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Detailed Summary

For some time, we have been investigating the representa-
tion of aeuuction rules in semantic networks [1;2;9-13].
Recently, we nave been implementing an inferencing system
wnica, given tine pattern for a piece of network to be deduced,
locates relevant deduction rules {12], and "compiles" them
into a set of processes which are then given to a multi-pro-
cessing system for execution. Ine multi-processing approach
was motivated partly by Kaplan's producer-consumer model of
parsing [7] ana partly by Wand's frame model of computation [14},
whica itself was based on the "little man" metaphor of
Papert [8] and Hewitt's ACTOR model [3;4;5].

" Deauction rules are represented in semantic network form
for several reasons: they Ean be entered in the same way as
otner information, either in tae same formal input language or
in (some suoset of) a natural language using the same parser
and granmar; they can be treated as data - entered, retrieved,
aiscussed, etc.; relevant ceduction rules can be retrieved
using tne same network matcning routines and in the same
operation as retrieving explicit information; in semantic_
networks it is natural to represent a rule as a connective and
an unoraerea set of arguments, delaying the decision of which
argument(s) is(are) tne anteceuent{s) ana whicn are(is) the
consequent until tine rule is to be used in a weduction. To
illustrate tne last point, consider the rule stating that the
following propositions are equivalent:

1. Block x supports block Yo |

2, Block x is under block Y.

3. Block y is apbove block x.



Ve méy write this rule symbolically as:
¥x,Y 391 (Supports(x,y), Under(x,y), Above(y,x))
in the SNEPS input language [11], tnis is written as:
(BUILD AVB($X $Y) TOT 3 WHRESH 1
ARG((BUILD Al *X R SUPPORTS A2 *Y)
(BUILD AT *X R UNDER A2 *Y)

(BUILD A1 #Y R ABOVE A2 *X)))

and as a semantic network, we draw it as:
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- If we want to aeduce a node that matches M2,M3, or MY, we can
use M1 as a consequent tneorem [6], and the other two nodes
become antecedents. If a node matching M2,M3, or M4 is asserted,
we can use M1 as an antececent theorem and the other two nodes
become consequents.
When an argument of a deauction rule is matched, processes
are createua to carry out the iﬁaicatea inference, Some processes
analyze tne deduction rule and create other processes that are

specializea for using the aeauction rule in the proper direction
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éna'with tne proper sets of antecedents and consequents. For
example, if noue M2 were matched during a backward chaining
operation, processes would be created for using rule M1 as g
consequent tneorem with M3 and M4 as antecedents, either of
wnich is sufficient for deducing M2. Once created, these
processes can be saved so that if the same rule is needed
again to aeduce the same consequent, the processes need not
be recreated. Processes may be assigned priorities and
resource bounds. They may be executed in parallel (or
simulatea parallel) subject to differences in priorities,
‘When a process expends its resources, it is suspended until
it is assignea additional resources.

" Every process has a name which defines the action the
process will perform and a continuation link to the process
tnat is to be scheduled for activation after it has conpleted
its joo. Each process also has other "slots" or Yregisters"”
peculiar to the action it will perform. Processes pass
information back along their continuation links by scheduling
inétances of tne "messenger" process, ANS, which inserts its
message in the MSG register of the receiving process and
then schedules thaﬁ process,

Two kinas of processes control the use of deduction rules
used in a backward-chaining {consequent) manner. The process
USE controls tne tdp level of a deduction rule, while the
process. USE-1 controls empedded rules. Both processes have
registers for tne rule (RULE), the consequent (CQ) and a

binaing of the variables usea in the rule (BNDG). For example,



sﬁppbse the rule
¥X,y(x ON y » ¥Yz(y ON z + x ON§ z))
were to oe used to deduce answers to the question, (A Ol 7).
A USE process woﬁld be created whose registers would be*
RULE: ¥x,y(x ON y > Vz(y ON z + x ON z))
cQ: sz(y ON z + X ON z) )
BNDG: ((x.A) (z.2))
Above it on a path of continuation links would be the USE-1
process with registers
RULE: vz(y ON z = x ON z)
CQ: X ON z

BNDG: ((x.3) (z.2))

wnen the USE process receives a message informing it that (A ON B)
is valid, it would create'and schedule a specialized USE-1 pro-
cess with registers |

RULE: ¥z (y ON z4+ X ON z)

CQ: X ON z

BNDG: ((x.2) (y.B) (2.2))
This process would attempt to answer the quéstion (B ON 7).

Both USE aﬁd USE~1 processes have continuation links to
processes with the namebANS—CATCH. This process has three

registers: MSG, DATA, and BOSSES. The contents of BOS3ES

e
w

a list of processes., Whenever ANS-CATCH is activated, it
~takes its messages (from MSG), and whichever ones are not already
in DATA are addeda to DATA and.sent to all the BOSSES. When a

process wants to use a deduction rule to deduce some consequent

* - -~
" Actually the RULE and CQ registers would contain nodes, not

a symbolic expressions.



it first checks if é USE or USE-~1 process already exists to
use tnat rule for that consequent with a bindiné compatible
with its own. If one is found, the process adds itself to
tne list of BOSSES in the ANS-CATCH above the USE or USE-1
and immediately takes all the answers in the DATA register -of
the ANS-CATCH. In this way, if a deduqtion rule is useful in
several places in a deduction, duplicate work is avoided. In
the case of recursive rules, like those for transitive
relations, the result is a cycle of continuation links -~ an
ANS—-CATCH among whose BOSSES is a process with a path‘of
.continuation links to the ANS-CATCH itseif. Answers will
circulate in this cycle of processes, moving one link in the
chain c¢f transitive Ielationslwith each cycle, until no ﬁore
answers can be produced. The ANS-CATCH process can be
viewed as a specialized data base connected to rules which
can be used antecedently whenever an assertion is added to
its DATA register. Although these rules are pattern-directed,
they arxe guaranteed to match any asseitiOn that gets added

to the ANS-CATCH.
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