms into SNePS
atoms, and one for mapping SNePS atoms back into SNePSLin. So far, only variables a.re mapped. The
variable mapping for a pa.rticula.r discourse is stored in the according slot of the discourse instance.

9.2 Translation Functions

The following functions define the top-level tra.nsla.tion interface between SNePSLin a.nd SNePSUL:

snepslin-to-snepsul snepslin-sentence discourse [Function]
Tra.nsla.tes snepslin-sentence (a. list) into a. SNePSUL description (a. list) of the node specified by the
SNePSLin sentence. The SNePSUL description can then be used to assert/deduce etc. tha.t node by
simply putting the a.ctua.l SNePSUL command na.me as the first element of the list a.nd executing the
resulting command. discourse is used to specify the proper naming maps for the translation of SNePSLin
atoms.

sneps-to-snepslin sneps-node discourse [Function]
Takes an actual sneps-node and translates it into a SNePSLin specification (a list) according to the naming
maps of discourse. This function replaces every molecular node in the downward fcableset of sneps-node
by its SNePSLin representation, hence it cannot deal with circular networks (in SNePS-2.1 there are no
cycles in the network, hence, this is not a problem).

10 Error Handling, Tracing and Debugging

A robust KQML provider has to be able to handle error conditions gracefully. The fact that the actual
knowledge base that provides information is a complex and slightly fragile Lisp program makes error
handling particularly important. The Common-Lisp condition system provides an elegant mechanism to
deal with exceptions. The current implementation distinguishes between four kinds of errors:

KQML errors: These are errors caused by KQML messages of erroneous content, for example, if a content
language was requested which cannot be handled by the local provider.

KQML system errors: These are errors that are due to bugs in the KQML interface software.

SNePS errors: These are errors caused by erroneous SNePSUL commands, for example, if a command
references a. previously undefined relation.

SNePS ~stem errors: These are errors due to bugs in the SNePS software.

with-kqml-errors {form}* [Macro]
Evaluates the forms of the body (an implicit progn) with proper error handlers installed to handle the
types of errors described above. If an error occurs, the appropriate handler for that error is called. These
handlers generate a success-reply message with : value set to failure and an appropriate explanation.
They assume that the variable id is bound to the id of the request in which the error occurred (this macro
is only used in KQML message methods that define requests, all of which have an id parameter that
specifies the id of the request). Because KQML message methods might themselves invoke other KQML
message methods to achieve their goal, a special function invoke-toplevel-restart has been written to
return to the error handlers installed in the outermost (or top-level) invocation of with-kqml-errors.

17

•debug• [Variable]
A non-NIL value of this variable will result in the production of various tracing and debugging messages
during the execution of the discourse.

when-debug tbody body [Macro]
Forms within the scope of this macro will be executed only if •debug* is non-NIL (used for conditionally
printing out debugging and tracing information).

11 A SNePSUL Interface to KQML

The following describes a small and very experimental SNePSUL (the SNePS User Language) top level that
can be used to establish connections to remote SNePS/KQML servers, and that defines remote versions of
standard SNePSUL commands that use KQML messages to communicate with the remote servers.

default-discourse [SNePSUL Variable]
Holds the name of the current default discourse (as a one-element list). This name is itself a SNeP
SUL variable whose value is the actual discourse object. The default value of default-discourse is
(default-default-discourse).

open-sneps-discourse address toptional discourse-name [SNePSUL Command]
Creates a connection to a KQML server at address, assigns the corresponding discourse object to the
SNePSUL variable discourse-name, and makes this discourse name the default discourse by assigning it
to the SNePSUL variable default-discourse. If no discourse name has been supplied it defaults to
•default-discourse. The discourse will be initialized by declaring SNePSLin as the content language,
and by setting the remote discourse context to the empty context. Returns the value of discourse-name.

close-sneps-discourse address toptional discourse-name [SNePSUL Command]
Terminates the discourse identified by discourse-name (defaults to •default-discourse).

Remote SNePSUL commands generally have the same argument structure as their standard SNePSUL
counterparts, however, they have an additional optional : discourse argument that allows one to supply
the name of a discourse (similar to a context specification). An also optional : context argument can be
used to specify in what context answers should be asserted. Both of these arguments have to be at the
end (or far right) of the arguments supplied to the remote command. If omitted the context defaults to
•defaultct, and the discourse to •default-discourse. Here is an example call:

(remote-deduce member $who class mortal :discourse mydiscourse)

...
remote-assert trest node-spec toptional discourse-spec [SNePSUL Command]
Asserts a node defined by node-spec in the remote discourse context of the discourse specified by discourse
spec. (Note, the combination of trest and toptional keywords in the above specification is not legal
Common-Lisp, their intended meaning, however, should be clear from the preceding paragraph). Specifying
a context for this command is a noop.

remote-findassert trest node-spec toptional discourse-context-spec [SNePSUL Command]
Tries to find asserted nodes that match the node defined by node-spec in the remote discourse context of
the discourse specified by discourse-context-spec. Answers will be asserted as new hypotheses in the local
discourse context. This is different from the semantics of the standard findassert command which just
searches the network, but does not build anything! Returns the set. of newly asserted nodes that were not
already part of the network.

18

remote-deduce treat node-spec toptional discourse-context-spec [SNePSUL Command]
Tries to find answers to the query defined by node-spec in the remote discourse context of the discourse
specified by discourse-context-spec by way of backward inference. Answers will be asserted as new hypothe
ses in the local discourse context, rather than as derived nodes as done by the standard deduce. Returns
the set of newly asserted nodes that were not already part of the network.

remote-add treat node-spec toptional discourse-context-spec [SNePSUL Command]
Tries to infer new nodes from the node defined by node-spec in the remote discourse context of the discourse
specified by discourse-context-spec by way of forward inference. Answers will be asserted as new hypotheses
in the local discourse context. Returns the set of newly asserted nodes that were not already part of the
network.

New remote SNePSUL commands can be defined with the following macro:

def-snepsul-remote command treat definition [Macro]
Defines a SNePSUL command with name remote-command according to definition. The new remote
command inherits all command properties from its standard SNePSUL command brother. All necessary
SNePSUL package import/export will be done automatically.

11.1 An Example Demonstration Using Remote Commands

The following is a short example demo that shows how the remote commands described above can be used
at the SNePS top level. The demo was run in a Lisp process on pegasus.cs.buffalo.edu, while the
KQML server was run on hadar. cs. buffalo. edu.

> (sneps)

Welcome to SNePS-2.1

Copyright 1984, 88, 89 by Research Foundation of State University of Nev York

5/15/1992 16:31:10

• (demo "-/Kqml/Code/remote-demo.sneps21")

File /u6/grads/hans/Kqml/Code/remote-demo.sneps21 is now the source of input.

CPU time: 0.09 ., GC time: 0.00

• ;; This deao assumes that a KQML server is running in a Lisp
,, process on hadar.cs and a service has been enabled with
;; (enable-kqml-service "Test")
; ;
(resetnet t)

Net reset

CPU time: 0.02 GC time: 0.00

• (· (setq kqml::l•DEBUG•I nil))

19

CPU time: 0.00 GC time: 0.00

• ;; Heed to define these relations because the nodes in the
,, re•ote co .. ands have to be built before they can be
;; translated into SHePSLin. Hew relations in answers will
;; be defined i•plicitly by the assert perforaative.
(define •e•ber class)

(MEMBER CLASS)

CPU time : 0.03 GC time: 0.00

• (open-sneps-discourse "TestGhadar.cs")

(DEFAULT-DEFAULT-DISCOURSE)

CPU time : 0.18 GC time: 0.00

• ;; Re•ote assertions do not return anything, because they
;; build nodes in the remote discourse context
(remote-assert •e•ber hans class •an)

CPU time: 0.09 GC time: 0.00

• (re•ote-assert •e•ber otto class man)

CPU ti•e: 0.08 GC time: 0.00

• (re•ote-assert forall $x ant (build me•ber •x class man)
cq (build member •x class hWllan))

CPU time: 0.12 GC time: 0.00

• (remote-assert forall $x ant (build member •x class human)
cq (build •e•ber •x class mortal))

CPU time : 0.12

'
GC time: 0.00

• (full-describe (re•ote-deduce member $who class mortal))

(MS! (CLASS MORTAL)
(MEMBER OTTO)
(HYP ((ASSERTIOHS (MS!)) (RESTRICTIOH NIL)

(HAMED NIL))))
(M6! (CLASS MORTAL)

(MEMBER HANS)
(HYP ((ASSERTIONS (M6!)) (RESTRICTION HIL)

(NAMED NIL))))

(MS! M6!)

20

CPU tiae: 0.33 GC tiae 0.00

* (describe •nodes)

(HANS)
(MS! (CLASS MORTAL) (MEMBER OTTO))
(M6! (CLASS MORTAL) (MEMBER HAHS))

(HAHS MS! M6! MORTAL OTTO)

CPU tiae: 0.05 GC tiae: 0.00

* ii This vill not return the originally added node, because that
ii vas already in the network (unasserted, though)
(full-describe (reaote-add aeaber deepak class aan))

(MB! (CLASS HUMAX)
(MEMBER DEEPAK)
(HYP ((ASSERTIOXS (MB!)) (RESTRICTIOX XIL)

(HAMED XIL))))
(M9! (CLASS MORTAL)

(MEMBER DEEPAK)
(HYP ((ASSERTIOXS (M9!)) (RESTRICTIOX XIL)

(HAMED XIL))))

(MB! M9!)

CPU time: 0.40 GC time: 0.00

* ;; After the reaote-add it is asserted, too
(describe •nodes)

(DEEPAK)
(HANS)
(HUMAX)
(MS! (CLASS MORTAL) (MEMBER OTTO))
(MG! (CLASS MORTAL) (MEMBER HAHS))
(M7! (CLASS MAX) (MEMBER DEEPAK))
(MB! (CLASS HUMAX) (MEMBER DEEPAK))
(M9! (CLASS MORTAL)

(MEMBER DEEPAK))

(DEEPAK HlXS HUMAX MS! M6! M7! MB! M9! MAN MORTAL OTTO)

CPU tiae: 0.09 GC time 0.00

* (close-sneps-discourse)

(DEFAULT-DEFAULT-DISCOURSE)

CPU time: 0.02 GC time 0.00

*
End of /u6/grads/hans/Kqml/Code/remote-demo.sneps21 demonstration.

