Knowledge Representation 671

Philosophy of Mind’, pp. 81-108. Atascadero, CA:
Ridgeview.

Lycan W (1990) What is the ‘subjectivity” of the mental?
In: Tomberlin J (ed) Philosophical Perspectives, vol. IV
“Action Theory and the Philosophy of Mind’,
pp- 109-130. Atascadero, CA: Ridgeview.

Nemirow L (1990) Physicalism and the cognitive role of
acquaintance. In: Lycan W (ed.) Mind and Cognition,
pp- 490-499. Oxford: Blackwell.

Knowledge Representation

Introductory article

Stuart C Shapiro, State University of New York, University at Buffalo, USA

CONTENTS

Introduction

Representing common-sense knowledge

Predicate calculus and other logical representation
schemes

Procedural representations

Production systems

Semantic networks

Schemas, frames, and scripts

Pictorial representations

Connectionist representations: local and distributed
Managing change

Knowledge representation is a subarea of artifi-
cial intelligence concerned with understanding,
designing, and implementing ways of representing
information in computers so that programs can use
this information to: derive information that is implied
by it; to converse with people in natural languages;
to plan future activities; and solve problems in areas
that normally require human expetrtise.

INTRODUCTION

Knowledge representation is a subarea of Artifi-
cial Intelligence concerned with understanding,
designing, and implementing ways of representing
information in computers so that programs can
use it:

to derive information that is implied by it,

to converse with people in natural languages,

to plan future activities,

to solve problems in areas that normally require
human expertise.

Deriving information that is implied by the in-
formation already present is a form of reasoning.
Because knowledge representation schemes are
useless without the ability to reason with them,
the field is usually known as ‘knowledge repre-
sentation and reasoning’. (See Language of
Thought; Artificial Intelligence, Philosophy of;
Representation, Philosophical Issues about; Im-
plicit and Explicit Representation; Deductive

Reasoning; Knowledge Representation, Psych-
ology of; Reasoning)

Many philosophers consider knowledge to be
justified true belief. Thus, if John believes that the
world is flat, we would not say that John knows
that the world is flat, because he is wrong—'the
world is flat’ is not true. Also, it may be that Sally
believes that the first player in chess can always
win, Betty believes that the second player can
always win, and Mary believes that, with optimal
play on both sides, chess will always end in a tie.
One of them is correct, but we would still not say
that any of them knows the answer, because their
belief cannot have been justified by a complete
analysis of the game. A computer system could
not limit its information to knowledge in this strict
sense, so it would be more accurate to say that the
topic being discussed is belief representation rather
than knowledge representation. Nevertheless, we
will continue to use ‘knowledge representation’,
because that has become accepted as the name of
this subject. (See Epistemology)

REPRESENTING COMMON-SENSE
KNOWLEDGE

The field of knowledge representation began,
around 1958, with an investigation of how a com-
puter might be able to represent and use the kind
of common-sense knowledge we have when we

672 Knowledge Representation

decide that to get from our house to the airport, we
should walk to our car and drive to the
airport rather than, for example, drive to our car
and then walk to the airport.

In the 1960s and 1970s, much knowledge repre-
sentation research was concerned with represent-
ing and using the kind of information we get from
reading and talking to other people; that is, the
information that is often expressed in natural lan-
guages, and that underlies our ability to under-
stand and use natural languages. For example, we
probably understand each of the sentences in the
first column of Table 1 as shown in the second
column, by adding our ‘background knowledge’
to what the sentences explicitly say. Moreover,
our understanding of English includes our being
able to make the following inferences. (See Natural
Language Processing; Meaning; Semantic
Memory: Computational Models)

Every student studies hard. Therefore every smart
student studies.

On Tuesday evening, Jack either went to the
movies, played bridge, or studied. On Tuesday
evening, Jack played bridge. Therefore, Jack
neither went to the movies nor studied on
Tuesday evening. (1)

In the 1970s and 1980s, researchers became in-
creasingly concerned with knowledge about spe-
cific domains in which human experts operate,
such as medical diagnosis and the identification of
chemical compounds from mass spectrometry
data, and also with the other extreme — knowledge
about the everyday world that everyone knows,
such as the fact that when you tip over a glass of
water, the water will spill on the floor. (See Expert
Systems; Expertise)

In the 1980s and 1990s, these concerns focused on
the details of specific subdomains of everyday
knowledge, such as theories of time and space,
and also on the general structure of our knowledge
of everyday terms, leading to the construction
of large and general purpose ‘ontologies’. For

Table 1. Some sentences and how we understand them

example, the Cyc Project has devoted many staff-
years to the organization of a computer-usable
representation of all the knowledge that is not con-
tained in encyclopedias (thus the name ‘Cyc,” from
‘encyclopedia’) but is assumed to be already
known by people who read them, and Lycos is
using such an ontology to organize searches of the
World Wide Web. (See Spatial Representation and
Reasoning)
All these threads continue into the 2000s.

