MODERN TRENDS IN INFORMATION TECHNOLOGY
PVS Rao, P Sadanandan (Editors)

Tata McGraw-Hill Publishing Company Ltd

©CSI, 1988

Discussing, Using and Recognizing Plans in
SNePS Preliminary Report - SNACTor : An Acting System

Deepak Kumar, Syed S. Ali, Stuart C. Shapiro
State University of New York at Buffalo, USA

Abstract

This project involves designing a system for discussing, using, and recognizing plans using

a semantic network knowledge representation paradigm. We consider plans as mental ob-
jects that can be recognized and inferred from natural language dialog in a specific domain.
Plans are represented and generated in a planning formalism using SNePS (the Semantic -
Network Processing System). In this primilinary reportwe describe SNaCTor (SNePS Actor)
an extension to SNePS, designed for generating and acting plans. The planning formalism
used is loosely based on the GRAPPALE Plan Formalism (GPF) developed at the Univer-
sity of Massachusetts.

1. Introduction

This project involves designing a system for discussing, using, and recogniiing plansina semantic
network knowledge representation paradigm. The objectives of this work are: ‘

(1) Design a representation for plans and rules for reasoning about plans within an estab-
" lished knowledge representation/reasoning (KRR) system; enhance the KRR system so
that it can act according to such plans; ~

(2) Write a grammar to direct an established natural language processing (NLP) system to
analyze English sentences about plans and represent the semantic/conceptual content of
the sentences in the representation designed for objective (1); the resulting NLP system
should be able to: accept sentences describing plans, and add the plans to its "plan
library"; answer questions about the plans in its plan library; accept sentences describing
the actions of others, and recognize when those actions constitute the carrying out of a
plan in its plan library.

The KRR system being used is SNePS [SHP79], and the NLP system to be modified for this pur-
pose is CASSIE[SHP87]. This project is being carried out jointly by teams at the University of
Massachusetts (UMass) and SUNY at Buffalo (UB). The UB group is responsible for enhancing
SNePS/CASSIE according to the objectives listed above. The UMass group is responsible for test-

178 Deepak Kumar, SS Ali, SC Shapiro

ing the enhanced system in the specific domains of the Blocks World, tutoring, and space launch
narratives.

In this report we describe our knowledge representation scheme and the SNePS Actor (SNACTor)
an extension to SNePS, designed for acting out plans generated by the planning formalism. The
planning formalism used-is loosely based on the GRAPPLE Plan Formalism (GPF) [HUF87].

2. Knowledge Representation

The design of our representations is based on a theory of intensional propositional knowledge rep-

resentation in SNePS [SHP87]. It is a major hypothesis of the cutrent project that plans are mental
* objects that can be represented in such a formalism. We can discuss plans with each other, reason
about them, formulate them, execute them, and recognize when others seem to be following them.
An Al system, using SNePS as a basis for its belief structure, should be able to do these things.

Plans, being structures of actions, states, and other plans, reesemble reasoning rules, which are
structures of beliefs. However, they are different in important ways: reasoning rules are rules for
forming new beliefs based on old beliefs, plans are rules for acting; a belief, once formed, need not
be formed again, an action may need to be performed multiple times; the temporal order of assess-
ing old béliefs_ and forming new beliefs is flexible, the temporal order of performing actions is cru-
cial to the correct carrying out of a plan. The representation of reasoning rules in SNePS, and the al-
gorithm for reasoning according to them, implemeted in SNIP - SNePS . Inference Package, have
been carefully designed to make reasoning flexible and efficient. In this project, we are undertaking
a similar design of the representation and use of plans. The tesulting system called SNACTor (for
SNePS ACTor) is described here.

2.1 The Representation of Acts

Our representation of acts is based on that of [ALM87]. He distinguishes the nodes for an act, the
event of which act’s being performed by a particular actor at a particular time, and the proposition
of that event’s having occurred. The benefit of this distinction is that the same node may be used to
represent the same act (as required by the Uniqueness Principle [SHP79]), no matter who performs
it, and no matter when performed. Figure 1 shows our representation of an act as node with an AC-
TION arc to a node that represents the action, and OBJECT], ...,OBJECTN arcs to the required ob-
jects of the action. For example, the SNePSUL (the SNePS command interpreter language) com-
mand for building a node representing the act of saying "FOO" is:

(build action say objectl1 FOO)