21

References

[Shapiro and Chalupsky, 1991] Stuart C. Shapiro and Hans Chalupsky. KQML - issues and review. Pre
liminary report, Department of Computer Science, State University of New York at Buffalo, Buffalo,
NY, Dec 1991.

[Shapiro and Rapaport, 1987] S. C. Shapiro and W. J. Rapaport. SNePS considered as a fully intensional
propositional semantic network. In N. Cercone and G. McCalla, editors, The Knowledge Frontier, pages
263-315. Springer-Verlag, New York, 1987.

[Shapiro and Rapaport, 1992] Stuart C. Shapiro and William J. Rapaport. The SNePS family. Computers
fj Mathematics with Applications, 23(2-5):243-275, January-March 1992.

[Shapiro, 1979] S. C. Shapiro. The SNePS semantic network processing system. In N. V. Findler, edi
tor, Associative Networks: The Representation and Use of Knowledge by Computers, pages 179-203.
Academic Press, New York, 1979.

[Steele, 1990] Guy L. Steele. COMMON LISP. Digital Press, second edition, 1990.

22

A Appendix

A.1 Installation

To install the KQML prototype interface you need a machine that runs Sun Common Lisp 4.0.1 or higher
under the Unix.1 operating system. The installation requires the files listed below, as well as a recent
version of the SNePS-2.1 system:

tcp.c
load-kqm1.lisp
packages.lisp
foreign-support.lisp
tcp.lisp
error-handling.lisp
snepslin.lisp
package-access.lisp
discourse.lisp
kqml-server.lisp
inference-control.lisp
kqml-performatives.lisp
remote-snaps.lisp

To install the interface you first have to copy all these files into a single directory, for this example let
us call it /kqml/interface. Then compile tcp.c by doing

cc -c tcp.c

After that edit the variable •kqml-directory* in the file load-kqml. lisp to correspond to your installa
tion directory, for our example give it the value 11 /kqm1/interface". Then startup Lisp, load the SNePS
system and then compile and load the interface by loading the file load-kqml. lisp, for example, issue the
following command:

(load 11/kqml/interface/load-kqml.lisp")

The first time around this will compile all the Lisp files before they are loaded, during future loads only
the compiled files will get loaded.

1 Unix is a trademark of AT&T Bell Laboratories

23

A.2 File load-kqml. lisp

;;; -•- Mode: Lisp; Syntax: Common-Lisp; Package: USER; Base: 10 -•

(in-package :user)

(unless (find-package "SNEPS")
(setq •sneps21-verbose• t)
(load "-snviz/bin/sneps21"))

(defvar •kqal-directory• 11-hans/Kqal/Code")

(defvar •kqal-translations•
'(("•• ;• .•. •" , (foraat nil "-a/••/" •kqal-directory•))

("•.•.•" ,(foraat nil "-a/" •kqal-directory•))
))

(setf (lp:logical-pathnaae-translations "kqml")
•kqml-translations•)

(make-siaple-systea
"KQML"
'(;; Need this until vith-snepsul.lisp is included in the SNePS release.

(:compile-load "/u6/rstaff/snerg/src/Sneps21/All-Lisps/Work/vith-snepsul")
(:load "kqml:packages")
(: coapile-load "kqml: foreign-support")
(:compile-load "kqml:tcp")
(:compile-load "kqml:error-handling")
(:coapile-load "kqal:snepslin")
(:coapile-load "kqal:package-access")
(:compile-load "kqal:discourse")
(:compile-load "kqal:kqml-server")
(:compile-load "kqal:inference-control")
(:coapile-load "kqal:kqml-perforaatives")
(:compile-load "kqal:reaote-sneps")
)

:mode :COMPILE
:verbose •load-verbose•)

24

A.3 File packages. lisp

;;; RCS: $Header: /u6/grads/hana/Kqal/Code/packages.lisp,v 1.1 92/05/15 15:27:54 hans Exp Locker: hans $

(in-package "USER")

, , Various package definitions. All these definitions "play it safe" by
; ; using only strings in the definitions, hence no spurious symbols in
;; the user package vill be created during the load of this file.

,, fro• ff.lisp:
(defpackage "FF"

(:use "LISP" "LUCID-COMMON-LISP"),, No package COMMON-LISP, sigh
(:export #:aalloc-foreign-string

#:errno
#:reset-errno
#:sys_errlist
))

, , fro• tcp. lisp:
(defpackage "TCP"

(:use "LISP" "LUCID-COMMON-LISP" "FF")
(:export #:coapleted-p #:result #:body #:fro•

#:deliver-to
#:receive-fro•
#:connect-to-service
#:start-server
))

(defpackage "KQML"
(:use "LISP" "LUCID-COMMON-LISP")
(:shadov #:assert)
(:export #:implicit-var #:iaplicit-base #:continue-inference

#:add-suspendingly #:open-sneps-discourse
#:close-sneps-discourse
)

;; Iaport KQKL things needed by SNePSUL:
(import '{kqml:iaplicit-var kqml:iaplicit-base kqal:continue-inference

kqml:add-suspendingly kqal:open-sneps-discourse
kqml:close-sneps-discourse
) 'snepsul)

25

A.4 File error-handling. lisp

; ; ;
;;; RCS: $Header: /u6/grads/hans/Kqal/Code/error-handling.lisp,v 1.1 92/05/15 15:29:29 bans Exp Locker: bans$
; ; ;

(in-package "KQKL")

; ; Error Handling stuff:

(defvar •debug• t
"If t go into the debugger when systea errors occur")

(defaacro when-debug (tbody body)
'(when (and (boundp '•debug•) •debug•)

,Clbody))

;; Need this because in case of an error I always want to return to
;; the outermost KQML aessage aethod in which the error occured.
(defun invoke-toplevel-restart (restart-naae trest args)

"Invokes the outermost (or toplevel) restart with RESTART-NAME"
(let ((restart (find-if #'(laabda (restart)

(equal (restart-naae restart) restart-name))
(reverse (compute-restarts)))))

(apply #'invoke-restart (cons restart args))))

(defaacro with-kqal-errors (tbody body)
"Macro to be used in KQML aessage aethods to handle KQML-SYSTEM-ERRORS that

are due to bugs in this software, KQML-ERRORS that handle KQML aessages of
erroneous content, SIEPS-ERRORS due to erroneous co11111ands supplied to SNePS,
and SIEPS-SYTEK-ERRORS due to bugs in the SHePS system. In case of any
such error a success-reply message will be sent that describes the error.
Assumes variables DISCOURSE and ID to be bound properly."

'(sneps:in.environaent
:functions ((sneps:sneps-error #'sneps-error))
:eval
(handler-bind ((error #'(laabda (condition)

(invoke-toplevel-restart
'kqml-systea-error
condition))))

(restart-case (progn ,Obody)
(kqml-systea-error (condition)

·, (when-debug (invoke-debugger condition))
(send-success-reply
discourse :value 'failure :request-id id
:explanation
(format nil "KQML systea error: "a'' condition)))

(kqml-error (explanation)
(send-success-reply
discourse :value 'failure :request-id id
:explanation
(format nil "KQML error: - a" explanation)))

(sneps-systea-error (condition)
(when-debug (invoke-debugger condition))
(send-success-reply
discourse :value 'failure :reques~~id id

26

:explanation
(foI'llat nil "SNePS system error: -a" condition)))

(sneps-error (explanation)
(send-success-reply
discourse :value 'failure :request-id id
:explanation
(format nil "SNePS error: -a" explanation)))))))

(defun kqal-error (explanation)
"Signal a KQML error described by EXPLANATIOI (a string)"
(invoke-toplevel-restart 'kqal-error explanation))

;; Redefine this SNePS function for proper SNePS error handling:
(defun sneps-error (asg aodule fn)

"Signal a SNePS error"
(invoke-toplevel-restart

'sneps-error
(foI'llat nil ,,-,-i

msg aodule
Occurred inside -1 -- in function -1-%11

fn)))

27

A.5 File snepslin. lisp
;;; -•- Mode: Lisp; Syntax: Co11111on-Lisp; Package: SHEPS; Base: 10 -•-

(in-package "KQKL")

(res-info "$Header: /u6/grads/hans/Kqml./Code/snepslin.lisp,v 1.3 92/05/15 15: 15:58 hans Exp Locker: hans $")

,, SHePSLin is a linear representation for SHePS nodes.
;; Because SNePS nodes are defined as cable sets, SlePSLin is very similar to
;; cable sets. A SlePSLin sentence can be used to linearely specify a SlePS
; ; node/pattern that should be asserted, queried etc.

, , Data Type:
;; <snepslin sentence>::= (<snepslin cable> .•..)
;; <snepslin cable>::= (<dovnrel> <snepslin node> ...• <snepslin node>)
;; <dovnrel> :: A SlePS downward relation

; ;
; ;

<snepslin node>::= <snepslin sentence> I <base node> I <var node>
<base node>::• <implicit base node> I <new base node>
<implicit base node> ::s <symbol>
<new base node>::= +<symbol>
<var node>::• <implicit var node> I <new var node>
<implicit var node>::= ?<symbol>
<new var node>::= +?<symbol>
<symbol>::= any Co11111on-Lisp symbol

; ;

; ;
I'

,, "Implicit" nodes refer to a previously existing node with the same
,, name, otherwise they implicitly create a new node with that name
;; (i.e., nodes are implicitly defined by mentioning them (just like
;; FORTRAN ••••))
; ;
,, "lew" nodes will create a new node of that type that can be
; ; referred to by name. The nev node mechanism makes sure that the
,, referenced nodes are new and not accidentally identical with any
,, preexisting nodes of that type.