PREDICATE CALCULUS AND OTHER
LOGICAL REPRESENTATION
SCHEMES

In the late 1800s and early 1900s, various formal
systems were developed by people who hoped to
turn human reasoning into a kind of calculation.
From our perspective, we can now see that what
these people were engaged in was research in
knowledge representation. The formal systems
they developed were systems of logic, a topic
which has been studied since the days of Plato
and Aristotle. We may consider logic to be the
study of correct reasoning. The systems of logic
developed in the late 1800s and early 1900s consist
of three basic components:

e syntax: the specification of a set of atomic symbols, and
the grammatical rules for combining them into well-
formed expressions;

e semantics: the specification of the meaning of the
atomic symbols, and the rules for determining the
meanings of well-formed expressions from the mean-
ings of their parts;

e proof theory: the specification of a set of rules, called
‘rules of inference’, which, given an initial collection,
called a ‘proof’, of well-formed expressions, called
‘axioms’, specify what other well-formed expressions
can be added to the proof. (See Inference using Formal
Logics)

There are two kinds of ‘meaning’ determined by
the semantics of a system of logic. In one, we might
say that the meaning of G is the claim made by the

Sentence

How we understand it

John likes ice cream.

Mary likes Asimov.

Bill flicked the switch. The room was
flooded with light.

Betty opened the blinds. The courtyard
was flooded with light.

John likes to eat ice cream.
Mary likes to read books by Isaac Asimov.
Bill moved the switch to the ‘on’ position, which caused a light to come on,
which lit up the room Bill was in.
Betty adjusted the blinds so that she could see through the window they were
in front of, after which she could see that the courtyard on the other side of the

window was bright.

Knowledge Representation 673

sentence, “The moon is made of green cheese.” For
this notion of meaning, the meaning of -G, as
shown in Table 2, would be the same as ‘It is not
the case that the moon is made of green cheese’ or
‘The moon is not made of green cheese.” The other
sense of ‘meaning’ is a truth value. Different
systems of logic have different truth values, and
even different numbers of truth values. There are
two-valued logics, three-valued logics, four-valued
logics, and even logics with an infinite number of
truth values. Two-valued logics usually call their
truth values “True’ and ‘False’. Some logicians
would say that in such a two-valued logic any
sentence either means True or False. Less strictly,
one might say that in such a logic, the semantics
assigns a truth value of True or False to every
sentence. In this notion of meaning, if some sen-
tence P happened to be (or be assigned the truth
value of) True, then —P would be (or be assigned
the truth value of) False, and if P were False, then
—P would be True. So, if G meant (by the first sense
of meaning) ‘The moon is made of green cheese,’
then G would be (or mean, in the second sense of
meaning) False, so =G would be (or mean, or have
the truth value of) True.

Although the proof theory considers only the
syntax of the expressions, not their semantics, it is
usually the case that if the semantics assigns a truth
value of True to the axioms, all expressions that the
rules of inference add to the proof will also be True.
Logics that have this property are called sound.
Soundness seems to capture the notion of correct
reasoning, which is what the study of logic is all
about.

Many different logics have been described and
investigated. Propositional (or ‘sentential’) logics
do not analyze information below the level of the
proposition (or sentence), but use ‘propositional
connectives,” such as are shown in Table 2 to
build more complex sentences from simpler sen-
tences. For example, the sentence ‘Students who
study hard get good grades’ could not be represented
in more detail than P=Q, where P represents

Table 2. A set of propositional connectives and their
meaning

Propositional Sample use Meaning

connective

= -P It is not the case that P
A PAQ Pand Q

\% PV Q Por Q, or both

= P=Q If P then Q

‘Students study hard’ and Q represents ‘Students get
good grades’. First-order logics (predicate logics)
continue the analysis down to objects, classes,
properties, and relations, with the aid of the quan-
tifiers shown in Table 3. So in some first-order logic,
‘Students who study hard get good grades’ might be
represented as Vx (Student(x) A study (x, hard) = get
(x, grades, good)). Some first-order logics allow func-
tions. In one of them, this sentence might be repre-
sented as Vx (Student(x) A study (x, hard) = get (x,
good (grades))). Second-order logics allow functions,
classes, properties, and relations, themselves, to be
the arguments of other functions, classes, proper-
ties, and relations. In one of them, this sentence
might be represented as Vx (Student (x) A hard
(study) (x) = get(x, good (grades))). (See Representa-
tions Using Formal Logics)

