
KQML - Issues and Review
Revised Report

for
Paramax Subcontract No. V20275

Interface Standards for Knowledge Representation Systems

Stuart C. Shapiro and Hans Chalupsky
Department of Computer Science
and Center for Cognitive Science

State University of New York at Buffalo
226 Bell Hall

Buffalo, New York 14260

May 15, 1992

1

I

1 Introduction

The main objective of the Knowledge Sharing Initiative [Neches et al., 1991; Genesereth and Fikes, 1991]
is to develop languages and protocols that allow knowledge based systems (or agents, applications) inter
connected by a computer network to communicate with each other and to exchange knowledge. A typical
type of interaction is that of a request for information, i.e., one agent asking another agent whom it assumes
to be knowledgable some questions about some subject. The agent who wants to know something (the
requester) has to solve the following major problems:

1. Finding out about knowledgable agents that are potential candidates for answering questions about
some subject

2. Establishing a reliable communication channel to one of these agents (a potential provider of infor
mation)

3. Managing a properly structured discourse with that agent

4. Translating discourse items between its own knowledge representation language (or language of
thought) and that of the provider.

As a solution to the first three problems [Finin et al., 1992] propose a model in which agents communicate
with each other via interconnected facilitators. The fourth problem will be handled by the development of
an Interlingua [Genesereth and Fikes, 1991], shared ontologies, etc.

A facilitator acts very much like a secretary. It communicates with its agent (application, "boss") in
some private language, and with all the other facilitators in the facilitator language. Here is an example
conversation that should illustrate some of the points:

1. Bossl to Fl: Please connect me to somebody who knows recursive function theory.

2. Fl asks all its facilitator friends: Is anybody out there whose boss knows "recursive function theory"?

3. FN to Fl: Yes, my boss knows "recursive function theory".

4. Fl to FN: Could you connect me to your boss?

5. FN to Fl: All set.

6. Fl to FN: Can my boss ask his questions in English?

7. FN (after making sure that it has a bidirectional German/English translator because its boss is
german) to Fl: Yes, sure . . ,

8. Fl to FN: Ok, let me talk to my boss now.

9. Fl to Bossl: I got somebody on the line. What would you like to know?

10. Bossl to Fl: Is the Ackermann function primitive recursive?

11. Fl to FN: Question: "Is the Ackermann function primitive recursive"

12. FN to BossN: 1st die Ackermannfunktion primitiv rekursiv?

13. BossN to FN: Nein.

14. FN to Fl: Answer: "No".

15. Fl to Bossl: No, it is not.

2

,//

16. Bossl to Fl: Is it computable?

17. Fl to FN: Question: "Is it computable"

18. FN to BossN: 1st sie berechenbar?

19. BossN to FN: Ja.

20. FN to Fl: Answer: "Yes",

21. Fl to Boss l : Yes, it is.

22 more recursive function talk ...

There are two main parts to this conversation: (1) Establishing a communication channel to a knowledgable
agent, and (2) carrying out a conversation across this channel. Note that the facilitators do not have to
know anything about recursive function theory or understand sentences discussing it (as is probably true
also for most secretaries). All they have to know is how to find an expert in this field, how to carry out
a conversation with questions and answers etc., and how to convert the content of a speech act into a
different language.

Another important observation to make is that once the communication channel between Bossl and
BossN via their facilitators is established, the discourse has a state. Subsequent questions use the same
language. There are follow-up questions that make previous questions more specific etc.

Finally, the task that facilitator Fl has to perform in order to find out about agents knowledgable
in recursive function theory is very similar to the request that Bossl wants to get handled, just with a
different domain. Bossl wants to get answers to issues in recursive function theory, to achieve that, it asks
Fl in its private language to find an expert. Fl wants to get answers to who are possible candidates that
know about "recursive function theory". To achieve that, it asks the facilitators it directly knows about in
their own (facilitator) language.

