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Abstract 

A package of LISP functions, collectively 
called MULTI, which extends LISP 1.5 to 
multiprogremming is presented. MULTI defines the 
notion of a process within a LISP implementation 
using function invocation as the only control 
primitive. A process is an executable entity 
consisting of a process template and a set of 
register values. The process template defines the 
operations the process carries out. Process 
environments are saved in what can be viewed as 
function call instances, i.e. LISP forms which 
have the name of a process template in functional 
position and the register values following it. The 
flexibility of this simple conceptualization of 
processes is demonstrated by several examples which 
use MULTI to implement recursion, backtracking, 
generators, agendas and AND/OR graph searching. 
The implementation of MULTI does not assume that 
the host LISP system provides any data or control 
environment saving mechanisms such as FUNARG or 
INTERLISP's spaghetti stack. Thus, MULTI is 
portable to other LISP systems. 

is OR, could be proved by trying to show each of 
the P.'s in "parallel" and terminating the proofs 
of al~ the other disJuncts as soon as any one is 
proved. This "chronological" approach to 
disjunction is similar to the OR of Friedman and 
Wise[9] and the EITHER of Baker and Hewitt[2] which 
returns true as soon as any disJunct evaluates to 
true. 

This paper presents a general overview of 
MULTI and gives several examples. The examples are 
intended to show the flexibility of the system and 
to demonstrate the utility of the notion of a 
process in programming. We are not proposing MULTI 
as a progr~mmlng language but rather explaining in 
detail a system that we have been using for several 
years. Our current implementation of MULTI has 
been influenced by practicality, i.e. how to 
interface with ALISP [16] and how to write, debug 
and maintain programs which use MULTI. Debugging 
facilities available to a MULTI user in ALISP are 
detailed in a separate report [21]. 

2. General DescriDtion of MULTI 

This material is based on work supported in part by 
the National Science Foundation under Grant No 
MCS78-02274. 

I. Introduction 

The motivations of this paper are twofold. 
First, it describes a package of functions which 
enables a LISP program to define and use processes. 
Vaguely, a process is an instance of a function 
invocation (see Section 2). In general, the 
ability to manipulate processes yields various 
control structures such as recursion, backtracking, 
coroutines and generators. The package described 
here is transportable (with minor modification) to 
other LISP systems because it relies on function 
invocation as the only control structure primitive. 
In fact, we have implemented MULTI in LISP 1.6124], 
UTLISP[10], and ALISP[16]. A second motivation is 
the desire to have a flexible control structure 
available for use in artificial intelligence 
programs. Here, our primary objective was to 
provide a facility for use in writing a deduction 
system for the SNePS semantic network processing 
systam[26]. For example, the formula (PI v P_ v 
... v Pn ), where the Pi are propositions and ~v" 

MULTI is a LISP based multiprocessing system 
designed for use as the control structure of a 
deduction system [29]. Strictly speaking, MULTI 
adds multiprogramming capabilities to LISP 1.5 [20] 
and Standard LISP[18]. MULTI consists of a simple 
evaluator, system primitives~ a scheduler, and a 
debugging facility. The evaluator continually 
executes processes from a process queue until the 
queue becomes empty. System primitives include 
functions for creating processes, for scheduling 
processes to be executed, and for manipulating 
local variables or registers. The scheduler 
inserts a process into the process queue. 
Debugging facilities include a trace package and a 
break facility. 

Conceptually, a MULTI process is similar to a 
"computational frame" [32] which consists of an 
"action", a "datum" or argument(s), "bindings", and 
a "continuation". The action specifies some task 
to be performed. The bindings define an 
environment in which local identifiers are given 
values. The continuation is a reference to another 
computational frame where processing is to continue 
upon completion of the action. Other sources of 
influence include the "activation record" concept 
of ALGOL [23] and the class concept of SIMULA [6]. 
An activation record generally contains local data, 
parameters, return point, temporary storage, and 
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code to be executed. In SIMULA, classes are 
procedures which can have several instances active 
simultaneously. In a sense, classes are the 
obvious extension of ALGOL procedures. Instances 
of a particular class are called "objects". Once 
an object is created it remains in existence until 
all references to it have been severed. With the 
concept of classes, SIMULA includes control 
primitives which allow coroutine activity. MULTI 
treats processes like objects and the basic 
structure of a process is akin to a computational 
frame or activation record. Kupiers [17] states 
that SIMULA also influenced the design of so called 
"actor languages", ACTORS [12,13] and SMALLTALK 
[ 1 5 ] .  

A distinction is made between the definition 
of a MULTI process and a particular instance of a 
process. The term "process template" will be used 
to refer to the definition of a type of a process. 
A process template includes several local registers 
(variables) among which must be a NAME: and a 
CLINK: register. The NAME: refers to an action, a 
LISP function to be executed. The CLINK: specifies 
the continuation, another process, to which the 
process will return control. Also, the CLINK: 
serves as a communication link to another process. 
The remaining registers comprise the local 
environment. The term "process" refers to an 
instance of a process template with suitable values 
stored in its registers. A process is an 
executable entity; a process template is not 
executable. A similar distinction is made in 
SIMULA between objects and classes. In MULTI, each 
process is assigned a unique identifier whose NAME: 
identifies its process template. The identifier's 
LISP value is an ordered llst of the values of its 
registers. 