A logical sentence that always evaluates to True
regardless of the meanings of its atomic parts is
called valid. In most standard logics, the sentence
P A =P = Q is valid, meaning that a contradiction
implies anything whatsoever, but in some logics,
called “paraconsistent” logics, that sentence is not
valid. In most standard logics the sentence P vV =P
is valid, meaning that any sentence is either True
or False, but in some logics, called ‘intuitionistic’
logics, that sentence is not valid.

Someone who uses a propositional logic to for-
malize some domain of interest chooses the prop-
osition symbols to be used to represent the
sentences of the domain, and their semantics —
what sentence each symbol will represent. Some-
one who uses a predicate logic to formalize some
domain of interest chooses the syntax and seman-
tics of the individual constants that represent
objects in the domain, the function symbols that
represent functions in the domain, and the predi-
cate symbols that represent classes, properties, and
relations in the domain. The logic itself determines
the propositional connectives and the quantifiers,
and how they are to be used, along with function
and predicate application, to determine the non-
atomic expressions, and their meaning. The rules
of inference also operate only on nonatomic expres-
sions, and pay attention only to the logical con-
stants. This is the sense in which people consider
these logics to be ‘formal’ logics that pay attention

Table 3. The quantifiers and their meanings

Quantifier

v Vx P (x)
3 Ix P (x)

Sample use Meaning

Every xisa P
Some xisa P

674 Knowledge Representation

only to the form, and not to the content, of the
logical expressions. When selecting a logic to use,
one is choosing the formal apparatus supplied by
that logic.

Any knowledge representation and reasoning
system consists of two parts — a knowledge repre-
sentation language and a reasoning component.
If the knowledge representation language is well-
defined, it will have a well-defined syntax to de-
scribe the atomic symbols and how well-defined
symbol structures may be constructed from them,
and a well-defined semantics to describe what the
atomic symbols and the symbol structures are sup-
posed to mean. The reasoning component is a pro-
gram, often called an ‘inference engine’, that, given
a ‘’knowledge base’ of symbol structures, adds add-
itional symbol structures to that knowledge base
according to the rules implemented in the program.
Clearly these components — syntax, semantics, in-
ference engine, knowledge base — correspond to the
components of logics — syntax, semantics, proof
theory, proof. So we may view any knowledge
representation and reasoning system as a logic,
and ask what kind of logic it is, what formal appar-
atus it supplies, and whether or not it is sound. The
user of a knowledge representation and reasoning
system, like the user of a logic, must choose a
system, and then design the representations that
are not at the level of knowledge representation
constructs that the system deals with. In the know-
ledge representation world, this person is called a
‘knowledge engineer’.

PROCEDURAL REPRESENTATIONS

In the mid-1970s, knowledge representation re-
searchers were embroiled in what was called the
‘declarative/procedural controversy’. Although
this controversy has largely been resolved (in a
sort of compromise), it is worthwhile under-
standing these two approaches to knowledge
representation.

Firstly, we must recognize that there are several
kinds of knowing, among which are knowing that,
knowing who, and knowing how. Knowing that is the
kind of knowledge we have of propositions. For
example, we may know that Seattle is north of
San Francisco. Knowing who is acquaintance with a
person, animal, object, etc. We may say that we
know a person even though we might not know
some important facts about that person, for
example their birthdate. On the other hand, we
may know many facts about a person without
being able to say we know that person. For
example, many of us know many facts about Bill

Clinton, but how many of us can truly say, ‘I know
Bill Clinton’? Knowing how is knowledge of how
to do things, for example how to swim or ride a
bicycle.