The main task of this project is to define a language that is rich enough to handle all aspects of
conversations such as the one shown above. This language will be called KQML, the Knowledge Query
and Manipulation Language, which can be viewed to consist of three layers: A communication layer that
deals with proper routing of information, a message layer that deals with speech acts, and a content layer
that deals with actual content sentences (cf. [Finin et al., 1992]). In this document we will be mainly
concerned with the second or message layer.

2 Discourse Establishment

Discourse establishment in itself is a two step process: 1) Finding out who to talk to, and 2) actually
starting a discourse with some other agent. Step 1 of this process does not have to be completely defined
and specified by KQML. This step is rather handled by these special purpose agents called facilitators.
However, KQML will define constructs that allow facilitators to announce and access information to aid this
process. For example, [Finin et al., 1992] describes special declaration messages with which applications
can announce what type of questions they want to import or export. There are various difficult problems
associated with this part of KQML, for example, how facilitators would be able to make use of such
declarations made by other agents if they do not understand the content language of these expressions and
also do not speak the Interlingua.

Step 2 of the discourse establishment process is lower level and more or less just a networking problem.
However, this part of the protocol has to be specified by KQML completely, because otherwise agents
would not know how to actually start talking to each other over the Internet once they know the address
of their communication partner.

3

In this document we will not be concerned with the discourse establishment process, we rather will
assume that a communication channel between two agents has already been established.

3 KQML Performatives

This section discusses the message layer of KQML, i.e., the part of KQML that deals with performatives
or speech acts needed in actual one to one discourse. The underlying assumption is that there exists some
"almost universal" or generic set of performatives with which conversations with (almost) any knowledge
based system (or agent) can be carried out. All perforrnatives described in this section assume that a
communication channel between two agents via their facilitators has already been established.

3.1 One to One Discourse

As motivated above one to one discourse is modeled as having a state. This state will reside partly in
the facilitators, and partly in the agents/applications they are connected to. Once a discourse channel (or
bidirectional communication stream) between two facilitators has been established they can talk to each
other by uttering (writing) messages into the channel, and perceiving (reading) messages from it.

The facilitator at one end of the communication channel will be called the requester (or client), the
facilitator at the other end is the provider (or server). Messages sent (uttered) by the requester are called
requests, messages sent by the provider are called replies. It is assumed that the provider receives requests
in the same order as they are sent by the requester. The requester is in complete control of the discourse,
i.e., the provider cannot take initiative and issue requests to the requester.

KQML messages are specified as lists written in Common-Lisp syntax. Messages sent across a com
munication channel are messages of the communication layer (as described in [Finin et al., 1992]) and are
called packages. A package is specified as a list whose first element is the atom PACKAGE and whose re
maining elements are alternating attribute-value pairs using the Common-Lisp keyword argument format.
Possible keyword arguments are:
(PACKAGE

:FROM - <Agent ID>
The unique identifier of the sending agent (e.g., its Internet address).

:TO - <Agent ID>
The unique identifier of the receiving agent.

: ID - <Package ID>
A unique identifier for this message. This should be generated at this layer by the facilitator and is
used to refer to the message later. A package ID could be generated by concatenating the value of
:FROM and a time stamp.

:COMM - <Oneof(sync,async)>
Specifies whether or not the communication is to be carried out in a synchronous or asynchronous
mode.

:COITEIT- a (DCL ...) or (MSG ...) expression.

Here is an example package:

(PACKAGE
:FROM "apOOL cs. buffalo. edu"

4

:TO "ap002.prc.unisys.com"
:ID "ap001.cs.buffalo.edu 10:15:26.023"
:COMM sync
:COITEIT

(MSG
:TYPE query
:COITEIT-LAIGUAIGE interlingua
:COITEIT "(color ?X '?Y)"))

The following paragraphs will describe the various forms of expressions that are legal as values of the
: CO.ITEIT slot of a package. These expressions are part of the message layer.

