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1 Introduction

In this paper, we discuss the current status of a planning/acting component for SNePS,
the Semantic Network Processing [Shapiro, 1979; Shapiro and Rapaport, 1987; Shapiro and
Group, 1989], and the design of a plan recognition system using this-component. First,
we present the design, implementation, and use of representations of plans to model a cog-
nitive agent whose behavior is driven by its beliefs, desires, and intentions. We give the
motivations underlying our representations for plans, goals, acts, actions, pre-conditions and
post-conditions. These representations are designed to satisfy constraints posed by the is-
sues involved in natural language understanding, belief representation, planning and problem
solving, plan recognition, and text generation.

1.1 Overview of the system

Our work is proceeding by implementing, experimenting with, and revising a system called
SNACTor (for SNePS Actor). SNACTor begins with an empty knowledge-base. In the role of
informant, we interact with SNACTor using English sentences about the domain, instructing
SNACTor about the various actions that it can perform, and how to solve problems in that
domain. The input sentences are analyzed using a Generalized ATN grammar[Shapiro,
1982], the results of which are new beliefs in the knowledge-base. A generation part of the
Generalized ATN grammar takes the new beliefs and expresses them back in English to
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indicate SNACTor’s understanding to the informant. Requests to perform some action are
sent to an acting executive that may then generate and execute a plan to fulfill the request.
The informant may also ask questions about plans and the way the system would solve
various problems.

2 Motivations underlying our representations

Our goals are to design and implement representations of plans to model a rational cog-
nitive agent whose behavior is driven by its beliefs, desires, and intentions. We now give
the motivations underlying our representations of plans, goals, acts, actions, pre-conditions
and post-conditions. As mentioned before these representations are designed to satisfy con-
straints posed by issues in natural language understanding, belief representation, planning
and problem solving, plan recognition, and text generation. A preliminary version of this
work appears as an extended abstract in [Shapiro, 1988]. Since then, there have been changes
in the design of our representations and planning techniques used. A detailed account of the
syntax, and semantics of our earlier representations can be found in [Kumar et al., 1988].

2.1 Motivation for intensional representations of plans

Georgeff (1987) mentions the importance of “considering planning systems as rational agents
that are endowed with the psychological attitudes of belief, desire, and intention” and the
problem of using appropriate semantics that give an intensional account of these notions.
SNePS is an intensional propositional semantic network system [Shapiro and Rapaport, 1987]
that has been used for cognitive modeling, belief representation and reasoning, belief revi-
sion, and natural language understanding. A basic principle of SNePS is the Uniqueness
Principle—that there be a one-to-one mapping between nodes of the semantic network and
concepts (mental objects) about which information may be stored in the network. These
concepts are not limited to objects in the real world, but may be various ways of think-
ing about a single real world object, such as The Morning Star vs. The Evening Star vs.
Venus. They may be abstract objects like properties, propositions, Truth, Beauty, fictional
objects, and impossible objects. They may include specific propositions as well as general
propositions, and even rules. Any concept represented in the network may be the object of
propositions represented in the network giving properties of, or beliefs about it. For exam-
ple, propositions may be the objects of explicit belief (or disbelief) propositions. Rules are
propositions with the additional property that SNIP, the SNePS Inference Package, [McKay
and Shapiro, 1981; Shapiro et al., 1982] can use them to drive reasoning to derive additional
believed propositions from previous believed propositions.

Plans are also mental objects. We can discuss plans with each other, reason about them,
formulate them, follow them, and recognize when others seem to be following them. An Al
system, using SNePS as its belief structure, should also be able to do these things. Requiring
that the system be able to use a single plan representation for all these tasks puts severe
constraints on the design of the representation. For instance, understanding natural language
dialogue involving plans requires building plan representations from natural language input.
In natural language, the explication of plans generally takes the form of a sequence of rather



simple rules (e. g., “If you see John, tell him I'm looking for him,” “To pick up a block, you
must first clear it”) The full plan, including preconditions and effects of its component acts,
must be constructed from such a sequence of rules.

Once constructed, a plan must be usable as a specification for the behavior of the agent,
and must also be usable by the agent to understand other agents’ actions. We are not
treating plans as schedules of events for third parties (or multiple agents) [Lansky, 1987].

2.2 Intensional representations

We now give an overview of our representations and the motivations that led to them. We
use “goal,” “plan,” “act,” and “action” in particular ways, and distinguish among them.
A goal is a proposition in one of two roles—either the role within another proposition that
some plan is a plan for achieving that goal (making it true in the then current world), or the
role as the object of the act of achieving it.