,, A naming map will provide proper translation between SlePSLin atoms
, , and SlePS atoms (i.e., variable and base nodes), e.g., +?person
,, will create a new variable node - say v10 - that can be referred to
;; as ?person. +arbindv will create a new base node - say b32 - that
;; can be referred to as arbindv.

"
(defun snepslin-to-snepsul (snepslin-sentence discourse)

"Translates a SIEPSLII-SENTEICE (a list) into a SlePSUL description (a
list) of the node specified by the SlePSLin sentence. The SlePSUL
description can then be used to assert/deduce etc. that node by simply
putting the actual SlePSUL command name as the first element of the
list and executing the resulting SlePSUL command. DISCOURSE is used to
find the proper naming maps for the translation of SlePSLin atoms."

(let (relations)
(values
(mapcan
#'(lambda (snepslin-cable)

(let ((relation (translate-snepslin-relation-to-sneps

28

(first snepslin-cable)
discourse))

(nodeset (rest snepslin-cable)))
(pushnew relation relations)
(list relation

(aapcar
t'(lambda (snepslin-node)

(cond ((consp snepslin-node)
(aultiple-value-bind (snepsul-expression

new-relations)
(snepslin-to-snepsul
snepslin-node discourse)

(setq relations (union relations
new-relations))

(cons 'sneps:build snepsul-expression)))
(t (translate-snepslin-atoa-to-sneps

snepslin-node discourse))))
nodeset))))

snepslin-sentence)
relations)))

(defun translate-snepslin-atoa-to-sneps (snepslin-atom discourse)
"Translates a SHEPSLIN-ATOM into a SlfePS atoa depending on the naming

maps of DISCOURSE. This will create new isolated SlfePS nodes!!"
(declare (ignore discourse))
(let ((name (syabol-name snepslin-atom)))

(case (elt name 0)
;; "Hew" nodes not handled yet
;;(t\+ (case (elt name 1)
,, (#\? (nev-var (subseq name 2) discourse))
,, (t (nev-base (subseq name 1) discourse))))
(#\? (implicit-var (subseq name 1) discourse))
(t (implicit-base name discourse)))))

(defun translate-snepslin-relation-to-sneps (snepslin-relation discourse)
"Translates a SHEPSLIH-RELATIOH into a SlfePS relation (dummy so far)"
(declare (ignore discourse))
snepslin-relation)

;; A simple MAPPIHG data type that deals with one-to-one mappings:
(defstruct aapping

(forward (aake-hash-table :test #'equal))
(invers-e (aake-hash-table :test t'equal)))

(defun initialize-aapping (mapping)
(clrhash (mapping-forward mapping))
(clrhash (mapping-inverse mapping)))

(defun lookup (key mapping)
(gethash key (mapping-forward mapping) :undefined))

(defun lookup-inverse (value mapping)
(gethash value (mapping-inverse mapping) :undefined))

(defmacro undefined-p (key mapping)
'(eq (gethash ,key (mapping-forward ,mapping) :undefined)

29

:undefined))

(defaacro undefined-inverse-p (key aapping)
'(eq (gethash ,key (mapping-inverse ,mapping) :undefined)

:undefined))

(defun define-aapping (key value aapping)
(setf (gethash key (mapping-forward aapping)) value)
(setf (gethash value (mapping-inverse mapping)) key))

;; Variable aappings: string-> varnode
(defun implicit-var (name discourse)

"Returns the actual SNePS variable node referred to by NAME (a string)
according to the naming aap of DISCOURSE. If the value of NAME is undefined
a nev variable node vill be created to be the value of NAME froa then on."

(let ((variable-aapping (slot-value discourse 'variable-mapping)))
(cond ((or (undefined-p name variable-mapping)

;; A resetnet or erase aight have eliainated a varnode
;; still stored in a slot of the aapping:
(not (sneps:isaemb.ns

(lookup name variable-mapping)
(sneps:value.sv 'sneps:varnodes))))

(let ((nevvar (sneps:choose.ns (sneps:$ 'nevvar))))
(define-mapping name nevvar variable-mapping)
nevvar))

(t (lookup name variable-mapping)))))

(defun implicit-base (name discourse)
"Returns the actual SNePS base node referred to by NAME (a dummy)."
(declare (ignore discourse))
name)

;; Translate a SNePS node into its SNePSLin specification:

(defun sneps-to-snepslin (sneps-node discourse)
"Takes an actual SNEPS-NODE and translates it into a SNePSLin

specification (a list) according to the naming maps of DISCOURSE. This
function replaces every molecular node in the downward fcableset of
SNEPS-NODE by its SNePSLin representation, hence it cannot deal vith
circular networks! ! 11

(let ((cable-set (sneps::dovn.cs
(sneps::fcs-to-cs

~ (sneps:node-fcableset sneps-node))))
snepslin-sentence)

(cond ((sneps::isnev.cs cable-set)
(translate-sneps-atom-to-snepslin sneps-node discourse))

(t (sneps::do.cs (cable cable-set)
(push (cons (translate-sneps-relation-to-snepslin

(sneps:relation.c cable)
discourse)

(let (snepslin-node-set)
(sneps:do.ns (node (sneps:nodeset.c cable))

(push (sneps-to-snepslin node discourse)
snepslin-node-set))

(reverse snepslin-node-set)))
snepslin-sentence))

30

(reverse snepslin-sentence)))))

(deflUl translate-sneps-atoa-to-snepslin (atoaic-sneps-node discourse)
"Translates an ATOIHC-SHEPS-HODE into a SHePSLin atoa according to

the naaing aapa of DISCOURSE."
(let ((variable-aapping (slot-value discourse 'variable-aapping)))

(vhen (and (sneps:isvar.n atoaic-sneps-node)
(lUldefined-inverse-p atoaic-sneps-node variable-mapping))

(define-upping
(syabol-naae (gensya "V")) atomic-sneps-node variable-aapping))

(intern (cond ((sneps:isvar.n atoaic-sneps-node)
(foraat nil "?-a"

(lookup-inverse
atoaic-sneps-node
(slot-value discourse 'variable-aapping))))

(t (symbol-naae (sneps:node-na atoaic-sneps-node))))
'kqal)))

(deflUl translate-sneps-relation-to-snepslin (relation discourse)
"Translates a SHePS RELATION into a SHePSLin relation."
(declare (ignore discourse))
(intern (syabol-naae relation) 'kqml))

31

A.6 File package-access. lisp

;;; Package access functions:

;;; RCS: $Header: /u6/grads/hans/Kqml/Code/package-access.lisp,v 1.1 92/05/15 15:30:00 hans Exp Locker: hans $
; ; ;

(in-package "KQML")

(defmacro nev-plist-vith-header (header)
'(list ,header))

(defmacro is-plist-vith-header (thing header)
'(and

(consp ,thing)
(eq (car ,thing) ,header)
(oddp (length ,thing))))

(defmacro nev-package ()
'(nev-plist-vith-header 'package))

(defmacro is-package (thing)
'(is-plist-vith-header ,thing 'package))

(defmacro get-package-slot (package trest slots)
(case (length slots)
(0 nil)
(1 '(getf (cdr ,package) ,(first slots)))
(t '(get-package-slot

(getf (cdr ,package) ,(first slots))
,e(rest slots)))))

(defmacro set-package-slot (package value trest slots)
(case (length slots)
(0 nil)
(1 '(setf (getf (cdr ,package) ,(first slots)) ,value))
(t '(set-package-slot

(getf (cdr ,package) ,(first slots))
,value
,e(rest slots)))))

(defmacro' nev-message ()
'(nev-plist-vith-header 'msg))

(defmacro is-message (thing)
'(is-plist-vith-header ,thing 'msg))

(defmacro nev-declaration ()
'(nev-plist-vith-header 'dcl))

(defmacro is-declaration (thing)
'(is-plist-vith-header ,thing 'dcl))

(defmacro get-content-slot (content irest slots)
'(get-package-slot ,content ,eslots))

32

(defmacro set-content-slot (content value trest slots)
'(set-package-slot ,content ,value ,Gslots))

(defaacro content-body-as-list (content)
'(cdr ,content))

33

A.7 File discourse. lisp

''' ;;; RCS: $Header: /u6/grads/hans/Kqml/Code/discourse.lisp,v 1.1 92/05/15 15:19:01 bans Exp Locker: bans$

(in-package "KQML")

;; General Discourse:

(defclass discourse()
((request-content-language

:docuaentation
"The content language used in requests"
:initfora "interlingua"
)

(reply-content-language
:documentation
"The content language used in replies. If this slot is unbound it
defaults to the value of request-content-language."
)

(local-content-language
:docuaentation
"The content language used in the local application"
)

(local-address
:documentation
"Address of the local application engaged in this discourse"
)

(remote-address
:documentation
"Address of the remote application engaged in this discourse"
)

(stream
:documentation
"The bidirectional streaJR via which requester and provider communicate"
)

(control
:docuaentation
"T if the local application is in control of the discourse, HIL otherwise.
Issuing a request to a provider sets this to HIL. Once a success reply
for"\hat request has come in, the control will be reset to T."

)
(history

:documentation
"The history of packages exchanged by the requester and the provider
in this particular discourse (a list with the most recent package as
its first element)"

: ini tform nil
)

)
(:documentation
"Instances of class DISCOURSE contain all the necessary state information

to execute one-to-one discourse between a particular requester and the local
provider. Subclasses can provide specific methods to deal with language

34

specific translations of requests into colRlllands understood by the local
application.")

)

(defaethod slot-unbound (class
(instance discourse)
(slot (eql 'reply-content-language))
)

"Provides default access to REQUEST-CONTENT-LANGUAGE if
REPLY-CONTENT-LANGUAGE is unbound."