3.2 Content Expressions

Content expressions have a similar syntax to packages. They are lists whose first atom indicates the
class of the expression. The two classes are messages identified by MSG as the first atom of the list, and
declarations with DCL as the first atom. The body of a content expression is a list of attribute-value pairs
using the Common-Lisp keyword format. The keywords and their values determine the semantics of a
content expression.

3.2.1 Content Language

The definition of the various KQML performatives described below is based on the following model of a
knowledge base: A knowledge base (KB) is a set of sentences in a language L. L can be the object language
of the knowledge base, or a set of sentences of another language for which a computable mapping into L
exists. Candidates for languages other than the object language of a KB are, for example, the Interlingua,
or, if the object language for a KB are graphs, a linear notation describing these graphs.

Since KQML is not assumed to be a superset of the Interlingua, it has to identify sentences of the KB
by way of quoted sentences of a language that can be translated into the object language of the KB. This
language is called the content language (CL).

All sentence arguments of the KQML performatives described below are CL sentences which are assumed
to be (finite) Common-Lisp strings. These sentences are not part of KQML, however, KQML must be able
to talk about content languages.
The languages for the contents of requests and replies can be declared with declare-content-languages:

(MSG

:TYPE - declare-content-languages
...

: REQUEST-COITEIT-LAIGUAGE - < content-language>
Declares what the content language for requests will be. From then on all content language sentences
of requests received by the provider should be assumed to be in that language. The language for
requests can be interlingua (the default), local to use the object language of the local KB of the
provider, or a string that specifies some other content language known by the provider. This request
can only be handled successfully if the provider knows how to translate sentences of the request CL
into sentences of the object language of its local KB.

: REPLY-COITEIT-LANGUAGE - < content-language>
Request what the content language for replies should be. Default is the content language used
for requests. This request can only be handled successfully if the provider knows how to translate
sentences of the object language of its local KB into sentences of the reply CL.

5

3.3 Discourse Contexts

Requests and replies should be made relative to a current discourse context. A discourse context is a
subset of the sentences that define the local KB of the provider. There is a design decision whether the
requester or the provider should do most of the work in context construction. A rich context specification
language would put most of the burden on the provider, a simple one puts most of it on the requester
(i.e., contexts have to be established by compiling a request context specification into a sequence of simple
context manipulation commands that can be handled by the provider). Many systems might not be able
to provide partitioned views of the KB at all, in which case the discourse context will always be the whole
KB.

The following messages allow a requester to establish a discourse context that contains some subset
of the sentences of the local KB of the provider. With set-discourse-context it can explicitly set the
current discourse context to such a subset of sentences of the local KB:
(MSG

: TYPE - set-discourse-context

: REQUEST-COliTEJIT-LAIGUAGE - < content-language>
Content language to be used for this particular message. Default is the language set by a declare-
content- languages message, or interlingua.

: COITEJIT - <sentence-pattern>
Request the current discourse context to be set to the set of all sentences which match the supplied
sentence pattern in the local KB of the provider. We will assume that every knowledge representation
language will have a notion of a pattern or an open sentence and a matching or unification operation
associated with it. If the value of pattern is empty the current discourse context will be set to the
empty set, if its value is all the whole KB of the provider will be used (the default).

)

add-to-discourse-context allows a requester to add additional sentences to the current discourse context:
(MSG

:TYPE- add-to-discourse-context

: REQUEST-COITEIT-LAJIGUAGE - < content-language> (see above)
: COITEIT - <sentence-pattern>

Request that all sentences in the local KB of the provider which match the supplied sentence pattern
are added to the current discourse context. The default value for this slot is all.

assert ~Hows a requester to add a new sentence which is not already a member of the local KB to the
current discourse context:
(MSG

: TYPE - assert

:REQUEST-COJITEIT-LAIGUAGE- <content-language> (see above)

: COITEIT - <sentence>
Request the supplied sentence to be added as an assertion to the current discourse context.