A process is not eligible for activation until 
it is placed in the process queue. Any process may 
create as many other subprocesses as it wishes, 
specifying for each subprocess any other process 
the parent process "knows" about as a continuation. 
A process remains in the system until no references 
to it exist, when it becomes eligible for LISP 
garbage collection. 

The LISP function MULTIP implements the basic 
MULTI execution cycle which consists of selecting a 
process from the process queue and running it. 
Since the process queue is assumed to be ordered, 
MULTI always selects the first process on the 
queue. To execute the selected process, the 
process template is applied to the value of the 
process' identifier. MULTIP continues selecting 
and executing processes until the process queue is 
empty. 

A MULTI process is a non-interruptable 
computation. This assumption makes a process 
similar to a procedure in that every execution of a 
process must run to completion and if a process is 
reactivated then it must be restarted from the 
beginning of its code. The reason for the 
completion assumption is to allow arbitrary LISP 
functions as process templates without writing a 
special process template interpreter or rewriting 
the LISP interpreter. 

In general, a coroutine is a procedure which 
is suspendable in the midst of its execution. 
Thus, coroutines seem to violate the completion 
assumption. In MULTI, there are a number of ways 
to specify a coroutine with multiple parts. The 
simplest method is to create a new process which 
has as its NAME: the process template which 
implements the next part of the coroutine and to 
make the continuation of the current process the 
continuation of the new process. For example, 
Figure la shows a process PI, which is the current 
process and Which is NAME:d A, and its CLINK:, P2. 
The arrows between processes in this diagram (and 
in subsequent diagrams) represent CLINK:s. Suppose 
PI is a multipart coroutine and the NAME: of the 
next part is B. Suppose further that PI creates a 
new process, P4, which PI makes the current 
process. By making P4's CLINK: a B process, P3, 
P1's continuation can be scheduled when P4 
terminates. The resulting control set is shown in 
Figure lb. When the continuation of a coroutlne 
has the same registers, an equivalent effect can be 
obtained by reNAME:ing the current process. This 
results in the control set shown in Figure Ic. In 
the remainder of the paper we use the term 
continuation to refer both to the value of a 
process' CLINK: and to the NAME: of the next 
process template in a coroutine. In the current 
example, P2 is the continuation of PI and B is the 
continuation of A. 

Finally, another implementation of coroutines 
is to include a state register (distinct from the 
NAME: register) which a process uses to select code 
to execute. Fikes [7] implemented coroutines for 
use in a modelling system in just this way. 
However, the implementation relied on FUNARG to 
save local enviro~ents, i.e. values of registers. 

3. MULTI Primitives 

Before discussing some example uses of MULTI 
we give a detailed presentation of the MULTI 
primitives. DP is a function which defines a 
process template. It is analogous to DE in most 
LISPs. Figure 2a gives an example definition of a 
MULTI analogue of LISP's PLUS. The effect of the 
call to DP is to define MPLUS as a process template 
with registers At, A2, and ANS (besides NAME: and 
CLINK: which DP adds). The process template 
consists of a corresponding LISP function MPLUS 
shown in Figure 2b. Note that NAME: and CLINK: 
have been added to the argument llst and that an 

P2 p? 
I I I I 

current ---~ ~ current 

(a) (b) 

current~ ~I~ 

~-~l P~'~ I 
(c) 

Figure I 
An implementation of coroutlnes using continuations. 
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e x t r a  fo rm h a s  b e e n  a d d e d  t o  t h e  f u n c t i o n  
d e f i n i t i o n .  The e x t r a  fo rm i n  t h e  LAMBDA 
expression version of the process template recovers 
the possibly changed register values when the 
process terminates (see below). 

MULTI's evaluation loop is the LISP function 
MULTIP, a function of one argument, which is a list 
of process identifiers. This llst is bound to 
MULTIP's process queue, EVNTS. Each execution 
cycle consists of removing the first process frum 
EVNTS, making it the value of the variable CURNT:, 
and applying the process template to the value of 
the process identifier. Since a process template 
is a LISP function with register names as lembda 
variables, and the value of a process identifier is 
an ordered list of register values, the effect is 
that during execution, a process can use its 
register names to refer to their values, and CURNT: 
to refer to itself. MULTIP terminates when, at the 
beginning of a cycle, EVNTS is NIL. This can occur 
because no new processes are scheduled by the last 
ones executed, or because some process 
intentionally sets EVNTS to NIL. In the MPLUS 
example above, if "P;" is the identifier of an 
MPLUS process, (MULTIP (LIST 'PI)) would cause PI 
to execute. 

The functions REGFETCH and REGSTORE allow 
access to registers of a given process. REGFETCH, 
a function of two arguments, a process identifier 
and a register name, returns the current value of 
the specified register. REGSTORE takes a third 
parameter and changes the value of the specified 
register. In MPLUS, (SETQ ANS (PLUS AI A2)) could 
be replaced by (REGSTORE CURNT: 'ANS (PLUS 
(REGFETCH CURNT: 'AI)(REGFETCH CURNT: 'AS))). 