There has not been much work in knowledge
representation on knowing who, and everyone
would agree that a procedural representation is
appropriate for knowing how, though more on this
later. The declarative/procedural controversy was
about how to represent knowing that. The declarati-
vists were in favor of representing propositions
that are known (believed) by some agent as a
symbol structure with declarative semantics, for
example a well-formed expression of propositional
or predicate logic, stored in the agent’s knowledge
base. The proceduralists were in favor of represent-
ing such propositions as small programs. For
example, when the early (simulated) robot
SHRDLU was told, ‘I own blocks which are not
red, but I don’t own anything which supports a
pyramid’, it represented that information as two
small procedures in the PLANNER programming
language. When, later, SHRDLU was asked ‘Do I
own anything in the box?’, it ran those two proced-
ures to determine the answer. The problem with
maintaining this distinction between declarative
and procedural representations of knowing that is
the well-known equivalence of data and program.
A procedure can be written in a declarative pro-
gramming language such as Lisp or Prolog, and
can thereby be viewed as a symbol structure with
declarative semantics. On the other hand, when a
declarative representation is used by the inference
engine to draw some inference, the declarative
representation may be viewed as a program in the
programming language interpreted by the infer-
ence engine. In this sense, whether a representation
is declarative or procedural depends on how one
views it. (See SHRDLU)

We might resurrect the declarative/procedural
distinction by considering our own knowledge of
how to do things. Many of us know how to ride a
bicycle. However, few of us can describe how to
ride a bicycle, for example in order to instruct
someone else. We might consider this knowledge
procedural only. In this view, all knowledge may be
viewed as procedural knowledge, but only know-
ledge that can be expressed in a declarative
language by the knower may be viewed as declara-
tive knowledge. As another example, the restaur-
ant script (see below) is a representation of what
typically happens in a restaurant. There have been
programs that, supplied with the restaurant script,
could fill in details about what happened in res-
taurant stories. For example, given the story, ‘John

Knowledge Representation 675

went to a restaurant and ordered a steak’, such a
program could infer that John was seated and
given a menu between entering and ordering.
However, most of these programs could not
answer questions about the restaurant script itself,
such as ‘What typically happens in a restaurant
after the patron is seated?’ It is, therefore, reason-
able to say that for these programs the restaurant
script is not represented declaratively, but only
procedurally. (See Story Understanding)

PRODUCTION SYSTEMS

Production systems are a subclass of knowledge
representation and reasoning systems. The know-
ledge base of a production system is divided into
two parts, a working memory and a rule memory.
The working memory consists of a set of symbol
structures not containing variables. The rule
memory consists of a set of pattern-action rules.
Each pattern-action rule has a ‘left-hand side’,
which is a set of patterns, and a ‘right-hand
side’, which is a set, or sequence, of actions. The
patterns and actions may contain variables as long
as every variable in the right-hand side of a rule is
also in the left-hand side of the same rule. If every
pattern in a rule matches some symbol structure in
working memory, with a consistent substitution of
constants for the variables in the patterns, then the
rule is said to be ‘triggered’. A triggered rule may
‘fire’, in which case every action in the right-hand
side is performed after replacing the variables with
the constants they were matched to in the left-hand
side. The actions allowed in the right-hand sides
of rules vary among different production systems,
but they generally include adding structures
to working memory and removing structures
from working memory. They may also include
adding and removing rules, and interacting with a
user. (See Production Systems and Rule-based In-
ference; Working Memory, Computational
Models of; Rule-based Thought)

Since the firing of a rule may change the struc-
tures in working memory, it may also change
which other rules are triggered. So if several rules
are triggered at the same time, the ultimate behav-
ior of the production system may depend on which
triggered rule fires first. This is determined by a
conflict resolution strategy. Typical strategies are:
don’t fire any rule more than once on the same
variable substitutions; fire the rule that was trig-
gered most (or least) recently; fire a more specific
rule before a less specific rule.

Production systems were first designed to be a
model of the human mind. For this purpose, the

size of working memory and the allowed actions
were restricted. However, they have been a popu-
lar architecture for expert systems, for which pur-
pose those restrictions were lifted.

It should be noted that the symbol structures in
working memory and the patterns and actions in
rule memory must be formulated in some know-
ledge representation language. What the produc-
tion system architecture provides is a particular
style of reasoning and acting using that language.

SEMANTIC NETWORKS

Semantic networks are a variety of labeled, directed
acyclic graph in which the nodes denote entities
and labeled directed arcs denote relations between
the nodes they connect. Two kinds of semantic
networks have been developed, inheritance net-
works and propositional semantic networks.
Figure 1 illustrates an inheritance network which
is intended to represent the following information:

Birds and fish are animals. Canaries and penguins
are birds. Animals have heads. Birds have wings.
Fish have fins. Birds move by flying. Fish and
penguins move swimming. Canaries can sing.
Tweety is a canary. Opus is a penguin. Charlie

is a fish. (2)

Notice that some of the nodes represent categor-
ies (Animal, Bird, Fish, Canary, and Penguin),
and others represent individuals (Tweety, Opus,
and Charlie). The relation between an indivi-
dual and the categories it is a member of (instance)
is different from the relation between a category
and its supercategories (isa). (See Semantic Net-
works)