It is necessary to distinguish between primitive and complex (non-prmitive) actions. A primitive
action is one that the system is capable of performing. The system is not capable of performing a
complex action, so to carry out a complex action, the system must decompose it into a structure of
other actions, which, eventually, must be primitive. We assert that an action is primitive using the
standard SNePS MEMBER-CLASS case frame [SHP87]. To assert that "saying" is primitive, we
execute the SNePSUL command:

(build member say class primitive)

Discussing, Using and Recognising Plans in SNePS 179
Preliminary Report - SNACTor : An Acting System

Primitive actions may be supplied to the sys-
tem by programming them in Lisp. One simple
primitive action we have written is say -- the
action of printing something on the output

: ACTIO 5
device, used as an example above. The code OBIECT1 OBJECTn
defining say is:

(defun say (n) <action> <objectl> <objectn>

(format t"~&~A~%"
(first-atom (pathget n’object1))))

Figure 1. Mx Represents the act of performing of

Several things may be noted about this defini- <action>

tion: the action takes an act node with itself as

action as its argument so the function call of acts is consistent regardless of the number of argu-
ments the action takes; pathget takes a node and a path of arc label, and returns the list of nodes at
the end of the given path from the given node; first-atom returns the first node in the list under the
assumption that each argument of a say act will be a single node. In the remainder of this report, we
will refrain from showing Lisp code of primitive acts, but will describe them in the format:

(say <node>) Primitive-action
"Prints <node> on the output device”

The arguments will be shown in a way that suggest their types.

We distinguish between actions that the system performs on the world (simulated by printing onto
the output device), such as pickup and putdown (in the Blocksworld), and internal, mental actions,
such as believe. The acting algorithm schedules the believing of the effects of acts after performing
each act. Thus the believe primitive action looks like: :

(believe <proposition>) Primitive-action
"causes the system to believe <proposition>, and removes from the system
any belief in <proposition’s> negation."

We also have several "intention forming" actions whose effects are to schedule the execution of
acts, modeling a cognitive agent forming the intention of performing that act. For example, a cogni-
tive agent may intend to achieve a goal. For that purpose, we have the achieve action:

(achieve <proposition> Primitive-action

"Finds or infers a plan for achieving a state in which the <proposition>

holds, and schedules the carrying out of that plan.”

Some other intention-forming actions crucial to our system are control actions. Control actions
allow us to represent and carry out structured plans. Our repertoire of control actions consists of
snsequence, snif, select, and with. Snsequence is the primitive action of performing two sub-acts in
sequence:

(Snsequence <actl> <act2>) Primitive-action
"Schedules the execution of <act1> followed by <act2>"

180 Deepak Kumar, SS Ali, SC Shapiro

Since either or both sub-acts can themselves be snsequence acts, we have a general structure for
plans of sequential actions. Snifis a conditional branching action:

(snif <condition> <act1> <act2>) Primitive-action
"<condition> is a proposition. <actl> is scheduled

. if the \,condition> '
is believed to be true, <act2> is scheduled otherwise”

Select can be used to specify alternate actions towards the fulfillment of a particular goal:

(select <a¢t1>_ <act2>... <actN>) Primitive-action
"<actl> ... <actN> are alternative acts that may achieve the same goal.
<actl> is scheduled first and if it fails, other alternatives are tried"

The with control action has a sensory component that probes the world (external or internal) to
determine the objects of its action. For example, to remove a stack of blocks from the top of a given
block in a tower, we neéd to look at the structure to determine the top block, beforé we can remove
it from the top. The syntax of with looks like: ~ N h
(with <probe-act> <do-act>) Primitive-action
"The objects on which the <do-acts> is to be V
performed are determined by the <probe-act>"

2.2 The Representation of Plans at
A complete action is performed by decomposing it into a
structure of simpler actions, which constitute a plan for
carrying out the complex action. Our representation
presupposes the hypothesis that this decomposition must
take the objects of the action into account, but need not
take the actor into account. Fig. 2 shows the decomposi-
tion relation that holds between two acts. The act at the
end of the PLAN arc must be more decomposed than the
act at the end of the ACT arc. e.g. suppose act 1 is com-
plex, while actz is primitive. (We say that an act is primi-

act2

Figure 2. Mx represents the proposition
that act2 constitutes a plan for carrying
out act!l. Act2 must be more decomposed

than actl.
tive or complex just when_its action is.) We can use a
SNePS rule to assert that the plan for "asserting” anything N
is to say it by executing: <proposition>
GOAL
(build avb $x)
act (build action assert objectl *x)
plan (build action say objectl *x)
PLAN
This kind of plan is one for carrying out a complex action. <act>
Another kind of plan is one for achieving some state of

affairs. The representation of that kind of plan is shown in
Fig. 3. For the representations of propositions, we use the