The function NEW creates a new instance of a 
process template. For the present example, (NEW 
'MPLUS NIL 1 3 NIL) creates a new MPLUS process 
with a null CLINK:, addends I and 3, and a null 
ANS. NEW returns the unique identifier of the new 
process .  

INITIATE invokes the scheduler to place its 
argument, which is a process identifier, on the 
process queue. It does this by calling the 
function SCHEDULE. SCHEDULE may be defined by the 
MULTI user to implement various scheduling 
regimens. Figure 3 shows the default SCHEDULE, 
which results in a flrst-ln-first-out regimen. 
Section 4.2 presents an example which redefines 
SCHEDULE. 

(DP MPLUS (At A2 ANS) 
(SETQ ANS (PLUS AI AS)) ) 

(a) 

( LAM~DA (NA~: CLINK: AI A2 ANS) 
(SETQ ANS (PLUS AI AS)) 
(SET CURNT: (LIST NAME: CLINK: AI A2 ANS)) ) 

(b) 

Figure 2 
(a) Definition of process template; (b) resulting LAMBDA expression. 

4. 

We now present a series of examples which 
demonstrate MULTI's ability to implement control 
structures of general utility. 

4.1 Backtraekln~ and Coroutines - The n oueens 
ancblm 

Our first example implements a solution to the 
n queens problem -- find a way to place n queens on 
an n by n chessboard so that none is attacking any 
other, i.e. so that no two are on the same row, 
column or diagonal. Our solution is roughly based 
on Wlrth's [33]. The first two process templates, 
QUEENS and FAIL, implement a coroutlne whose first 
part begins the solution and whose continuation is 
executed only if no solution exists. The two 
process templates are shown in Figure 4. (See [25] 
for definition of PRIN3.) Note that QUEENS 
specifies its continuation by reNAME:ing itself. 
Three other process templates implement a coroutine 
in three parts -- START places a queen on its row, 
STEP moves its queen to the next non-attacked 
square, REPORT is executed only when the problem 
has been solved and reports where its queen is 
placed. The register COLS records the columns 
already attacked by some queen. PDIAGS and MDIAGS 
record the attacked diagonals. These process 
templates appear in Figure 5. (See [16], [25] or 
[34] for the definition of REPEAT; it is similar 
to PROG in that its first argument is a list of 
local variables.) 

Backtracking is implemented in the coroutine 
by expecting success and propagating failure. When 
a STEP process places a queen on a column, it 
prepares for success by making its continuation a 
REPORT process. When a STEP process fails, i.e. 
COL becomes 0, it propagates failure to its CLINK: 
by changing its CLINK:'s NAME: to STEP, which 
resumes looking for a new column on which to place 
its queen. 

Evaluation of (MULTIP (LIST (NEW 'QUEENS NIL 
8))) results in the output: 

PUT A QUEEN ON ROW I AND COLUMN 5 
PUT A QUEEN ON ROW 2 AND COLUMN 7 
PUT A QUEEN ON ROW 3 AND COLUMN 2 
PUT A QUEEN ON ROW 4 AND COLUMN 6 
PUT A QUEEN ON ROW 5 AND COLUMN 3 

(DE SCHEDULE (PROCESS QUEUE) 
(COND 
((NULL QUEUE) (LIST PROCESS)) 
(T (CONS (CAR QUEUR)(SCHEDULE PROCESS (CDR QUEUE))) ))) 

(DP 

Figure 3 
Definition of default scheduler. 

QUEENS (N) 
(INITIATE (NEW 'START CURNT: N N (ADDI N) ;Create and schedule 

NIL NIL NIL) ) ;initial START process. 
(SETQ NA~: 'FAIL) ) ;Make continuation a FAIL process. 

(DP FAIL (N) 
(PRIN3 "THE" *N "QUEEN PROBLEM IS IMPOSSIBLE" <>) ) 

Figure 
The process templates QUEENS and FAIL. 
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PUT A QUEEN ON ROW 6 AND COLUMN I 
PUT A QUEEN ON ROW 7 AND COLUMN 4 
PUT A QUEEN ON ROW 8 AND COLUMN 8. 

Figure 6 shows a snapshot of the processes when a 
STEP process is working on row 3. The N register 
of the STEP and REPORT processes are not shown. 
The evaluation of (MULTIP (LIST (NEW 'QUEENS NIL 
2))) produces the response: 

THE 2 QUEENS PROBLEM IS IMPOSSIBLE. 

4.2 A~endas - Sieve of Eratosthenes 

A second example is an implementation of the 
Sieve of Eratosthenes algorithm for listing prime 
numbers. The basic algorithm is to declare 2 prime 
and then mark all multiples of 2 up to some maximum 
as not prime. The next step is to advance to the 
first number not marked and repeat the declaration 
and marking phases for this prime, and so on. The 
sieve is easy to implement in a language such as 
PASCAL [14] using an array as the primary data 
structure. However, such an implementation 
requires space proportional to the maximum number 
to be tested, i.e. the length of the array. Our 
implementation requires only one process per prime, 
so the space is proportional to the number of 
primes produced. 