Early presenters of inheritance networks did not
make the semantics of the relations very clear. For
example, it is not clear in Figure 1 what it means
when arcs with the same label emanate from a
category and one of its supercategories. Surely,
birds have both wings and heads, but penguins
swim and do not fly. Moreover, although the ‘has-
part’ relation seems simple, the ‘has-part’ relation
from ‘Animal’ to ‘head” must mean Every instance of
Animal has a part which is an instance of head. These
semantic confusions were clarified in the succes-
sors to simple inheritance networks, the most
prominent of which are called description logics.

Description logics are a variety of inheritance
networks in which categories (called ‘concepts’)
and relations (called ‘roles’) between them can be
defined without the semantic confusions of earlier
inheritance networks. For example, using a formal-
ism called KL, which was designed to reflect many

676 Knowledge Representation

Animal| ——

has-part
p head

has-part K \Sb)’ . _has-part

wing Bird flying

isa \ /esby

swimming Fish in

instance
Sing Canary Penguin Charlie
instance instance
Tweety Opus

Figure 1. An inheritance-style semantic network.

of the features common to different description
logics, a parent can be defined as a person with at
least one child who is also a person, as follows.

(cdef PARENT (and PERSON (c-some
Child PERSON))) (3)

Here, PARENT is the concept being defined,
PERSON is a concept which, presumably, has al-
ready been defined, and Child is a role. This is also
an example of a concept defined with necessary
and sufficient conditions. That is, if Ken is said to
be a PARENT, it is necessary that Ken be a PERSON
with at least one Child who is a PERSON. So the
description logic system can infer that Ken is
a person, has at least one child, and that child is a
person. On the other hand this same definition says
that if Judi is a PERSON with at least one Child
who is a PERSON, that is sufficient information to
conclude that Judi is a Parent. Natural kinds, such
as birds, fish, and animals, cannot be given neces-
sary and sufficient conditions, so primitive concepts
can be defined with only necessary conditions.
The KL definitions of ANIMAL and FISH from
Figure 1 are:

(cprim ANIMAL (and top
(c—some Part HEAD)
(c—atmost 1 Part HEAD)))
(cprim FISH (and ANIMAL
(c—some Part FIN)
(c—some Moves-by SWIMMING))) (4)

This says that every FISH has one head, by inherit-
ance from ANIMAL, and, in addition, has one or
more FINs. Since description logic roles accumu-
late in this way, the only way to say that birds fly,

but penguins are birds that swim instead, is to
separate flying birds from swimming birds:

(cprim BIRD (and ANIMAL
(c-—atleast 2 Part WING)
(c—atmost 2 Part WING)))
(cdef FLYING-BIRD (and BIRD
(c—some Moves-by FLYING)))
(cpr im PENGUIN (and BIRD
(c—some Moves-by SWIMMING)))
(cprim CANARY (and FLYING-BIRD
(c—some Can SING))) (5)

(See Concepts, Philosophical Issues about; Con-
ceptual Representations in Psychology; Natural
Kinds and Artifacts)

All these KL constructs define concepts, and are
considered part of the description logic termino-
logical component. To actually make assertions
about individuals, most description logics also
have an assertional component. Assertions in the
assertional component are usually written in a
syntax that looks like normal first-order predicate
logic in which defined concepts can be used as
unary predicates and defined relations can be
used as binary relations. For example, we might
have:

CANARY (Tweety) WING(Tweety-left-wing)
PENGUIN(Opus)

SWIMMING (Opus-swimming-style) (6)
Part(Tweety, Tweety-left-wing)
Moves-by(Opus, Opus-swimming-style) (7)

Besides the confused semantics of their relations,
another deficiency of inheritance networks is that
since information can only be represented about

Knowledge Representation 677

nodes, one cannot represent information about re-
lations, such as that the ‘isa’ relation is transitive.
Nor can one represent information about beliefs,
such as that the encyclopedia is the source of the
belief that canaries are birds. Description logics
do represent information about relations, but they
do not represent information about beliefs. This
deficiency is solved by propositional semantic
networks, in which nodes are used to represent
beliefs (propositions) as well as the individuals,
categories, and properties represented by nodes in
inheritence networks. Figure 2 illustrates a propos-
itional semantic net in which ‘M1!" represents the
proposition that canaries are birds, ‘M2!” represents
the proposition that ‘isa’ is a transitive relation, and
‘M3!" represents the proposition that the source of
‘M1!" is the encyclopedia.