(declare (ignore class))
(slot-value instance 'request-content-language))

;; SNePS Discourse:

(defclass sneps-discourse (discourse)
((request-content-language :initform "snepslin")
(local-content-language :initfora "sneps")
(variable-aapping
:initfora (aake-aapping)
:documentation
"Mapping between request content language variables and SNePS

variable nodes"
)

(discourse-context
:initform (intern (symbol-name (genteap "KQML-DISCOURSE-CONTEXT"))

'snepsul)
:documentation
"The name of the SNePS context used for the current SNePS discourse"
)

)

(:documentation
"Instances of class SNEPS-DISCOURSE contain all the necessary state

information for a discourse with a SNePS system.")
)

,, Definition of performatives:

;; For every possible KQML message expression there exists a ''message
,, method'' or performative with (almost) identical argument list that
,, handlet a message of that :TYPE.

(defvar •perforaatives• nil
"List of KQML performatives")

(defun is-performative (name)
(and (meaber name •performatives•)

(fboundp name)))

(defmacro defperformative (name trest definition)
'(progn

(pushnew ',name •performatives•)
(defmethod ,name ,Odefinition)))

35

A.8 File kqml-server.lisp

RCS: $Header: /u6/grads/hans/Kqml/Code/kqal-server.lisp,v 1.2 92/05/16 16:56:09 hans Exp Locker: hans $

(in-package "KQML")

,, General TCP co .. unication stuff:

;; Tokens transaitted accross a TCP/IP stre8JI are divided into 3 classes:

; ; 1) symbols:

, , 2) strings:
, , 3) packages :

Symbols are used to co .. unicate siaple co .. ands or states,
or to identify services
Strings are used to transait error aessages
Packages (i.e., lists for which is-package is T) are used
to transmit KQML messages

; ;

,, These tokens are read with the READ function and classified by their
,, datatype. Everything else that does not belong to any of the three
,, classes is considered an illegal token.

(defun is-eof (input)
(eq input :eof))

(defun is-bye (input)
(eq input :bye))

(defun signal-bye (stream)
(fonaat stre8JI ":bye-%")
(force-output streaa))

(defun is-ok (input)
(eq input :ok))

(defun signal-ok (stream)
(fonaat streaa ":ok-Y.")
(force-output stream))

(defun is-error-aessage (input)
(stringp input))

(defun signal-error (streaa &rest fonaat-args)
(format stream "-s" (apply # 'format (cons nil format-args))))

...

,, Establishing the service:

(defvar •local-address• (machine-instance))
(defvar •kqml-service• tcp::•lisp-server-port•)

(defun kqml-service-id (&optional application-id)
"Creates a service id for a KQML server depending on APPLICATION.

Using an APPLICATION id additionally to the internet address to identify
a server allows us to communicate between processes that run on the same
machine, and/or to have multiple KQML servers running in a single process."

(intern (format nil "KQML-t[--a-]" application-id) 'keyword))

36

,, To establish a connection between a client and a KQML server the following
,, two steps have to be taken:

,, 1) the server has to enable the service, for example, if the server runs
on hadar.cs.buffalo.edu and has App-01 as an application id, then the
service can be enabled with

; ; (enable-kqlll-service "App-01" 'sneps-discourse)

,, 2) Once the service has been enabled, the client can establish a discourse
with the server by doing the following:

; ;
; ; (setq d (open-kqal-discourse "App-otehadar.cs.buffalo.edu"

'sneps-discourse)

,, This discourse instanced can then be used to carry out a conversation
,, with the server.

;; The server side:
; ;
(defun enable-kqlll-service (!optional application-id

(discourse-type 'discourse))
"Starts the tcp::inetd server and enables a DISCOURSE-TYPE KQML

service identified by APPLICATION-ID. The tcp::service property of the
kqal-service-id will be bound to the kqal-server function, which will
be started by the tcp::inetd server if an appropriate service request
is received fro• a client."

(tcp:start-server •kqml-service•)
(let• ((service-id (kqml-service-id application-id))

(service-function-naae (gensya "kqml-server-")))
;; tcp::inetd expects a symbol as the service function
(setf (symbol-function service-function-name)

#'(lambda (stream remote-host)
(kqal-server stream remote-host application-id discourse-type)))

(setf (get service-id 'tcp::service)
service-function-name)))

(defun disable-kqml-service (!optional application-id)
"Disables a particular KQML service by setting the tcp::service property

to NIL."
(let ((service-id (kqml-service-id application-id)))

(setf' (get service-id 'tcp::service) nil)))

;; The client side:

(defun connect-to-kqal-server (address)
"Opens and returns a stream to a KQML server running at the host

specified by ADDRESS. ADDRESS can be either a normal Internet address, or
additionally specify an application as in app011Gaddress. If no application
was specified it tries to connect to a service called :KQML. Otherwise it
tries to connect to a service called :KQML-<application id>."

(if (symbolp address)
(setf address (symbol-name address)))

(check-type address string)

37

(let• ((atsign-index (position l\t address))
(host-address
(cond (atsign-index (subseq address (1+ atsign-index)))

(t address)))
(application-id
(and atsign-index

(subseq address O atsign-index)))
(service-id
(kqal-service-id application-id))

(tcp-streaa (tcp:connect-to-service host-address •kqml-service•))
acknowledgment)

(when tcp-streaa
;; If we successfully opened an Internet streaa, and the reaote
;; server has enabled a IQML service with the saae service-id, ..•
(foraat tcp-streaa "-s-X" service-id)
,, .•• then the function kqal-server will be started in a separate
;; process, and if it starts up ok it will acknowledge the proper
;; establishment of the connection.
(setq acknowledgment (read tcp-streaa nil :eof)))

(cond ((is-ok acknowledgment) tcp-streaa)
((is-error-aessage acknowleclgllent)
(warn "Could not connect to -a: "a"

host-address acknowledgment)
nil)

(t (warn "Could not connect to -a" host-address)
nil))

))

(defun open-kqal-discourse (address toptional (discourse-type 'discourse))
"Opens a connection to a KQML server at ADDRESS, and if successful

returns a discourse instance of DISCOURSE-TYPE with properly
initialized streaa and address slots."

(let ((stream (connect-to-kqml-server address))
discourse)

(when streaa
(setq discourse (make-instance discourse-type))
(setf (slot-value discourse 'stream) stream)
(setf (slot-value discourse 'local-address) •local-address•)
(setf (slot-value discourse 'remote-address) address)
discourse)))

(defun close-kqml-discourse (discourse)
"Terain'a.tes a KQML discourse by closing the streaa specified in DISCOURSE."
(let ((stream (slot-value discourse 'stream)))

(signal-bye stream)
(close stream)))

;; Sending and receiving packages:

(defun aake-package-id (address)
"Generates a unique package ID (a string) composed from the ADDRESS of

the sender and a time stamp."
(foniat nil "-a -d" address (get-internal-real-time)))

(defun dummy-id ()

38

"Generates a nev dllllllly request identifier"
(syrabol-naae (gentemp "RQ-")))

(defun send-kqml-package (package discourse)
"Deliver a KQML PACKAGE to a streaa specified in DISCOURSE."
;; First store the package in the history of the sender (so ve do
;; remember that ve sent it)
(setf (slot-value discourse 'history)

(cons package (slot-value discourse 'history)))
;; Nov, vrite it into the discourse streaa
(format (slot-value discourse 'streaa) 11-s-111 package))

(defun find-package-in-history (id discourse)
"Tries to find a package vith ID in the history of DISCOURSE, and returns

it if it vas found."
(find-if S'(laabda (pkg)

(equal (get-package-slot pkg :id) id))
(slot-value discourse 'history)))

(defun send-request (content discourse)
"Send a request package vith a CONTENT expression to a provider

specified in DISCOURSE."
(let• ((provider-address (slot-value discourse 'remote-address))

(local-address (slot-value discourse 'local-address))
(request-package (nev-package)))

(set-package-slot request-package content :content)
(set-package-slot request-package 'sync :co ..)
(set-package-slot request-package (make-package-id local-address) :id)
(set-package-slot request-package provider-address :to)
(set-package-slot request-package local-address :from)
(send-kqml-package request-package discourse)))

(defun send-reply (content discourse)
"Send a reply package vith a CONTENT expression to a requester specified

by a package in the history of DISCOURSE vhose :id slot is equal to the
:request-id of CONTENT. If no such request exists nothing vill be sent."

(let• ((request-id (get-content-slot content :request-id))
(request-package
(find-package-in-history request-id discourse))

(requester-address (get-package-slot request-package :from))
(local-address (slot-value discourse 'local-address))
(reply-package (nev-package)))

,, Do'n't send unsolicited replies:
(vhen request-package

(set-package-slot reply-package content :content)
(set-package-slot reply-package 'sync :co ..)
(set-package-slot reply-package (make-package-id local-address) :id)
(set-package-slot reply-package requester-address :to)
(set-package-slot reply-package local-address :from)
(send-kqal-package reply-package discourse))))

(defun interpret-package (package discourse)
"Assumes that PACKAGE is a proper package, checks vhether it contains

a defined performative in its content slot, and if so construc~s.a
proper argument list from the content of the package and applies the

39

appropriate perfonative (or aessage) aethod to them."
(let• ((content (get-package-slot package :content))

(perfor11ative (get-content-slot content :type))
arguaents)

(cond ((and (is-aessage content)
(is-perforaative (get-content-slot content :type)))

(setf (slot-value discourse 'history)
(cons package (slot-value discourse 'history)))

(setq arguaents
(append (list

discourse :id (get-package-slot package :id))
(content-body-as-list content)))

(when-debug
(foraat t 11-a: -s-21" perforaative arguaents))

(apply perforaative arguments)
)

(t (signal-error (slot-value discourse 'stream)
"Illegal package: "a" package)

))))

(defun interpret-tcp-streaa-input (input discourse)
"Function used by requester and provider to interpret a single INPUT

token read froa the streaa specified in DISCOURSI:'. :;,(:<Hes eof, closing,
error aessages and interpretation of KQML packages '

(let ((reaote-host (or (slot-value discourse 'remote-address)
"foreign host"))

(streaa (slot-value discourse 'streaa)))
(when-debug
(foraat t 11-tTCP stream input:")
(write input :pretty t :escape t)
(format t n-21"))