We use the MULTI process queue and a scheduler 
with ordered insertion to generate the primes 
between 2 and some maximum N. This implementation 
is based on an example program described in a 
SIMULA reference manual [30] which uses the 
predeflned SIMULATION class. The basic notion is 
to use the simulation clock to represent the 
integers. Because there is no built in simulation 
class in MULTI, we effectively define one by 

(DP START (N ROW COL COLE PDIAGS MDIAG3) 
(COND ((ZEROP ROW) ;Done if ROW = 0 

(INITIATE CLINK:)) ;schedule REPORT process. 
(T (SETQ NAB: ~STEP) ;Otherwise make continuation STEP 

(INITIATE CURNT:))) ) ;and schedule it. 

(DP STEP (N ROW COL COLE FDIAGS MDIAGS) 
(COND 
((REPEAT NIL ;Search for free column. 

(SETQ COL (SUBI COL)) ;Initially COL = N÷I. 
UNTIL (ZEROP COL) 
WHILE (OR (MEMBER COL COLE) 

(MEMBER (PLUS ROW COL) PDIAGS) 
(MEMBER (DIFF ROW COL) MDIAOS))) 

(IF (EQ (REGFETCH CLINK: 'NAME:) 'REPORT) 
(REGSTORE CLINK: 'NAME: 'STEP)) ; Propagate failure. 

(INITIATE CLINK:)) ;If not found, force another solution. 
(T (SETQ NAME: 'REPORT) ;Prepare for success. 
(INITIATE ;If found, oreate new START process 

(NEW 'START 
CURNT: ;with 
N 
(SUBI ROW) ;next ROW, 
(ADDI N) ;irJ.tial COL off board and 
(CONS COL COLS) ;current COL and dlago~ala 
(CONS (PLUS ROW COL) PDIAGS) ;reserved. 
(CONS (DIFF ROW COL) MDIAGS))))) ) 

(DP REPORT (N ROW COL COLE PDIAGS ~IAGS) 
(PRIN3 "PUT A QUEEN ON ROW" IROW "AND COLUMN" *COL <>) 
(IF (EQ (REGFETCH CLINK: 'NARd:) 'REPORT) ;Report ROW and COLuan 

(INITIATE CLINK:))) ;and propagate reporting. 

Figure 5 
START, STEP and REPORT process templates. 

changing the scheduler to use an ordered queue. 
The ordering relation is based on the TIME: 
register, which every process in this example is 
required to have. 

The function SCHEDULE, shown in Figure 7, 
maintains an ordered list of processes based on the 
value of the TIME: register. Note that this 
definition of SCHEDULE overrides the default 
scheduling function (see Section 3). 

The top-level LISP function is PRIMES, shown 
in Figure 8. PRIMES lists all primes less than N. 
First, it prints that 2 is prime, initializes a 
PRIME process to start at TIME: 3 and schedules a 
termination process HALT to run at TIME: N. The 
three process templates, also in Figure 8, are 
PRIME, BLOCK and HALT. PRIME prints that its 
number, TIME:, is prime. It then creates a BLOCK 
process to prevent multiples of its TIME: being 
declared prime. The BLOCK process template creates 
a new PRIME process at TIME: + 2 if the TIME: of 
the next scheduled process is greater than the 
current TIME: + 2. The BLOCK process then 
reschedules itself to run at the next odd multiple 
of the TIME: of the PRIME process which created it. 
Essentially, the BLOCK processes are checking each 
odd number in the interval [3, N). The HALT 
process terminates the operation by emptying the 
process queue. The program can be made slightly 
more efficient if the scheduler advances a process' 
TIME: register so as to avoid scheduling more than 
one process at any given TIME:. Calling the 
function PRIMES with an argument of 1000 causes 160 
PRIME and BLOCK processes to be created each of 
which uses approximately 6 words of storage. The 
ordered list of processes in the queue "at a TIME: 
of 11" is ((PRIME nil 11) (BLOCK nil 15 6) (BLOCK 
nil 15 10) (BLOCK nil 21 14) (HALT nil 1000)). 

Others have described multilevel agendas 
[4,5], i.e. an ordered list of priority queues. 
To extend the notion of multilevel agendas, we 

FAIL P7~ 
In= 8 l 

R~gRT P~6 
row: 8; col: 8; ] row: 5:" col: 7; 
ools: (); pdlaga: ();I cols: (4 6 8); pdiags:(10 13 16) 
mdlags: () mdiaga: (2 1 0~ 

REPORT ~7 ~ STEP Pso 

cola: (8); pdiags: (16); cols: (7 4 6 8)1 
mdiags: (0) pdiags: (12 10 13 16); 

p785 J mdiags: I-2 2 1 O) 

Irow: 6; col: ~1 STEP P81 
REPORT 

cola: (6 8); ~iags: (13 16); row: 3; col: O; I 
mdiags: (I 01 cola: (5 7 ~ 6 8)" 

i pdiags: (9 12 10 ~3 16); 
mdiags: I-I ~2 2 1 0) 

Figure 6 
Snapshot of processes just after P81 changes P80 's NAME:. 