With remove-from-discourse-context a requester can remove a set of sentences from the current dis
course context:
(MSG

6

,/
V

: TYPE - remove-from-discourse-context

: REQUEST-COITEIT-LAIGUAGE - < content-language> (see above)

: COITEIT - <sentence-pattern>
Request that all sentences in the current discourse context which match the supplied sentence pattern
are removed from the current discourse context. The default value for this slot is empty.

assign-truth-value allows the requester to change truth values associated with sentences in the current
discourse context:
(MSG

:TYPE - assign-truth-value

:REQUEST-COITEIT-LAIGUAGE- <content-language> (see above)

:TRUTH-VALUE - <phrase>
A CL phrase that describes a valid truth value which should get assigned to the sentences identified
by the : COITEIT slot (what a valid truth value is is defined by the local KB of the provider).
Some KBs might not deal with truth values explicitly, but rather implicitly by assuming a sentence
to be true if it is an element of the KB (or the current discourse context). A truth value does not
necessarily have to be one of true or false, it could be a belief status, an assertion flag, or a numerical
value representing some kind of certainty.

: COITEIT - <sentence-pattern>
Request that all sentences in the current discourse context that match the supplied pattern get
assigned the value of the : TRUTH-VALUE slot.

)

3.4 Definitions

At the moment we will treat definitions as special cases of assertions which assert sentences that express
definitions. However, this approach might be too simplistic and special performatives for definition and
un-definition might be necessary.

3.5 Question Answering

Once we have established a discourse context we want to ask questions. One type of question asks about
the truth value of sentences. If the question is a closed sentence of the CL we want to know whether it has
a certain'truth value. If the question is an open sentence we are interested in a number of instances of the
question that have a certain truth value. Some questions might be easy to answer, others might be very
difficult or impossible to answer. To tell the provider how much work it should invest to find an answer
we introduce the concept of a work level which is basically a specification of how much resources should be
spent at the most to answer a question. Depending on the supplied work level the provider might choose
a particular inference strategy suited for that level.

Unless otherwise indicated, for all the following messages it is assumed that derived answers will be
automatically added to the current discourse context.
query-sentence-status handles queries about the truth value (or belief status) of sentences:
(MSG

: TYPE - query-sentence-status

7

: REQUEST-COIITEIIT-L.UJGUAGE - < content-language> (see above)

:REPLY-COITEIT-LAIGUAGE- <content-language> (see above)

: WORKLEVEL - < worklevel type>
Answers to the query in the : COITEIT slot will be found by performing some kind of inference.
The total amount of inference (or work) to be invested to find all requested answers is controlled
by the value of :WORKLEVEL. Its value can be minimal (the default) to request quick but probably
incomplete answers, maximal to request the provider to derive answers without any (or maximal)
resource bounds, or a number that specifies a maximal number of work units to be invested by the
provider. What a work unit is is defined by the local KB of the provider.

:BOW-HAIY - <natural number>
The provider should report new answers at the earliest possible point after it has derived at least
: BOW-H.HY new answers since the last report (default is 1). If the number of allotted resources got
exhausted all answers derived so far will be reported. This kind of control is important if there is
more than one answer, e.g., if the query is an open sentence or a pattern.

:REPORT-MODE- <Oneof(suspend,continuous)>
Controls what the provider should do after it has reported a number of answers as specified by
:BOW-HAIY. If the value is suspend the provider will suspend its answering activity until it receives
a continuation message. If the value is continuous (the default) the provider will continuously try
to find new answers until either no more answers can be found, the allotted resources are exhausted,
or it receives a control message that tells it to stop. New answers will be reported whenever at least
: BOW-HABY new answers are available.

:TRUTH-VALUES - <(phrase, phrase)>
A pair of CL phrases that describe valid truth values. All derived answers are required to have a
truth value that is within the range of truth values defined by the two supplied values. If the local
KB of the provider does not have a notion of an ordering of truth values then the range is just the
set of the two values. If the two values are identical this set will be a singleton set. The default is a
special value any which indicates that answers of any truth value are acceptable.