(cond ((is-eof input)
(when-debug (for11at t "-lEOF reached on KQML stream."))
(close streaa))

((is-bye input)
(when-debug
(foraat t "-lBye, KQML stream closed by "a" reaote-host))

(close stream))
((is-ok input))
((is-error-aessage input)
(warn "[-a] reported by -a" input reaote-host))

((is-package input)
' (interpret-package input discourse))

(t (signal-error
streaa "Illegal input: -a" input)

))))

; ; The KQML server:

(defun kqal-server (stream reaote-host application-id discourse-type)
"Server function invoked in a separate process by the tcp: :inetd

function. It creates and initializes a discourse instance of
DISCOURSE-TYPE and then reads and interprets incoaing KQML packages
froa STREAM sent by REMOTE-HOST until the connection gets closed.
APPLICATION-ID in conjunction with •local-address• generate the from

40

address for packages sent back to the requester."
;; This is the outermost error handler on the server side that handles
;; everything that is not already handled by specific KQML error handlers
(handler-case

(let ((discourse (aake-instance discourse-type))
(•package• (find-package 'kqml))
(process •current-process•)
input)

(setf (slot-value discourse 'streaa) streaa)
(setf (slot-value discourse 'reaote-address) reaote-host)
(setf (slot-value discourse 'local-address)

(cond (application-id
(format nil 11-ae-a" application-id •local-address•))

(t •local-address•)))
;; Do some process renaaing
(when (eq (process-initial-function process) 'tcp::inetd)

(setf (process-naae process) "KQML server"))
;; Acknowledge proper connection
(signal-ok streaa)
(loop

;; Reading should problaby be error-handled individually to catch
;; cases such as undefined I reader macros etc.
(setq input (read stream() :eof))
(setf (slot-value discourse 'control) t)
(interpret-tcp-streaa-input input discourse)
(when (or (is-eof input)

(is-bye input))
(return))

))
;; Cleanup if we crashed, so requester won't wait forever
(error (condition)

(ignore-errors
;; Try to inform requester about what happened
(signal-error
streaa "KQML server died: -a" condition))

(close stream)
(ignore-errors
(warn "KQML server died: "a" condition)))))

(defun send-request-and-interpret-replies (content discourse)
"The client side of the co-unication. It sends a package with

a CONTENT expression as a request to the KQML server specified by
DISCOURSE-, and then reads and interprets replies until a success-reply
was read or soae error has occured. The evaluation of a success-reply
will set the discourse control to T which will tenainate this function."

(send-request content discourse)
(let• ((•package• (find-package 'kqml))

(stream (slot-value discourse 'stream))
input)

(setf (slot-value discourse 'control) nil)
(loop
(setq input (read stream() :eof))
(interpret-tcp-stream-input input discourse)
(when (or (slot-value discourse 'control)

(not (is-package input)))
(return)))))

41

A.9 File inference-control. lisp

RCS: $Header: /u6/grads/hans/Kqal/Code/inference-control.lisp,v 1.1 92/05/15 15:29:09 hans Exp Locker: hans

(in-package "KQML")

,, The functions below impleaent control for suspending inference.
;; Suspending inference is different froa standard inference in that
;; the inference process is not carried out until no aore inforaation
,, can be generated, but rather suspended when some criterion is met
;; (e.g., a certain t of answers got generated). At the point of
;; suspension enough state inforaation of the inference engine is saved
,, so that the suspended inference can be continued right froa where
;; it was stopped, just as if it had not been interrupted at all.

,, Deal with general suspending inference:

(defun suspend-inference (multi:•NAME•)
"Special process function that can be scheduled at the front of the

high priority queue. It saves all the necessary multi status such that
inference can be properly continued after it was suspended by this
function."

(declare (ignore aulti:•NAME•))
(setf (get 'lastinfer 'event-queues)

(list aulti::•high-priority-queue•
multi::•low-priority-queue•))

(setf (get 'lastinfer 'user-process) snip::•USER-PROCESS•)
(aulti:clear-all-queues))

(setf (get 'suspend-inference 'multi::lregs%) '(aulti:•NAME•))

(defvar •suspend-process• (multi:new 'suspend-inference)
"Process used to suspend forward inference")

;; Deal with suspending BACKWARD inference:

;; Suspending backward inference can naturally be handled with the
,, I-of-answers arguaent supplied to deduce. Once that aany answers
;; have been generated, the USER process calls the funcion
,, snip::suspend-inference and returns the newly derived answers •
,, What we have to do is to modify this functions so that it saves the
;; multi state in order to allow us proper inference continuation.

(defun snip::suspend-inference ()
(suspend-inference 'ignore))

;; Deal with suspending FORWARD inference:

,, Interruption of forward inference is more tricky, because there we
,, have no concept of an ansver to a query, rather newly added nodes
,, depending on the grinding of the inference engine. What ve vant is
,, to suspend inference every time a new node is added to the network
;; during the process of forvard inference. How this is done .i~

42

,, explained belov.
;; A nev co .. and ADD-SUSPEHDIHGLY starts suspending forward inference.
;; This is an alaost identical copy of ADD, with the only difference
,, that it binds the variables •suspending-forvard-inference-p• and
;; •previously-added-nodes• which tell other functions that they deal
,, vith suspending forward inference, and what previous results have
; ; been inferred so far.

(defvar •suspending-forvard-inference-p• nil)
(defvar •previously-added-nodes• (sneps:new.ns))

(defaacro add-suspendingly (trest snd)
'(let• ((sneps:crntct (sneps:processcontextdescr ',snd))

(snip:crntctnaae sneps:crntct)
(•suspending-forvard-inference-p• t)
(•previously-added-nodes• (sneps:new.ns)))

(declare (special sneps:crntct snip:crntctname))
(values (snip::add• (sneps::nseval (cons 'sneps:assert ',snd)))

snip:crntctname)))

(setf (get 'add-suspendingly 'sneps::=co .. and) t)
(setf (get 'add-suspendingly 'sneps::=topco11D1and) t)

;; The trick is to find the right spot where forward inference should be
,, suspended to report soae new result. After careful examination it turns
,, out that there are only three places where soaething gets added to the
,, variable snip:•ADDED-HODES•:

In snip:process-one-report.non-rule,
snip:process-one-instance-report.rule and ; ;

;; snip:try-to-use-introduction-conclusion
,, All of these functions call broadcast-one-report i111mediately after they
,, updated the variable •ADDED-HODES•. Hence, changing broadcast-one-report
;; to check whether inference suspension is appropriate seems to be a good
; ; way to go.

,, Here is a handcoded ADVISE for broadcast-one-report:
(defvar •broadcast-one-report• (symbol-function 'snip::broadcast-one-report)

"Original definition of snip: :broadcast-one-report")

; ; Nov redefine it:
(defun snip::broadcast-one-report (trest args)

(declare (special snip::•added-nodes•))
(let (Ctesult (apply •broadcast-one-report• args)))

(when (and •suspending-forvard-inference-p•
;; Check whether we have some newly added nodes (the initially
;; added node will also always suspend inference):
(not (sneps:isnew.ns

(sneps:compl.ns snip::•added-nodes•
•previously-added-nodes•))))

,, Scheduling a suspension process at the front of the high priority
,, queue vill make sure that the immediately next thing after the
,, termination of the current process vill be inference suspension.
,, This has to be done in this vay, because there will be more processes
,, scheduled by the current process after this point, hence we cannot
,, save the state right here, rather we have to save the_ state right
,, after the current process terminated.

43

(dequeue::insert-front •suspend-process• aulti::•high-priority-queue•)
)

result))

;; Deal with inference continuation:
; ;
;; continue-suspended-inference relies on the assuaption that whenever
,, inference is suspended a non-eapty set of answers will be returned,
;; unless all inference possiblities have been exhausted.

(defun continue-suspended-inference (toptional (aode 'backward))
"Continues processing o:f previously saved aulti queues. This function

will always return a result as long as aore answers could possibly get
generated by another inference continuation. Once no new result could
get generated and the queues are eapty NIL will be returned. This can
be used to deteraine whether all inference possibilities have been
exhausted. Depending on MODE the proper variables for collecting new
results are bound."

(declare (special snip::•added-nodes•))
(let ((•suspending-:forvard-in:ference-p• (eq aode ':forward))

(•previously-added-nodes• snip::•added-nodes•)
(previous-answers
(case aode

(forward snip-: :•added-1\odes•)
(backward snip::•deduction-results•)))

(user-process (get 'lastin:fer 'user-process))
(event-queues (get 'lastinfer 'event-queues))
)

(apply #'aulti::aultip event-queues)
(values (sneps::coapl.ns

(case aode
(forward snip::•added-nodes•)
(backward snip::•deduction-results•))

previous-answers)
(aulti:regfetch user-process 'snip::•context-naae•))

))

(defvar •current-inference-mode• 'backward)

(de:fun continue-inference()
"SNePSUL co-and that continues suspended inferenence of any kind.

Instead of having two different continuation co .. ands for the two
inference'directions, this coJD111and figures out what kind of inference
preceded it and continues accordingly."