(DE SCHEDULE (PROCESS QUEUE) 
(COND 
((NULL QUEUE) (LIST PR~ESS)) 
((GREATERP (REGFET~ PR~ESS 'TIME:) 

(REGFETCH (CAR QUEUE) 'TIME:)) 
(CONS (CAR QUEUE) (SCHEDULE PR~ESS (CDR QUEUE)))) 

(T (CONS PROCESS QUEUE)))) 

Figure 7 
Scheduler for Sieve of Erastosthenes example. 

32 



define a ~ to be a type of MULTI process 
which has as the value of one of its registers a 
process queue. When a monitor is the CURNT: 
process, its process queue is the MULTI process 
queue. A monitor can perform any action on its 
process queue. Thus, a monitor can detect that its 
process queue is empty. The monitor itself is also 
a repository for processes. For example, all of 
the processes of a monitor can be suspended by 
suspending the monitor. Also, a monitor can appear 
on other monitors! queues giving a system the 
ability to have a scheduling mechanism with no a 
priori fixed number of queues. In this way, 
monitors can be used to create arbitrarily nested 
queue structures -- directed graphs of queues or 
trees of queues, as well as multilevel agendas. 
Monitors are the topic of further research. We are 
currently focusing on applications to the SNePS 
[26,29] deduction system. In particular, monitors 
will be used to implement connectives which require 
deductions based on "lack of knowledge", to 
recognize completed subproofs, to suspend and 
resume processing without resorting to searches to 
find relevant processes and to provide a mechanism 
for resource limited processing. 

4.3 f~manaZnna 

This example demonstrates the use of MULTI to 
provide a "generator" facility. A generator is a 
function which produces results one at a time, 
suspending itself so that it can later resume 
execution where it left off. Such a package is 
available in INTERLISP [31 ] where its 
implementation depends on the spaghetti stack [3]. 
In LISP implementations which do not have a unified 
data structure for saving data and control 
environments, such a generator package is generally 
not available. This section presents several 
functions which use the notion of a MULTI process 
to extend such LISP systems. 

There are several MULTI implementation 
alternatives for generators. The most primitive 
method involves writing MULTI process templates 
which behave as generators. A more sophisticated 
approach is to define generators as an abstract 

(DE PRIMES (N) 
(PRIN3 2) ;2 is prime. 
(MULTIP (LIST (NEW 'PRIME NIL 3 3) ;Call MULTI evaluator 

;with initial prime of 3 
(NEw 'HALT NIL N))) 

;and HALT at TIME: N. 
(PRIN3 <> <>)) 

(DP PRIME (TIME:) 
(PRIN3 * TIME:) ;PRIME'e TIME: is prime. 
(INITIATE (NEW 'BLOCK NIL TIME: (TIMES 2 TIME:)));Create and 

;schedule BLOCK process for 
;odd multiples of TIME:. 

) 

(DP BLOCK (TIME: MP:) 
(IF (GREATERP (DIFF (REGFETCH (CAR EVNTS) 'TIME:) TIME:) 

2) ;If next process' TIME: > current TIME:÷2 
(INITIATE (NEW 'PRIME NIL (PLUS 2 TIME:))));then TIME:+2 

;is prime. 
(SETQ TI~: (PLUS TIME: MP:));Is any case, BLOCK next odd 
(INITIATE CURNT:) ;multiple of correspondlng prime. 
) 

(DP HALT (TIME:) 
(SETQ EVNTS NIL) ) ;Make MULTI queue NIL to quit. 

Figure 8 
Process templates for Sieve of Erastosthenes. 

data type which allows nearly the same syntax as 
INTERLISP. 

First, consider what a process template which 
behaved as a generator would look like. It would 
take some input, apply some function to that input 
and produce a series of outputs, one per 
invocation. For example, the function LEAVES which 
returns the leaves of a tree when written in 
generator form, see Figure 9, "recursively" calls 
itself until a leaf is found. The leaf is then 
stored in the output register LEAF:. The answer 
produced by the generator can be accessed by using 
REGFETCH on the LEAF: register. 

The function PRINT-LEAVES, see Figure 10, uses 
the LEAVES generator presented above to print the 
leaves of a tree. Figure 11 shows the structure 
built by the initial LEAVES process just after 
process LI has found a leaf given the argument to 
PRINT-LEAVES is '((A B C) D E). The LEAVES 
processes are labelled for reference in order of 
creation. Note that this implementation requires a 
reference be kept t 9 the original process' 
identifier so that the generator can later be 
resumed. 