: COITEIT - <sentence-pattern>
This slot contains the actual query whose truth value should be found. If the query is an open
sentence or a pattern then all instances of it that have the specified truth value are potential answers.

)

Another type of question is topical in nature, i.e., it requests information related to a certain topic, for
example, as in the question "tell me (everything you know) about dogs" . Here we are not interested in the
truth value of particular sentences, rather we want sentences that are related to the topic expressed by the
question': Depending on the different levels of expertise of the requester and the provider there might be
answers that the requester will not be able to understand.
(MSG

: TYPE - query-about-topic

:REQUEST-COITEllT-LAJlGUAGE - <content-language> (see above)

: R.EPLY-COITEHT-LAllGUAGE - < content-language> (see above)

:WORKLEVEL - «soorkleve! type> (see above)

:BOW-MAllY - <natural number> (see above)

:R.EPOR.T-MODE- <Oneo/(suspend,continuous)> (see above)

8

:TRUTH-VALUES - <{phrase, phrase)> (see above)

: COITEIT - <phrase or pattern>
A CL phrase denoting some entity about which relevant information should be found. What is
considered as relevant is defined by the local KB of the provider. If the supplied value is a pattern
then it is to be viewed as something like a predicate that describes a class of entities about which
answers should be found.

The next message handles queries of the kind "what can you infer from X", that is some kind of forward
inference. There are two variations to this kind of query: One where the answerer actually assumes the
initial assertions as its own, and another one in which these assertions are only hypothetically assumed to
answer the question:
(MSG

:TYPE - assert-and-infer

: REQUEST-COITEIT-LAIGUAGE - < content-language> (see above)

: REPLY-COITEIT-LAIGUAGE - < content-language> (see above)

:WORKLEVEL - <work/eve/ type> (see above)

:HOW-MAIY- <natural number> (see above)

:REPORT-MODE - <Oneo/{suspend,continuous)> (see above)

:TRUTH-VALUES - <(phrase, phrase)> (see above)

: ASSERTIOI-MODE - < Oneo/(actual, hypothetical}>
If the value of this slot is actual (the default) then the sentences will be added as normal assertions
to the current discourse context of the provider. If the value is hypothetical the sentences will
be hypothetically assumed in the current discourse context (added to it) until all the answers are
reported. Then all these assumptions and the answers depending on them will be removed again.
Note, that even if one of the content sentences was already a member of the current discourse context
before this request was issued, it will be removed with all the other hypothetical assumptions of this
request.

: CONTEIT - <sentence list>
Answers should be found by starting inference from the sentences supplied in this slot.

)

·,
3.6 Control Messages

control messages allow the requester to exert some control on ongoing work performed by the provider.
(MSG

: TYPE - control

: COITROL-TYPE - < Oneo/(suspend, continue, stop)>
If the value of this slot is suspend then at the next possible point the provider should suspend
working on the request identified by : REQUEST- ID and allow for a continuation if requested. If
the request has already been completed this is a noop. If the value is continue then the provider
should finish whatever it is doing right now and then continue to work on the request identified by
: REQUEST-ID. If that request has already been finished thisis a noop. It cannot be assumed that a

9

previously suspended task will find the exact same state that existed when the interrupt occurred.
If the value is stop then at the next possible point the provider should terminate to work on the
request identified by :REQUEST-ID. If that request has already been finished this is a noop.

:REQUEST-ID- <Package ID>
Holds the ID of the package that contained the request to which this message refers. Defaults to
the ID of the most recently sent request.

)

3.7 Replies

Similar to requests we need a set of performatives for replies. Every reply has to refer to a particular request
by the identifier of the package that contained the request. There are basically two kinds of answers:

Success/Failure replies tell the requester whether a certain request could get handled successfully or not.
Some requests only expect that kind of reply, e.g., the messages that deal with setting up a discourse
context.