(let ((mode (case (first (sneps:value.sv 'sneps::lastco111111and))
((snip:add add-suspendingly)
(setq •current-inference-mode• 'forward))

(snip:deduce
(setq •current-inference-mode• 'backward))

(t •current-inference-mode•))))
(continue-suspended-inference aode)))

(set£ (get 'continue-inference 'sneps::=command) t)
(set:f (get 'continue-inference 'sneps::=topcommand) t)

44

A.10 File kqml-performatives. lisp

; ; ;
RCS: $Header: /u6/grads/hans/Kqal/Code/kqml-performatives.lisp,v 1.7 92/05/16 18:51:31 hans Exp Locker: hans

; ; ;

(in-package "KQML")

(defaethod valid-request-language ((discourse discourse) language)
"Returns nonJHL if LANGUAGE is a valid content language for requests,"
(stringp language))

(defaethod valid-reply-language ((discourse discourse) language)
"Returns nonNIL if LANGUAGE is a valid content language for replies."
(stringp language))

;; General (application independent) aessage methods:

(defperforaative declare-content-languages ((discourse discourse)
l:key
(request-content-language nil)
(reply-content-language nil)
(id (d1111111y-id)))

"Handles XQML aessages of that :TYPE"
(with-kqml-errors

(when request-content-language
(cond ((valid-request-language discourse request-content-language)

(setf (slot-value discourse 'request-content-language)
request-content-language))

(t (kqal-error
(format nil "Don't know how to translate -a into -a"

request-content-language
(slot-value discourse 'local-content-language))))))

(when reply-content-language
(cond ((valid-reply-language discourse reply-content-language)

(setf (slot-value discourse 'reply-content-language)
reply-content-language))

(t (kqml-error
(format nil "Don't know how to translate -a into -a"

(slot-value discourse 'local-content-language)
' reply-content-language)))))

(send-success-reply discourse :value 'success :request-id id)))

,, Deal with local execution of KQML performatives that should
,, not send a reply of any sort back to the requester:

(defvar •execute-locally• nil
"Flag that gets bound to T if a certain perforaative should not generate

replies fro• a local usage.")

(defmacro execute-locally (tbody body)
'(let ((•execute-locally• t))

,Clbody))

45

(defaacro unless-only-locally (lbody body)
'(unless •execute-locally•

,ebody))

(defaethod send-success-reply ((discourse discourse)
lkey
(value nil)
(request-id nil)
(explanation nil))

"Sends KQML aessage of that :TYPE"
(unless-only-locally
(vhen-debug
(case value

(failure
(foraat t 11·taequest ·a could not be handled successfully, because:·

·x ·a11 request-id explanation)
:failure)

(success
(vhen explanation

(foraat t 11·tRequest • a handled successfully.·
·x ·a11 request-id explanation))

:success)))
(let ((reply (nev-aessage)))

(set-content-slot reply explanation :explanation)
(set-content-slot reply request-id :request-id)
(set-content-slot reply value :value)
(set-content-slot reply 'success-reply :type)
(send-reply reply discourse))))

(defperformative success-reply ((discourse discourse)
lkey
(value nil)
(request-id nil)
(explanation nil)
(id (dummy-id)))

"Handles KQML aessages of that :TYPE"
(declare (ignore id))
(case value

(failure
(format t 11·taequest ·a could not be handled successfully, because:·

·x ·a11 request-id explanation)
:failure)

(success
(vhen explanation

(foraat t 11·taequest ·a handled successfully.·
·x ·a11 request-id explanation))

:success))
(vhen (find-package-in-history request-id discourse)

(setf (slot-value discourse 'control) T)))

(defmethod send-content-reply ((discourse discourse)
lkey
(request-id nil)
(reply-number 1)

46

(reply-content-language nil)
(content nil))

"Sends KQML aessages of that :TYPE"
(unless-only-locally
(when-debug
(foraat t 11-1aeply #-d to request -a:-%" reply-number request-id))

(let ((translated-sentence-set
(aapcar #'(laabda (sentence)

(translate-reply-content
discourse
:content sentence
:content-language reply-content-language))

content)))
(when translated-sentence-set

(vhen-debug
(foraat t " { -a-e% -a-} Y2%"

(car translated-sentence-set)
(cdr translated-sentence-set)))

(let ((reply (new-message)))
(set-content-slot
reply (foraat nil "-s" translated-sentence-set) :content)

(set-content-slot reply reply-number :reply-number)
(set-content-slot reply request-id :request-id)
(set-content-slot reply 'content-reply :type)
(send-reply reply discourse)))

)))

(defun listify-string-sentence-list (string-sentence-list)
"Soae messages take a list of content sentences which is stored as a

string. To be able to map over such a list, it has to be converted
into a list of strings (one for each sentence in the list)."

(mapcar #'(laabda (sentence)
(foraat nil 11-s" sentence))

(read-from-string string-sentence-list)))

(defperformative content-reply ((discourse discourse)
t;key
(request-id nil)
(reply-number 1)
(content nil)
(id (dummy-id)))

"Handles KQML messages of that :TYPE"
;; This'should be done more elegantly:
(setq content (listify-string-sentence-list content))
(vhen-debug
(format t 11-1aeply #-d to request -a:-%" reply-number request-id)
(format t " { _a_{_% -a-} Y2%"

(car content)
(cdr content)))

(dolist (sentence content)
(execute-locally
(assert discourse

:request-content-language (slot-value discourse
'reply-content-language)

:content sentence
id (dummy-id)))))

47

;; SHePS specific aessage aethods:

(defaethod valid-request-language ((discourse sneps-discourse) language)
(and (stringp language)

(or (string-equal language "snepsul")
(string-equal language "snepslin"))))

(defaethod valid-reply-language ((discourse sneps-discourse) language)
(and (stringp language)

(or (string-equal language "snepsul")
(string-equal language "snepslin"))))

(defaacro sneps-execute (lbody body)
"Executes SHePS code supplied in BODY. Thie aacro could actually bundle

up the code in a closure and queue it to be executed in a SlePS process.
So far it just binds the error condition to catch internal errors in SlePS."

'(handler-bind ((error #'(lambda (condition)
(invoke-toplevel-restart

'sneps-systea-error
condition))))

(let ((•package• (find-package 'snepsul)))
,Clbody)))

(defun aodify-sneps-context (context-name translated-content aode)
"Modifies the context vith name COIITEXT-HAME according to MODE (one of

:SET, :ADD or :REMOVE). TRAHSLATED-COHTEHT is a list that describes a
pattern vhich can be use as the rest of a FIND collllland to find nodes
that should be added/reaoved to the current discourse context."

(let ((aatched-assertions
(case translated-content

(empty ())
(all #!(•assertions))
,, Find every assertion in the vhole network that matches the
;; supplied pattern. For :remove just look in the discourse ctxt
(t (let ((snip:•infertrace• nil)

all-matches current-matches)
;; To be able to use just one kind of sentence-pattern
;; I use deduce O here instead of findassert. This makes it
;; a bit more difficult to get all aatches, because it only
;; returns one ansver at a time, hence ve have to loop vith
,, continue deduction until ve found all of them:
(setq all-matches

(sneps-execute
#3!((clear-infer)

(deduce O -Cltranslated-content
:context -cease aode

((:set :add) 'all-hyps)
(:remove context-name))))))

(loop
(setq current-aatches

(sneps-execute
#3!((continue-inference))))

(cond ((sneps:isnev.ns current-matches)
(return all-matches))

48

(t (setq all-matches (sneps:union.ns
all-matches
current-matches)))))

)))))
(case aode

(:set (sneps-execute
#3!((set-context -matched-assertions -context-name))))

(:add (sneps-execute
#3!((add-to-context -matched-assertions -context-name))))

(:reaove (sneps-execute
13!((reaove-froa-context

-matched-assertions -context-naae))))
)))

(defaethod translate-request-content ((discourse sneps-discourse)
tkey content content-language)

(let ((request-content-language
(cond ((and content-language

(valid-request-language discourse content-language))
content-language)

(content-language
(kqml-error
(format nil "Don't knov hov to translate -a into -a"

content-language
(slot-value discourse 'local-content-language))))

(t (slot-value discourse 'request-content-language)))))

(cond (;; For SHePSUL input just read it into the SHePSUL package with
,, the SHePS readtable
(string-equal request-content-language "snepsul")
(let• ((•package• (find-package 'snepsul))

(•readtable• sneps::•sneps-readtable•))
(read-from-string content)))

...

;; For SHePSLin read the string into the SHePSUL package and then
;; translate it into a SHePSUL fora. Implicitly define nev relations
((string-equal request-content-language "snepslin")
(let• ((•package• (find-package 'snepsul)))

(multiple-value-bind (snepsul-expression relations)
(snepslin-to-snepsul (read-from-string content) discourse)

;; Implicitly define nev relations referenced in this sentence
(dolist (rel relations)

(unless (sneps:is.r rel) (sneps:nev.r rel)))
snepsul-expression)))

,, For a valid language which ve don't knov return nillllll
(t nil))))

(defmethod translate-reply-content ((discourse sneps-discourse)
&key content content-language)

(let ((reply-content-language
(cond ((and content-language

(valid-reply-language discourse content-language))
content-language)

(content-language
(kq11l-error

49

(foraat nil "Don't knov hov to translate -a into -a"
(slot-value discourse 'local-content-language)
content-language}))

(t (slot-value discourse 'reply-content-language)))))

(cond ((string-equal reply-content-language "snepsul")
(list content (sneps:node-fcableset content)))

((string-equal reply-content-language "snepslin")
(sneps-to-snepslin content discour,e))

,, For a valid language vhich ve doi. t '>'II' return nillllll
(t nil))))

(defperforaative set-discourse-context ((discourse 1o.1•.:,)S ·<iiscourse)
tkey
(request-content-~anguage nil)
(content 'all)
(id (dlllllly-id)))

"Handles KQML aessages of that :TYPE that are directed to SNePS"
(vith-kqml-errors

(modify-sneps-context
(slot-value discourse 'discourse-context)
(case content

((all empty) content)
(t (translate-request-content

discourse
:content content
:content-language request-content-language)))

:SET)
(send-success-reply

discourse
:value 'success
:request-id id)

))

(defperformative add-to-discourse-context ((discourse sneps-discourse)
tkey
(request-content-language nil)
(content 'all)
(id (dlllllly-id)))

"Handles KQKL messages of that :TYPE that are directed to SNePS"
(vith-kqml-errors

(modify-sneps-context
(siot-value discourse 'discourse-context)
(case content

((all empty) content)
(t (translate-request-content

discourse
:content content
:content-language request-content-language)))

:ADD)
(send-success-reply

discourse
:value 'success
:request-id id)

))

50

(defperforaative reaove-from-discourse-context ((discourse sneps-discourse)
i:key
(request-content-language nil)
(content 'eapty)
(id (dummy-id)))