SCHEMAS, FRAMES, AND SCRIPTS

Some researchers felt that semantic networks used
a representation that was too fine-grained and too
passive. Instead, they argued for representational
structures that contain more information about the
entities being represented, and also incorporate
active processes. They adapted the notion of sche-
mas (or ‘schemata’) from psychological literature.
The two most widely used schema representation
systems are frames and scripts. (See Schemas in
Psychology)

Frames were originally proposed as a represen-
tation of structured visual information about com-
plex objects. For example, if you open a door to an
office, you expect to see certain things, such as a
desk, chairs, etc. You would be surprised to see a
tennis court, a beach, and a swimming pool in the
office. On the other hand, if you opened a door to a
bedroom, you would expect to see a bed, a chest of
drawers, etc. The proposal was that the ‘office
frame” would contain pointers to the representa-
tions of objects you would expect to be in an office,

Prop

argl arg2 rel

Figure 2. A propositional semantic network.

the ‘bedroom frame” would contain pointers to the
representation of objects you would expect to be in
a bedroom, etc. As frame representation systems
were implemented, they became more similar to
semantic networks, but with the labelled arcs, now
called ‘slots’, pushed into the nodes, now called
‘frames’, and the nodes pointed to by the arcs, now
called ‘slot fillers’. For example, Figure 3 shows the
information of Figure 1 as a frame system.

One feature frame systems tend to have that
semantic networks do not is procedural attachment.
Instead of a slot being filled by a pointer to a frame
or a set of such pointers, the slot could be filled by
an if-needed or an if-added procedure. If a slot con-
taining an if-needed procedure is accessed, the pro-
cedure is executed and is expected to compute and
return the slot filler. If a slot containing an if-added
procedure is filled, the procedure is executed and is
expected to fill other slots that depend on the new
information being added to this slot. If-needed and
if-added procedures are procedural versions of
inference by backward chaining and forward
chaining, respectively.

Scripts, like frame systems, were designed to be
structured representations, but of activities rather
than objects. For example, the restaurant script con-
tains a representation of all the activities that typic-
ally occur when one visits a restaurant. If you read a
story about someone going to a restaurant and
ordering a steak, you fill in the information
about being seated and being given a menu from
your restaurant script. (See Natural Language Pro-
cessing: Models of Roger Schank and his
Students)

PICTORIAL REPRESENTATIONS

Some people think mostly linguistically; others
think mostly in pictures. Everyone can probably
do both, even though they usually do one or the
other. Try this: Think of an elephant. Which way is

Source

@ Encyclopedia

member class

Transitive-relations

678 Knowledge Representation
Animal
has-part: head
Bird Fish
isa: Animal isa: Animal
has-part: wing has-part: fin
moves-by: flying moves-by: swimming
Canary Penguin -
isa: Bird isa: Bird Charlie
- - - instance: Fish
can: sing moves-by: swimming
Tweety Opus
instance: Canary instance: Penguin

Figure 3. Figure 1 as a frame system.

it facing? If, when you thought of an elephant, you
pictured one in your mind, you should have a
definite answer to that question.

Just as people can represent entities in their
minds either linguistically or pictorially, we can
use linguistic and pictorial representations in
other media, including computers. The distinction
is also often termed digital vs. analog, as in digital
clocks vs. analog clocks. (See Mental Imagery,
Philosophical Issues about)

The best way to distinguish analog from digital
representations is to compare the domain of
the representation (syntax) to the domain of what
is represented (semantics). An analog representa-
tion has a syntactic operation that is a direct ana-
logue of a semantic representation. Consider
clocks. What is represented is time. On an analog
clock, the representation is the rotation of the clock
hands around the circle of the clock face. The dif-
ference between the representation of 10.15 a.m.
and that of 10.30 a.m. is a 90 degree rotation of the
minute hand, which is one quarter of the complete
360 degree rotation. The complete 360 degree rota-
tion represents one hour, and one quarter of a
rotation represents one quarter of an hour. On a
digital clock, however, the times 10.15 a.m. and
10.30 a.m. are represented with different numerals.
Nothing about the difference between the two sets
of numerals indicates what the difference in the
represented times is, unless one moves to the sep-
arate semantic domain of numbers, and subtracts
15 from 30.