Three functions, GENERATOR, GENERATE and 
PRODUCE, are provided in INTERLISP which define 
generators. GENERATOR is a function which creates 
a control structure for a given generator function. 
(GENERATOR (LISTGEN '(A B C))) creates a spaghetti 
stack entry to treat the function LISTGEN as a 
generator. GENERATOR returns the unique internal 
identifier of the function instance which is the 
generator. No further action is taken. The 
function GENERATE takes as its argument a generator 

(DP LEAVES (TREE: LEAF:) 
( REPEAT NIL 

UNTIL (ATOM TREE:) 
(IF (CDR TREE:) 

(SETQ CLINK: (NEW 'LEAVES 
CLINK: 
(CDR TREE: ) 
'UNBOUND) ) ) 

(SETQ TREE: (CAR TREE:)) ) 
(SETQ LEAF: TREE:) ) 

Figure 9 
Simple form of LEAVES generator. 

(DE PRINT-LEAVES (TREE) 
(IF TREE 
(REPEAT (G) 

(SETQ O (NEW 'LEAVES NIL TREE 'UNBOUND)) 
BEGIN (MULTIF (LIST G)) 

(PRINT (REGFETCH G 'LEAF:)) 
WHILE (REUFETCH G 'CLINK:) 

(SETQ G (REGFETCH G 'CLINK:))))) 

Fig*re 10 
PRINT-LEAVES uses LEAVES as a generator. 

/3< 
E CO'NiL i- E NIL 1 ! 

, i J 

LEAV&CA LEAVES:  LEAVFE~ L2 

h . . _ , l ~  . . . .  (E c);  I k.-.~, ~ree: (D E); I 
" ~ leaf : UNBOUND ! 

Figure 11 
The LEAVES processes when LI finds a leaf. 
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identifier and runs the specified generator until 
the first call of the function PRODUCE. PRODUCE 
takes a single argument which it returns as the 
value of the generator. For example, the INTERLiSP 
generator version of a function which returns the 
top level elements of its argument one at a time 
could be defined as in Figure 12. 

Our implementation defines generators as an 
abstract data type. The function DG defines a 
generator. In the process of defining a generator, 
the process template for the generator is stored 
under the %G% property of the generator name. 
Reoursive calls to a generator are handled by 
defining a function associated with the name of the 
generator which creates a new generator process. 
For the LISTGEN example, the DG form in Figure 13a 
defines a process template which it stores under 
the %G% property of LISTGEN (see Figure 13b). DG 
also defines the LISP function shown in Figure 13c. 
(ALISP does not make the distinction between an 
atom's function value and LISP value. The 
plaoament of the process template on the property 
list is one way of avoiding this feature of ALISP.) 
The function GENERATOR creates a generator instance 
and returns a process queue of one element. The 
call (GENERATOR (LISTGEN '(A B C))) results in the 
MULTI process queue (PI) where PI is a process with 
a NAME: of LISTGEN. GENERATE takes a LISP atom 
whose v a l u e  is a process queue as input and runs 
the processes in the queue until the function 
PRODUCE is called. In this example, the MULTI 
execution loop is redefined in GENERATE. Thus, 
GENERATE takes the place of MULTIP. The reasons 
for this are to implement recursion by treating the 
MULTI process queue as a stack and to store the 
process template definition on the property list of 
the name of the process. The argument of PRODUCE 
is returned as the value of GENERATE and the 
generator variable, the argument of GENERATE, is 
updated to reflect the change in the process queue. 
For example, if the LISP atom G was assigned the 
result of the above call to GENERATOR then 
(GENERATE G) would return A with the generator 
variable G reassigned the new MULTI process queue. 

This set of functions is minimally sufficient 

(LISTGEN (L) 
(iF L THEN (PRODUCE (CAR L)) 

(LISTG~ (CDR L)))) 

Figure 12 
INTERLISP generator LISTGEN. 

(DG LISTGEN (L) 
(iF L (PRODUCE (CAR L)) (LISTGEN (CDR L))) ) 

(a) 

LISTGEN 
FLIST 
(SO% (LAMBDA (NA/~: CL~NK: L) 

(iF L (PRODUCE (CAR L)) 
(LISTGEN (CDR L))) 

(SET CURNT: (LIST NAME: CLINK: L)) )) 

(b) 

( LAMBDA %ARfiS~ 
(INITIATE (APPLY NEW (APPEND (LIST 'LISTGEN NIL) %ARGS%) ) )) 

(a) 

Figure 13 
(a)LISTGEN generator, (b)process template (c)and LISTGEN LISP function. 

to define generators but one would want to add 
other functions to the data type. For example, a 
function EDITG for editing the definition of a 
generator without all the extra registers and forms 
would be useful. 

As a final example of generators, consider the 
"same fringe" problem -- test the equality of the 
fringes (leaves) of two trees. Almost all 
purported solutions avoid the naive LISP solution 
which flattens the two trees and uses the EQUAL 
function. Although there is some disagreement over 
what kinds of solutions are admissable [1,19], it 
is clear that the most popular approach is to make 
a left to right scan of the leaves of the trees 
terminating with failure on the first pair of 
leaves which disagree [1,8,11,19]. We discuss this 
problem not to justify generators or processes but 
to show a very simple solution using the MULTI 
generator abstract data type. Figure 14 displays 
the FRINGE generator and the LISP function 
SAME-FRINGE. Our FRINGE generator is similar in 
spirit to an example FRINGE generator of 
Hewitt's[12]. Note that a generator terminates 
when the generator variable (queue) becomes NIL 
(empty). 