Content replies contain a set of sentences that are answers to queries. An empty set indicates that no
answers could be found. Yes/no type queries will get a singleton set as a reply if the answer was
yes, an empty set otherwise. The possibility to supply a range of acceptable truth values to a query
makes it necessary to indicate the truth value of a particular answer. Instead of associating sets of
answers with sets of truth values we will assume that the truth value of an answer is expressed as
part of the content language sentence.

Success/Failure replies can be sent with the following message:
(MSG

: TYPE - success-reply

:VALUE - <Oneof(success,failureJ>

:REQUEST-ID - <Package ID>
Holds the ID of the package that contained the request to which this message refers.

: EXPLAIATIOI - <string>
If the value of :VALUE was failure this slot can be used to hold an english sentence that explains
to any humans involved why a certain request could not be handled.

)

conten'C'-reply messages transfer actual answers to queries back to the requester.
(MSG

: TYPE - content-reply

:REQUEST-ID - <Package ID> (see above)

:REPLY-IUMBER- <natural number>
The different report modes for queries allow for multiple replies to a particular query. The value of
this slot indicates the number of this particular reply. Default is 1.

: COITEIT - <sentence set>
Contains a set of sentences that constitute replies to the query identified by : REQUEST-ID.

)

10

....I

3.8 Literal Discourse

There will always be some kinds of speech acts that cannot be handled by any of the performatives above.
As a way out of this dilemma we define a performative that allows the requester to issue a command which
will be literally interpreted and executed by the provider. Of course, this performative can only be used
by a requester who knows a lot about the internal structure of the provider.
(MSG

:TYPE - interpret-literally

: COITEIT - < command>
Literally interpret and execute the command held in : COITEIT.

)

3.9 To Do

So far the various performatives do not account for ontologies. Future versions will have to.

4 Discourse Protocol

The definitions of the various performatives above only vaguely hint at a discourse protocol used by
requester and provider to communicate successfully. In a prototype implementation of a KQML interface
for SNePS-2.1 applications [Shapiro and Chalupsky, 1992] we adopted the following simple protocol for the
exchange of KQML messages between a KQML server and a client application:

Client Application KQML Server
Wait (read) for next request

Send. (write) a request
Wait for next reply

Interpret request
Send O or more content replies
without waiting inbetween

Read and interpret O or more
content replies

Read and interpret success reply
and regain discourse control

Send a success reply

Wait for next request

After a connection between a client and a server has been established, the KQML server stays in a
read-request/interpret-request/send-replies loop until the connection gets closed by the remote process, or
some unrecoverable error occurs. Because a certain request can trigger multiple content reply messages,
there must be a way to tell the client when it cannot expect any more replies. For this purpose the following
policy has been adopted:

Every KQML package handled by the KQML server has to be acknowledged by sending exactly
one success-reply message back to the client once its handling has been completed, regardless
of whether the request did trigger any content replies or not.

11

Using this policy, after issuing a request the client can simply read and interpret successive incoming pack
ages until it finally receives a success reply package which will result in the regaining of discourse control.
For asynchronous, non-blocking communication, more elaborate protocols will have to be developed.

References

[Finin et al., 1992] Tim Finin et al. An overview ofKQML: A knowledge query and manipulation language.
Unpublished Draft, 1992.

[Genesereth and Fikes, 1991] Michael R. Genesereth and Richard Fikes. Knowledge Interchange Format.
Computer Science Department, Stanford University, Stanford, CA 94305, version 2.2 edition, March
1991.

[Neches et al., 1991] Robert Neches, Richard Fikes, Thomas Gruber, Ramesh Patil, Ted Senator, and
William R. Swartout. Enabling technology for knowledge sharing. AI Magazine, 12(3), Fall 1991.

[Shapiro and Chalupsky, 1992] Stuart C. Shapiro and Hans Chalupsky. KQML prototype interface. Final
report, Department of Computer Science, State University of New York at Buffalo, Buffalo, NY, May
1992 .

...

12