Analogue representations can be constructed in
computers by using a data structure whose oper-
ations are analogues of the relations being repre-
sented. For example, consider a predicate logic
representation of items arranged in a row: Left

(desk, chair), Left(sofa, desk), Left (chair, stool), where
Left (x, y) means that x is to the left of y. To decide
the left-to-right arrangement of the stool and the
sofa requires a certain amount of search and infer-
ence. However if, instead, the Left relation were
represented by order in a list, the four relations
would be captured by the list (sofa, desk, chair,
stool), and the left-to-right arrangement of the
stool and the sofa could be decided by a linear
search. Some researchers have created systems
that can reason about diagrams or visual scenes
by representing them in two-dimensional data
structures where it is easy to rotate or otherwise
manipulate the figures. (See Analogical Reasoning,
Psychology of)

CONNECTIONIST REPRESENTATIONS:
LOCAL AND DISTRIBUTED

Connectionist representations are designed to
model the brain by using a large collection of inter-
communicating units, each of which is a model of
a neuron. These units are organized in layers: an
input layer, an output layer, and one or more
‘hidden’ layers. Each unit maintains an activation
level and connections to other units, which may be
on the same layer (in some versions) or on layers
closer to the output layer. Each connection is also
given some weight, which might be negative or
positive. The network as a whole makes some deci-
sion or characterizes its input. Input is achieved by
adjusting the activation level of the units in the
input layer. When the activation of a unit exceeds
some threshold (which may be different for differ-
ent units), an activation is passed to all outgoing
connections, where it is adjusted by the connection
weights, and passed to the connected units, etc. The

Knowledge Representation 679

final decision or characterization is read off the
units in the output layer. Networks are trained
by adjusting the weights on the connections by
one of several possible feedback mechanisms. (See
Connectionism; A00068; A00163)

Local connectionist representations are distin-
guished by the requirement that each decision or
characterization is represented by a single unit, and
each input unit also represents some concept of the
input. For example, in a lexical decision task, each
input unit might represent a particular letter in a
particular position, and each output unit might
represent a particular word.

In a distributed connectionist representation,
each represented decision or characterization is
represented, not by a single unit, but by a pattern
of unit activations. Distributed representations
have been found to generalize what they have
learned better than local representations do.

Connectionist representations are considered
subsymbolic rather than symbolic representations.
As such, they are not as capable of representing and
reasoning about beliefs as the other representation
techniques discussed in this article. (See Symbolic
versus Subsymbolic; Bayesian Belief Networks;
Language, Connectionist and Symbolic Repre-
sentations of)

MANAGING CHANGE

Consider again some of the information in Figures
1 and 3, namely that birds fly, but penguins do not.
If you learn that Opus is a bird, you are justified in
concluding that Opus can fly. However, if you then
learn that Opus is a penguin, you must reject your
conclusion that Opus can fly. This is an example of
an interesting phenomenon where a new piece of
information causes the rejection of a previous con-
clusion. It is sometimes said that, in this case, the
new piece of information defeats the old conclusion.
This phenomenon often occurs in the presence of
general information to which there are exceptions.
The general information is sometimes referred to as
default knowledge, and conclusions drawn from the
general information are sometimes said to be defeas-
ible. From the point of view of classical propos-
itional and predicate logic, this situation is most
unusual, since these logics are monotonic, meaning
that if a conclusion can be drawn from some set of
beliefs, it can also be drawn from any superset of
those beliefs. (Just ignore the extra beliefs.) At-
tempts to formalize defeasible reasoning have
been made by knowledge representation research-
ers, and this remains an active area of research. (See
Non-monotonic Logic)

Removing default conclusions that have been
defeated by more specific information is just one
possible reason that information might have to be
removed from a knowledge base. If the knowledge
base is a model of the world, or a model of some
agent’s beliefs about the world, it may be that the
world changes because of the action of the agent or
some other agent. If the knowledge base is a model
of some agent, or a collection of beliefs input by
some agent or agents, it may be that the agent or
agents have changed their beliefs. If the knowledge
base is a collection of facts and ‘laws’ of some
developing theory, it might be found that some of
the facts and laws are contradictory, and the theory
must be revised. Removing information from a
knowledge base seldom involves merely removing
a single proposition (fact, rule, law). If additional
propositions have been derived from the one to be
removed, they might need to be found and re-
moved also. If the proposition to be removed was
derived from other propositions in the knowledge
base, or could be rederived from them, they must
be found, and at least one of them must be removed
or else the removed proposition could be reintro-
duced. The first systems that knowledge represen-
tation researchers implemented to handle these
complications of removing information from
knowledge bases were called ‘truth maintenance
systems’. More formal studies, carried out by com-
puter scientists, logicians, and philosophers go
under the name ‘belief revision’.