4.4 AND/OR Graph Processing 

A simple application of AND/OR graph searching 
is a rewriting problem [22]. The problem is to 
take an initial data base and apply productions 
until a resultant data base consists only of 
terminal symbols. Productions are rewrite rules 
which replace an occurrence of their left hand side 
with the symbols of their right hand side. Some 
sample productions which are later used in an 
example are: 

C->DL 
C-> Bm 
B->mm 

Z->BBm 
where "m" is terminal. Figure 15 shows a simple 
AND/OR graph. AND nodes are those nodes which have 
a bar across their outgoing arcs, e.g. the node 
labelled A in Figure 15 is an AND node. OR nodes 
are those nodes which are not AND nodes, e.g. B is 
an OR node. In the rewrite example, the AND nodes 
represent partial data bases and the OR nodes 
represent the application of a single production. 
What is interesting about this decomposition is 
that an OR node is satisfied when any one of its 
descendents is satisfied and an AND node is 
satisfied when all of its descendents are 

(DG FRINGE (TREE) 
( COND 
((ATOM TREE) NIL) 
((ATOM (CAR TREE)) (PRGDUCE (CAR TREE)) 

(FRINGE (CDR TREE))) 
(T (FRINGE (CAR TREE)) (FRINGE (CDR TREE)))) ) 

(DE SAME-FRINGE (TREE O~ERTREE) 
(REPEAT (GI G2) 

(SETQ GI (GENERATOR (FRINGE TREE)) 
G2 (GENERATOR (FRINGE O~HERTREE)) ) 

BEGIN 
WHILE (EQ (GENERATE GI) (GENERATE G2)) 
UNTIL (AND (NULL GI) (NULL G2)))) 

Figure 14 
Generator implementation of SAME-FRINGE. 
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satisfied. Thus, the termination condition for an 
OR node is the same as the termination condition of 
the chronological disjunction operators mentioned 
in Section I. 

In addition, we need the notion of a ~tg 
[27,28]. The purpose of a data collector 

is to avoid redundant computation. A data 
collector is a process which maintains a list of 
messages it has received and a set of bosses which 
are interested in sharing the results of the data 
collector's computation. Given that it is possible 
to identify that some data collector process is 
already working on a particular "problem", it is 
trivial to obtain the current set of results from 
the data collector and place another process in the 
llst of bosses of the data collector. In the 
rewrite example, a "problem" is the application of 
a production and the productions are indexed by the 
symbol which is their left hand side. More 
sophisticated pattern matching is required for 
problem descriptions which are more complex 
[28,29]. 

The solution presented here uses three 
coroutines. The first coroutine has two parts - 
START and END (see Figure 16). START creates a 
MAPSTRING process with the same data base as passed 
to START and changes its NAME: to END. The END 
process template performs some action, here 
printing the resultant data base, and clears the 
MULTI process queue. 

A second coroutine decomposes a data base so 
that productions can be applied to each part of the 
data base independently. The MAPSTRING process 
template (see Figure 17) tries to apply productions 
to each symbol in its DATABASE:. MAPSTRING eould 
create a new APPLY-PRODUCTIONS process for each 
symbol in its DATABASE: but this approach 
propagates many redundant APPLY-PRODUCTIONS 
processes. Since the left hand side of a 
production is an atomic symbol and only one 
solution is required, one APPLY-PRODUCTIONS process 
is sufficient for any symbol. The function NEW-OLD 
(also in Figure 17) checks for the existence of an 
APPLY-PRODUCTIONS process for a given symbol. If 
such a process exists and a solution has already 
been discovered then the solution is immediately 
sent to the MAPSTRING process attempting to create 
the APPLY-PRODUCTIONS process. Also, the current 
process is added to the BOSSES: of the existing 
APPLY-PRODUCTIONS process and no new 

Figure 15 
An example AND/OR graph. 

(DP START (DATABASE: MESSAGE:) 
(INITIATE (NEW 'MAPSTRING CURNT: DATABASE: NIL)) 
(SETQ NAN: 'END)) 

(Dr END (DATABASE: MESSAGE:) 
( PRINT MESSAGE: ) 
(SETQ EVNTS NIL)) 

Figure ~6 
START a n d  END process templates. 

APPLY-PRODUCTIONS process is created. If no 
APPLY-PRODUCTIONS process exists for the symbol 
then a new one is created and indexed by its 
symbol. MAPSTRING-C (see Figure 17), the 
continuation of MAPSTRING, waits for the results of 
all production applications before sending its 
result to its CLINK:. 

Messages are always passed using the function 
SEND. SENDing a message to a process always 
results in the message being queued to the process' 
MESSAGE: register and the process being scheduled 
at the front of the process queue. 