Figure 3. Mx represents the proposition
that <act> constitutes a plan for achiev-
ing a state in which <proposition> is true

Discussing, Using and Recognising Plans in SNePS 181
Preliminary Report - SNACTor : An Acting System

constructs shown in this report and those shown in

[SHP87]. act

ACT
The system may already know a plan for a goal or com-

plex act. However, if it does not already have such a
plan, it may try to produce it by reasoning about the

complex act or goal, effects of acts, etc. Such reasoning EFM
constitutes the planning activity. Effects of an act may
be asserted into the SNePS network just like any other
beliefs. Initially, we use the representation shown in
Fig. 4, although it is certainly true that the effects of an Figure 4. Mx represents the proposition
act may depend on the actor, so this representation is t0o that the effect of performing the <act> is
simplistic. Another simplifying assumption we are that the <proposition> becomes true
making is that all effects of a performed act occur.

<proposition>

3. SNACTOR : The SNeP$S Acting System

The acting system is composed of an acting executive (called "snact) and a quéue of acts to be car-
ried out. The lop-level algorithm is: '

SNACT(QUEUE) ::=
REPEAT
remove FIRST-ACT from QUEUE
IF FIRST-ACT is primitive THEN
DO FIRST-ACT
INFER effects of FIRST-ACT,
and schedule the believing of them
ELSE {FIRST-ACT is complex}
DEDUCE plans for carrying out FIRST-ACT,
CHOOSE an appropriate plan and add it to QUEUE
ENDIF
UNTIL QUEUE is empty.

Since more than one plan may be found, we have deﬁﬁ¢d a choose-plan operation. Choose-plan
can be made to use heuristics. |

4. The NLP System

The natural language processing (NLP) system is a well- established augmented transition network
(ATN) parser [SHP82]. A grammar for language associated with planning in Blocksworld (based
on a test suite demo and the existing grammar) is in the initial stages of development.

182 Deepak Kumar, SS Ali, SC Shapiro

Currently, the SNACTor system interacts with the user with SNePSUL commands. The intent of
the plan grammar is to provide a "front-end" for discussing, using and recognizing plans in English
which will generate the appropriate SNePSUL commands transparently to the user.

5. Conclusions

Our representation distinguishes actions, acts propositions, decomposmon (act-based) plans, and
‘goal-oriented (state-based) plans. It also distinguishes between primitive actions/acts and complex
actions/acts. We have actions that the system pexforms on the world, and internal, mental actions.
We also have intention-forming actions, such as achieve, whose effects are to place acts on the act
queue. The intention- forming actions snsequence, snif, select and with are control actions that per-
mit us to represent and perform structured plans. ' '

Our next tasks are clear. We will change the current CASSIE grammar so that conversations can be
carried out in English instead of in SNePSUL. We will change our representation of plans so that
advanced planning can be carried out. We will begin investigating the use of these plans to recog-
nize when other actors are carrying out plans the system knows about. We will begin representing
plans from the tutoring domain.

References

[ALMBS87] Almeida, M.J. Reasoning about the Temporal Struéture of Narratives, Tech.
Rep. No. 87-10, Dept. of Computer Science, SUNY at Buffalo, NY, 1987

[HUF87] Huffd, K.E. & Lesser, V.R. The GRAPPLE Plan Formalism, COINS Technical
Report 87-08, Dept. of Computer and Information Sc., U. Mass, Amherst, MA,
1987

[SHP79] Shapiro, S.C. The SNePS semantic network processing system, In N.V.
Findler, ed. Associative Networks: The Representation and use of Knowledge by
computers, Academic Press, New York, 1979, 179-203

[SHP82] Shapiro, S.C. Generalized augmented transition network grammars for
generation from semantic networks, Americal J. of Computational Linguistics
8, 1 (January-March 1982), 12-25

[SHP87] Shapiro, S.C. & Rapaport, W.J. SNePS considered as a fully intensional

propositional semantic network, In G. McCalla & N. Cercone, eds. The
Knowledge Frontier: Essays in the Representation of Knowledge, Springer-Ver-
lag, New York, 1987,262-315