Using belief revision or truth maintenance to
deal with a changing world is appropriate if the
knowledge base always represents the current time,
and should be changed as time moves. However,
this eliminates the possibility of representing what
was the case at past times. To do that, time must be
represented explicitly, and propositions that hold
only for some specific time must indicate so expli-
citly. To do this, specialized logics including tem-
poral logics and modal logics have been used.
Another logic for this purpose, popular among
knowledge representation researchers, is situation
calculus, in which predicates that can change are
given an extra argument that ranges over situ-
ations. For example, if a particular book is on a
particular table in a particular situation, this
might be represented as On(book 1, table3, S5). In
situation calculus, an action is considered to be a
function from the situation before the action is per-
formed to the situation afterward. (Some versions
of situation calculus use slight variations of this.)
For example, the action pickup(book1, S5) might rep-
resent the situation that exists after picking up
bookl in situation S5. We would then have —-On

680 Knowledge Representation

(book1, table3, pickup(bookl, S5)). Stating the effects
of actions is fairly straightforward. However,
stating what is not changed by an action is more
involved. For example, if it is the case that In(fable3,
room2, S5), is it the case that In(table3, room2, pickup
(book1, S5))? The problem of specifying what is not
changed by an action has been called the ‘frame
problem’, not to be confused with the frames used
as schema representations. (See Frame Problem,
The)

Further Reading

Addanki S (1992) Connectionism. In: Shapiro SC (ed.)
Encyclopedia of Artificial Intelligence, 2nd edn,
pp- 268-274. New York, NY: John Wiley.

Bobrow DG and Collins A (eds) (1975) Representation and
Understanding: Studies in Cognitive Science. New York,
NY: Academic Press.

Brachman R] and Levesque HJ (eds) (1985) Readings in
Knowledge Representation. San Mateo, CA: Morgan
Kaufmann.

Cercone N and McCalla G (eds) (1987) The Knowledge
Frontier: Essays in the Representation of Knowledge. New
York, NY: Springer-Verlag.

Davis E (1990) Representations of Commonsense Knowledge.
San Mateo, CA: Morgan Kaufmann.

Hobbs JR and Moore RC (eds) (1985) Formal Theories of the
Commonsense World. Norwood, NJ: Ablex.

Gérdenfors P (ed.) (1992) Belief Revision. Cambridge, UK:
Cambridge University Press.

Iwanska LM and Shapiro SC (eds) (2000) Natural
Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language.
Menlo Park, CA: AAAI Press/MIT Press.

Kramer B and Mylopoulos] (1992) Knowledge
representation. In: Shapiro SC (ed.) Encyclopedia of
Artificial Intelligence, 2nd edn, pp. 743-759. New York,
NY: John Wiley.

Lehmann F (ed.) (1992) Semantic Networks in Artificial
Intelligence. Oxford, UK: Pergamon Press.

Levesque HJ and Lakemeyer G (2000) The Logic of
Knowledge Bases. Cambridge, MA: MIT Press.

Lifschitz V (ed.) (1990) Formalizing Common Sense: Papers
by John McCarthy. Norwood, NJ: Ablex.

Reichgelt H (1991) Knowledge Representation: An Al
Perspective. Norwood, NJ: Ablex.

Rumelhart DE and McClelland JL (eds) (1986) Parallel
Distributed Processing 2 vols. Cambridge, MA: MIT
Press.

Sowa JF (ed.) (1991) Principles of Semantic Networks:
Explorations in the Representation of Knowledge. Los Altos,
CA: Morgan Kaufmann.

Sowa JF (2000) Knowledge Representation: Logical,
Philosophical, and Computational Foundations. Pacific
Grove, CA: Brooks/Cole.

Knowledge Representation,

Psychology of

Introductory article

Arthur B Markman, University of Texas, Austin, Texas, USA

CONTENTS
The basics of representation
Types of representations

Using representations

‘Knowledge representation’ is an umbrella term for
the methods by which information is stored in the
mind for later use.

THE BASICS OF REPRESENTATION

From the beginning of the study of psychology, phil-
osophers and psychologists have been interested in
the way information is stored in the mind. In his

Theaetetus, the Greek philosopher Plato described
memory as a wax tablet, in which information is
stored as impressions in the wax. In this proposal,
the information remained in memory for as long
as the impression remained in the wax. Later in
the same work, Plato suggested that memory is like
an aviary with birds flying around it. Retrieving
information was like grabbing a bird from the
aviary.