The process template APPLY-PRODUCTIONS (see 
Figure 18) is the first part of a coroutine which 
applies all productions whose left hand side is the 
same as its symbol. If an APPLY-PRODUCTIONS' 
symbol is terminal then no production is sought. 
If no productions have the symbol as a left hand 
side no further action will be taken. For every 
applicable production a new MAPSTRING process is 
created with its DATABASE: initialized to the right 
hand side of the production. APPLY-PRODUCTIONS-C 
( see Figure 18), the continuation of 
APPLY-PRODUCTIONS, passes any new MESSAGE: that it 
receives and keeps the list of messages it has 
received in its MESSAGE: register. The BOSSES: 
register is a list of all those processes which 
require the results of applying a production with a 
given left hand side. The APPLY-PRODUCTIONS and 

(DP MAPSTP/-HG (DATABASE: MESSAGE:) 
(MAPC DATABASE: (LAMBDA (C) ;For each symbol in data base 

(NEW-OLD 'APPLY-PRODUCTIONS CURNT : C) ) ) 
;create a process to try productions. 

(SETQ NAME: 'MAPSTRING-C) 
) 

/- 

(Dr MAPSTRING-C (DATABASE: MESSAGE:) 
(MAPC MESSAGE: 

(LARBDA (C-S) ;For each element of message substitute 
(SETQ DATABASE: (SUBST (CDR C-S) 

(CAR C-S) 
DATABASE: ) ) ) ) 

(IF (NO-ATOM DATABASE:) ;Done when no toplevel abams in 
(SEND (APPLY APPEND* DATABASE: ) CLINK:)) ;data base. 

(SETQ MESSAGE: NIL) 
) 

(DE NEW-OLD (NAME CLINK SYMBOL) 
(COND 
((GET SYMBOL NAME) ;Get previous process id if any. 
(REGSTORE (GET SYMBOL NAME) ;Place CURNT: process into bosses 

'BOSSES: ;of data collector. 
(CONS CLINK (REGFETCH (GET SYMBOL NAME) ' BOSSES: )) ) 

(SEND (CAR (REOFETCH (GET SYMBOL NAME) 'MESSAGE:)) CLINK)) 
;Send any result of data collector to CURNT: process. 

(T (INITIATE (PUTPROP SYMBOL ;Otherwise, create and index 
NAME ;a new process. 

))) 
(NEW NAME CLINK SYMBOL NIL (LIST CLINK) ))) 

Figure 17 
MAPSTRINO and MAPSTFLING-C process templates. 

(Dr APPLY-PRODUCTIONS (SYMBOL: MESSAGE: BOSSES:) 
(COND 
((TERMINALP SYMEOL:) ;If symbol is terminal then return it 

(SEND (LIST SYMBOL: SYMBOL:) BOSSES:));as producing itself. 
(T (MARC (RI~T-HAND-SIDES SYMBOL:) ;Otherwise, for each 

(LAMBDA (MS) ;production create a new MAPSTRINO process. 
(INITIATE (NEW 'MAPSTRING CURNT: F~S NIL))))) ) 

(SETQ NAME: 'APPLY-PRODUCTIONS-C) ) 

(DP APPLY-PRODUCTIONS-C (SYMBOL: MESSAGE: BOSSES:) 
(SEND (CONS SYMBOL: (CAR MESSAGE:)) BOSSES:)) 

Figure 18 
APPLY-PRODUCTIONS and APPLY-PNODUCTIONS-C process templates. 
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APPLY-PRODUCTIONS-C process templates act as a data 
collector. 

To demonstrate data collectors more 
concretely, consider the productions presented 
above. A snapshot of the processes created by the 
call (MULTIP (LIST (NEW ,START NIL '(C B Z) NIL))) 
after all productions have found the terminal 
symbol "m" appears as Figure 19. Note the arrows 
in this diagram represent the BOSSES: of a process 
which includes its CLINK:. In the figure only one 
APPLY-PRODUCTIONS process for "B" and "m" appear. 
The MAPSTRING-C process with a data base of (D L) 
will never send any messages. 

If a production is directly or indirectly 
recusive, data collectors will produce a cycle in 
the graph of processes. Data will flow around the 
cycle until all solutions are produced. This is 
discussed in detail elsewhere [28]. 

5. fmng/JAai~m 

MULTI is a package of LISP functions which 
define the notion of a process using function 
invocation as the only control structure primitive. 
Process environments are saved in what can be 
viewed as function call instances, i.e. LISP forms 
which have the name of a process template in 
functional position and the register values 
following it. We have demonstrated the flexibility 
of this simple conceptualization of processes by 
discussing several examples which use various 
control structures such as recursion, backtracking, 
generators, ooroutines and AND/OR processing. 
Also, this implemetation does not assume that the 
host LISP system provides any control or data 
environment saving mechanisms such as INTERLISP's 
spaghetti stack or FUNARG. Thus, MULTI should be 
portable to other LISP implementations modulo some 
error conditions and error recovery functions. In 
fact, MULTI, as part of the SNePS deduction system 
[26], has moved from LISP 1.6 [24] to UTLISP [10] 
and then to ALISP [16]. The LISP source for MULTI 
and the other functions discussed here are 
presented in [21]. 

Ldb: ~C B z)~ 

MAPSTRING-C 
Idb: (C B Z)] 

/ \ 

APPLY-PRODUCTIONS-C 
I symbol: • J 

Figure 19 
Snapshot of rewrite processes. 
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