"Handles KQKL aessages of that :TYPE that are directed to SNePS"
(vith-kqal-errors

(aodify-sneps-context
(slot-value discourse 'discourse-context)
(case content

((all eapty) content)
(t (translate-request-content

discourse
:content content
:content-language request-content-language)))

:REMOVE)
(send-success-reply

discourse
:value 'success
:request-id id)

))

,, Nov I aa in trouble: In order to handle messages of that kind I need
,, to define relations (and paths). There are various ways to do this:

- Define the• implictly by scanning the snepsul sentence for
undefined relations (does not vork for paths)

- Define a nev KQKL perforaative that handles definitions
- Use a hack (an "interpret-literally" perforaative) ; ;

(defperforaative assert ((discourse sneps-discourse)
lkey
(request-content-language nil)
(content nil)
(id (dUllllly-id)))

"Handles KQKL messages of that :TYPE that are directed to SNePS"
(vith-kqml-errors

(let(;; Do this outside the sneps-execute because the translation
;; might fail. vhich is a KQKL error and not a SNePS error
(translated-content
(translate-request-content
discourse

·, : content content
:content-language request-content-language)))

(sneps-execute
#!((assert -etranslated-content

:context -(slot-value discourse 'discourse-context))))
(send-success-reply
discourse
:value 'success
:request-id id)

)))

,, Nev KQKL perforaative that takes a sentence and executes it as an
;; application command without any interpretation (hack which handles
, , everything that is not handled by any proper perforaative). :·

51

(defperforaative interpret-literally ((discourse sneps-discourse)
lkey
(content nil)
(id (dWU1y-id)))

"Handles KQML aessages of that :TYPE that are directed to SHePS"
(with-kqal-errors

(let ((translated-content
(translate-request-content
discourse
:content content
:content-language "snepsul"))

(old-default-context #!(•defaultct)})
(sneps-execute
#!((set-default-context ·(slot-value discourse 'discourse-context)}

-translated-content
(set-default-context ·old-default-context)))

(send-success-reply
discourse
:value 'success
: request-id id)

)))

(defperforaative assign-truth-value ((discourse sneps-discourse)
lkey
(request-content-language nil)
(truth-value nil)
(content nil)
(id (dWU1y-id)))

"Handles KQML aessages of that :TYPE that are directed to SHePS"
(declare (ignore request-content-language truth-value content))
(with-kqal-errors

(send-success-reply
discourse
:value 'failure
:request-id id
:explanation
(format nil

"SHePS does not deal with truth values. The assertion status
-~ of nodes can be changed with assert and -

reaove-froa-discourse-context."))))

,, Issues:
; ; - cl'ear-infer?? follow-up questions?

- truth values: Believed, conceived, negation believed?

;; IHFER-AHSWERS (by disobeying all rules of software engineering)
,, cramps forward/backward inference, proper answer reporting, handling
,, of worklevel etc. all in one function, so that the saae workhorse can
,, be used by all 3 KQML query methods to do their thing.

(defaethod infer-answers ((discourse sneps-discourse)
lkey
(request-content-language nil)
(reply-content-language nil)
(worklevel 'minimal)

52

(hov-aany 1)
(report-aode 'continuous)
(truth-values 'any)
(topics nil)
(inference-aode 'backward)
(id (duaay-id)))

"Does the actual work for topical, forward and backward queries. It
tries to infer answers related to the TOPICS (in the order given) by
either forward or backward inference depending on INFERENCE-MODE. If
INFERENCE-MODE is forward, TOPICS are considerd to be seeds fro• which
new inforaation should be derived by forward inference. In the case of
backward inference, TOPICS are considerd to be queries. Each answer
gets derived according to WORK-LEVEL and TRUTH-VALUES. Results are
reported according to HOW-MANY, REPORT-MODE and request ID."

(declare (ignore truth-values))
(let ((reported-answers (sneps:new.ns))

(reply-nuaber 0))
(dolist (content topics)

;; First check all the paraaeters for proper values!!
(let• ((translated-content

(translate-request-content
discourse
:content content
:content-language request-content-language))

(current-answers
(sneps-execute
(let ((snip:•infertrace• nil))

(case inference-mode
(backward
(sneps-execute
#3!(;; Currently, assume that every question is

,, independent from previous ones, hence all
,, node activations should get removed before
, , new inference is done:
(clear-infer)
(deduce -cease worklevel (minimal 0) (maximal 1))

-etranslated-content
:context -(slot-value

discourse 'discourse-context)
))))

(forward
(sneps-execute
#3!((clear-infer)

(add-suspendingly
-etranslated-content
:context -(slot-value

discourse 'discourse-context)
))))))))

(new-answers
(sneps:compl.ns current-answers reported-answers))

)

(loop
(when-debug
(foraat t n-1:cUR: -a NEW: -a REP: -a-2%"

current-answers new-answers reported-answers))

53

;; If we have enough new answers report them
(when (or(>= (sneps:cardinality.ns new-answers) how-many)

(sneps:isnew.ns current-answers))

(when new-answers
(send-content-reply discourse

:request-id id
:reply-nwaber (incf reply-number)
:content new-answers
:content-language reply-content-language)

(setq reported-answers
(sneps:union.ns new-answers reported-answers))

(setq new-answers (sneps:new.ns}))

;; Figure out whether we are done
(cond ((or (sneps:isnew.ns current-answers) ; no (more) answers

,, For ainiaal worklevel we use O in the deduce for
;; which a continuation of the inference doesn't make
,, sense, hence in this case we alway return after the
;; first set of results was reported
(eq worklevel 'minimal))

(return))
(t;; otherwise, check whether we have to suspend inference
(case report-mode

(suspend;; do proper suspending, HOW???
(return))

(continuous nil)))))

;; Try to find more answers
(setq current-answers

(let ((snip:•infertrace• nil))
(sneps-execute
13!((continue-inference)))})

{setq new-answers
(sneps:compl.ns (sneps:union.ns current-answers new-answers)

reported-answers))
)))))

(defperforaative query-sentence-status ((discourse sneps-discourse)
l:key
(request-content-language nil)
(reply-content-language nil)
(worklevel 'ainiaal)
(how-aany 1)
(report-mode 'continuous)
(truth-values 'any)
(content nil)
(id (dUllllly-id)))

"Handles KQML messages of that :TYPE that are directed to SNePS"
(with-kqal-errors

;; First check all the parameters for proper values!!
(infer-answers discourse

...

:request-content-language request-content-language
:reply-content-language reply-content-language
:vorklevel worklevel
:how-many how-many

54

:report-aode report-mode
:truth-values truth-values
:id id
:inference-aode 'backvard
:topics (list content))

(send-success-reply
discourse
:value 'success
:request-id id)

))

, , TOPICAL QUERIES:

,, The trick is to deteraine vhat questions to ask in order to derive
,, inforaation that's related to a topic described by a content sentecne
;; or phrase (currently, I can't handle phrases - atoaic things, that is).

;; The approach taken is to take the topic, translate it into a SHePS
,, node and match it against the netvork to generate a set of matching
,, nodes. Every aatching node has a (maybe empty) substitution
,, associated vith it. We then take the matching node (unless it is a
,, variable node) and all its doainating nodes and apply the substitution
,, to each of thea. The resulting set of nodes vill be added to a set
,, of "related questions" generated by doing the saae thing for all
,, the other matching nodes.

,, The so generated set of related questions vill then be passed one
,, by one to deduce to find out about possible ansvers.

(defun doainating-nodes (node)
"Returns the set of nodes dominating RODE"
(let ((dominating (sneps:nev.ns)))

(sneps:do.fcs (rel ns (sneps::up.fcs node) doainating)
(sneps:do.ns (n ns)

(setq doainating
(sneps:union.ns (sneps:insert.ns n dominating)

(dominating-nodes n)))
))))

,, To do:
Augment snepslin-to-snepsul so that it can handle atoms and sentences.

,, Write soae predicate methods that can check vhether something is a
• • sentence or not .•..
(defperformative query-about-topic ((discourse sneps-discourse)

tkey
(request-content-language nil)
(reply-content-language nil)
(vorklevel 'minimal)
(hov-many 1)
(report-mode 'continuous)
(truth-values 'any)
(content nil)
(id (dummy-id)))

"Handles KQML messages of that :TYPE that are directed to SHePS"
(declare (ignore truth-values))
(vith-kqml-errors

55

;; First check all the parameters for proper values!!
(let• ((translated-content

(translate-request-content
discourse
:content content
:content-language request-content-language))

;; if the topic was a sentence we have to build the

(topic-node
(sneps-execute
;; build returns a singleton set
12!((build -,translated-content))))

(related-questions topic-node)
)

(aatch:do.supaatchingset (supmatching
(aatch:aatch-in-context
(sneps:choose.ns topic-node)
(sneps:value.sv
(slot-value
discourse 'discourse-context))))

(let ((aatching-node (aatch:tnode.supaatching supaatching))
(substitution (aatch:target-sub.supaatching supmatching))
)

(unless (sneps:isvar.n matching-node)
(sneps:do.ns (node (sneps:insert.ns

matching-node
(dominating-nodes aatching-node)))

(setq related-questions
(sneps:insert.ns
(match::applysubst node substitution)
related-questions))

))))
(infer-answers discourse

:request-content-language "snepslin"
:reply-content-language reply-content-language
:worklevel worklevel
:how-aany how-many
:report-mode report-mode
: truth-values truth-values
:id id
:inference-mode 'backward
,, Because infer-answers cannot handle actual
;; SNePS nodes, we translate thea into a snepslin
;; description first (not very efficient, but it works)
:topics (mapcar l'(laabda (related-question)

(format nil "-a"
(sneps-to-snepslin
related-question
discourse)))

related-questions))

(send-success-reply
discourse
:value 'success
:request-id id)

))

56

;; FORWARD Ili'FEREli'CE:

(defperforaative assert-and-infer ((discourse sneps-discourse)
tkey
(request-content-language nil)
(reply-content-language nil)
(worklevel 'ainiaal)
(how-many 1)
(report-mode 'continuous)
(truth-values 'any)
(assertion-mode 'actual)
(content nil)
(id (dlllllly-id)))

"Handles KQKL aessages of that :TYPE that are directed to Sli'ePS"
(with-kqml-errors

(let ((sentence-list (listify-string-sentence-list content)))

,, First, assert all the sentences in the current context:
(dolist (sentence sentence-list)

(execute-locally
(assert discourse

:request-content-language request-content-language
:reply-content-language reply-content-language
:content sentence
:id (dwnmy-id))))

;; How do the inference:
(infer-answers discourse

:request-content-language request-content-language
:reply-content-language reply-content-language
:worklevel worklevel
:how-many how-many
:report-mode report-mode
:truth-values truth-values
:id id
:inference-mode 'forward
:topics sentence-list)

;; If we were only asked hypothetically, remove all sentences and
;; their dependent results from the current context:
(when (eq assertion-mode 'hypothetical)

(dolist (sentence sentence-list)
(execute-locally
(remove-from-discourse-context
discourse
:request-content-language request-content-language
:content sentence
:id (dlllllly-id)))))

(send-success-reply
discourse
:value 'success
:request-id id)

)))

57

A.11 File remote-sneps.lisp

;;; -•- Mode: Lisp; Syntax: Colllllon-Lisp; Package: SHEPS; Base: 10 -•-

(in-package "KQML")

(res-info "$Header: /u6/grads/hans/Kqal/Code/rHote-sneps.lisp,v 1.1 92/05/15 15:16:46 hans Exp Locker: hans $"

;; A set of experiaental SHePS top-level colllllands that deal vith
;; the co .. unication vith a reaote knovledge base via KQML aessages.

;; Discourse variables:
;;
;; The SHePSUL variable default-discourse holds the naae of the
,, default discourse (in a list), its default value is
,, (default-default-discourse)
,, A discourse naae is itself a SHePSUL variable vhose value is
,, an actual discourse object (as a list)

(defaacro open-sneps-discourse (address loptional discourse-naae)
"Opens a connection to ADDRESS and if successful binds the

SHePSUL variable DISCOURSE-HAKE to it. If no naae vas supplied
the value of DEFAULT-DISCOURSE vill be used (which will be initialized
to DEFAULT-DEFAULT-DISCOURSE if it was empty). The supplied discourse
name vill be aade the default discourse. Initializes the remote
context to empty, and declares SlfePSLin as the discourse language."

'(let ((dis (open-kqal-discourse ,address 'sneps-discourse))
(disna.me (or ',discourse-name

(car #!(•default-discourse))
(car#!((=(· 'default-default-discourse)

default-discourse)))))
(context #!(•defaultct))
request)

(when dis
#!((= (· ,-dis) -disname))
#!((= (· ,-disname) default-discourse))
(setf (slot-value dis 'discourse-context) context)
;; declare content languages
(setq request (new-message))
(set-content-slot request 'declare-content-languages :type)
(set-content-slot request "snepslin" :request-content-language)
(send-request-and-interpret-replies request dis)
;; initialize discourse context
(setq request (nev-message))
(set-content-slot request 'set-discourse-context :type)
(set-content-slot request 'empty :content)
(send-request-and-interpret-replies request dis)
(values disna.me context))))

(setf (get 'open-sneps-discourse 'sneps::=collllland) t)
(setf (get 'open-sneps-discourse 'sneps::=topco1111and) t)

(defmacro close-sneps-discourse (toptional discourse-name)
"Closes the discourse with name DISCOURSE-NAME."
'(let• ((disname (or ',discourse-name

58

(car #!(•default-discourse))))
(discourse (car #!(•-disname)))
(context t!(•defaultct)))

(vhen (typep discourse 'sneps-discourse)
(close-kqal-discourse discourse)
#!((• () -disname))
(values disnaae context))))

(setf (get 'close-sneps-discourse 'sneps::aco .. and) t)
(setf (get 'close-sneps-discourse 'sneps::-topco .. and) t)

; ; Macro for the definition of "reaote co .. ands"

(defaacro def-snepsul-reaote (co .. and lrest definition)
"Defines a SlfePSUL co-and vith name reaote-COMMAliD vhose properties

are the same as the SliePSUL COMMJ.JiD. Does proper iaport/export too."
(let ((remote-comaand

(intern (foraat nil "REMOTE--a" (symbol-name co-and)) 'kqml)))
'(progn

(export ',reaote-comaand 'kqml)
(shadowing-import ',remote-command 'snepsul)
(setf (symbol-plist ',remote-command)
(symbol-plist (intern (symbol-name ',command) 'snepsul)))

(defaacro ,reaote-co-and ,Gdefinition))))

,, Syntax of remote command calls:

,, A call to a remote command is similar to a call of a normal
;; SliePSUL co-and:

(remote-command node specification ... :context ct :discoursed)

;; The context and discourse arguments are optional, they default to
,, •defaultct and •default-discourse. Results froa the remote execution
,, of the remote-command vill be asserted in the specified context.

(defun parse-reaote-cad-arguments (arguments)
"Takes a list of ARGUMEXTS, extracts the optional context and discourse

specifications, builds a node froa the reaaining args, and returns the
node, a context naae and a discourse object."

(setq arguments (copy-list arguments))
(let* C(context-key-pos

(position :context arguments :from-end t))
(context-name
(and context-key-pos

(nth (1+ context-key-pos) arguments)))
(discourse-key-pos
(position :discourse arguments :from-end t))

(discourse-name
(and discourse-key-pas

(nth (1+ discourse-key-pos) arguments)))
(dU111Jay (gensym)))

(cond (context-name
(setf (nth (1+ context-key-pos) arguments) d~y)
(setf (nth context-key-pos arguments) dU111Jay))

59

(t (setq context-name #!(•defaultct))))
(cond (discourse-name

(setf (nth (1+ discourse-key-pos) arguments) dWBDly)
(setf (nth discourse-key-pos arguments) dU1111y))

(t (setq discourse-name (car #!(•default-discourse)))))
(unless (sneps::context-p #!(•-context-name))

(sneps:sneps-error
(foI'llat nil 11-a is not the name of a context" context-name)
'reaote-sneps
'parse-reaote-cmd-arguaents))

(unless (typep (car #!(•-discourse-name)) 'discourse)
(sneps:sneps-error
(foI'llat nil 11-a is not the name of a discourse" discourse-name)
'reaote-sneps
'parse-reaote-cmd-arguaents))

(values (car #2!((build -e(reaove dWU1y arguaents))))
context-name
(car #!(•-discourse-name)))))

;; Some examples of how SNePSUL remote commands can be written
;; using the KQML performatives:

(def-snepsul-reaote assert (treat node-specification)
"Asserts a node defined by NODE-SPECIFICATION in the remote discourse

context"
'(aultiple-value-bind (node context discourse)

(parse-reaote-cad-arguments ',node-specification)
(setf (slot-value discourse 'discourse-context) context)
(let ((request (new-message)))
(set-content-slot request

(format nil "-s" (sneps-to-snepslin node discourse))
:content)

(set-content-slot request 'assert :type)
(send-request-and-interpret-replies request discourse))))

(def-snepsul-reaote findassert (treat node-specification)
"Tries to find asserted nodes that match NODE-SPECIFICATION in

the reaote discourse context. Answers will be asserted in the local
discourse contxt (this is different from the standard find-assert
seaantics, because find noraally just searches but does not build anything."

'(multiple-value-bind (node context discourse)
(pars~-reaote-cad-arguaents ',node-specification)
(setf (slot-value discourse 'discourse-context) context)
(let ((request (new-aessage)))
(set-content-slot request

(format nil "-s" (sneps-to-snepslin node discourse))
:content)

(set-content-slot request 'continuous :report-mode)
(set-content-slot request 1 :how-many)
(set-content-slot request 'minimal :worklevel)
(set-content-slot request 'query-sentence-status :type)
;; Use kqal::old-nodes so we won't interfere with user variables
#!((= •nodes --•old-nodes))
(send-request-and-interpret-replies request discourse)
;; Nodes asserted by this command that have not been in the

60

;; network previously will be returned.
(values#!((- •nodes .--•old-nodes))

context))))

(def-snepsul-reaote deduce (trest node-specification)
"Tries to find answers for IiODE-SPECICATION in the reaote discourse

context by way of backward inference. Answers found will be asserted
as hypotheses rather than derived nodes as done by the standard deduce."

'(aultiple-value-bind (node context discourse)
(parse-reaote-cad-arguaents ',node-specification)
(setf (slot-value discourse 'discourse-context) context)
(let ((request (new-aessage)))
(set-content-slot request

(format nil "-s" (sneps-to-snepslin node discourse))
:content)

(set-content-slot request 'continuous :report-aode)
(set-content-slot request 1 :how-many)
(set-content-slot request 'maximal :worklevel)
(set-content-slot request 'query-sentence-status :type)
#!((• •nodes --•old-nodes))
(send-request-and-interpret-replies request discourse)
(values#!((- •nodes .--•old-nodes))

context))))

(def-snepsul-remote add (trest node-specification)
"Tries to find answers for NODE-SPECICATION in the remote discourse

context by way of forward inference. Answers found will be asserted
as hypotheses rather than derived nodes as done by the standard add."

'(aultiple-value-bind (node context discourse)
(parse-reaote-cad-arguments ',node-specification)
(setf (slot-value discourse 'discourse-context) context)
(let ((request (new-message)))
(set-content-slot request

(format nil "(-s)" (sneps-to-snepslin node discourse))
:content)

(set-content-slot request 'actual :assertion-mode)
(set-content-slot request 'continuous :report-mode)
(set-content-slot request 1 :how-many)
(set-content-slot request 'maximal :worklevel)
(set-content-slot request 'assert-and-infer :type)
#!((• •nodes --•old-nodes))
(send-request-and-interpret-replies request discourse)
(va!'Ues #!((- •nodes .--•old-nodes))

context))))

61