2.3 Planning is different from inference

We view a plan as a structured individual mental concept, i.e., it is not a proposition or
rule that might have a belief status. A plan is a structure of acts. (Among which may be
the achieving of some goal or goals.) The structuring syntax for plans is a special syntax,
differing, in particular, from that used for structuring reasoning rules. This is important
both for semantic clarity and to allow a system to be implemented that can both reason and
act efficiently. For contrast, consider standard (non-concurrent) Prolog or some arbitrary
production rule system. Such a system relies on a semantic ambiguity between the logical
& and the procedural and then. For example, -

(1) p(X) 1= ¢(X), r(X).

either means “For any X, p(X) is true if ¢(X) and r(X) are true” or it means “For any
X, to do p on X, first do ¢ on X and then do r on X.” Guaranteeing the proper ordering
of behavior in the procedural interpretation is only possible by giving up the freedom to
reorder, for efficiency, the derivations of ¢(X) and r(X) in the logical interpretation. The
example is made more striking by appending

(2) 9(Y) : = s(Y), ¢(Y).
3) r(Z) : = s(2), u(2).

and considering the query
(4) 7— p(a).

Under the logical interpretation, it would be efficient for the system to try finding if s(a)
holds only once, instead of once when rule 2 is being used and once when rule 3 is being used.
This is the way SNIP has been implemented (see [McKay and Shapiro, 1981]). However,
under the procedural interpretation, it may be perfectly reasonable to perform s(a) twice,
so the behavior that optimizes logical reasoning destroys procedural rule following. The
fact that SNIP is optimized in this way for reasoning, and so cannot use its reasoning rules



as procedural rules, was what originally motivated this project to design a planning/acting
component for SNePS.

Believing is a state of knowledge; acting is the process of changing one state into another.
Reasoning rules pass a truth or a belief status from antecedent to consequent, whereas acting
rules pass an infention status from earlier acts to later acts. A reasoning rule can be viewed
as a rule specifying an act—that of believing some previously non-believed proposition, but
the believe action is already included in the semantics of the propositional connective, and,
as pointed out above, there is no reason to believe a proposition more than once (unless it’s
disbelieved in the interim). The distinction between “believing and acting” in SNePS was
first outlined in [Morgado and Shapiro, 1985).

2.4 The distinction between “acts” and ‘“actions”

Lifschitz (1987) attempts to give a semantics of STRIPS by viewing STRIPS as a form of
logic and STRIPS operators as rules of inference in this logic. For us, an act is a structured
individual mental concept of something that can be performed by various actors at various
times. This is important for plan recognition—we must be able to recognize that another
agent 1s performing the same act that, if we were performing it, we would be in the midst
of carrying out one of a certain number of plans. By the Uniqueness Principle, a single act
must be represented by a single SNePS node, even if there are several different structures
representing propositions that several different actors performed that act at different times.
This argues for a representation of propositions more like that of Almeida [Almeida, 1987],
rather than like more traditional case-based or frame-based representations. In what we are
calling “more traditional representations”, there is a structure representing the proposition
with slots or arcs to the actor, the action, the object, ete. For example, to represent the
proposition,

(s1) John walked to the store.

there would be four representational symbols, one for John, one for walking (or PTRANSing),
one for the store, and one for the proposition itself, and the first three would be connected
with the fourth in nearly similar ways at similar distances (measured by path length of arcs
or slots). See Figure 1 for a SNePS representation based on Shapiro & Rapaport (1987).
Almeida, however, took seriously that one could follow (s1) by

(s2) Mary did too.

and understand by that that John and Mary performed the same act—that of walking to
the store. The representation for (s1) would have to introduce a fifth symbol, for walking
to the store, which would be connected to the representation of the proposition at the same
distance as the representation of John. Now, however, the symbols for walking and the store
would be further from the symbol for the proposition (see Figure 2). When (s2) is processed,
the symbol representing the proposition that Mary walked to the store would be connected
to the same symbol for walking to the store used for (s1) (node M7 in Figure 3). This symbol
represents what we are calling an act, and using it in the representation of both propositions
follows by the Uniqueness Principle from interpreting (s1) and (s2) as saying that John and
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Figure 1: A traditional representation of “John walked to the store” (ignoring tense). Node
Bl represents John; node B2 represents the store; node m6! represents the proposition that

John walked to the store.
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Figure 2: A representation of “John walked to the store” based on Almeida (1987). Node
MT represents the act of walking to the store; node M8! represents the proposition that John

walked to the store.
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Figure 3: The network of Figure 2 with a representation of “Mary did too.” added. Node

M11! represents the proposition that Mary performed the very same act (represented by
node MT) that John did.

Mary performed the same act. Moreover, if the network contains the representation of any
plan that involves walking to the (same) store, that same act node would be used in the
structure representing that plan (see Figure 4). Thus, John and Mary are directly connected
to a plan that they may be engaged in.

An action is that component of an act that is what is done to the object or objects. In
(s1) and (s2), the action is walking. Achieving some goal is an act whose action is achieving,
and whose object is the particular proposition that is serving as the goal. Unfortunately
for our remaining discussion, but consistently with what has gone before, one can only
perform something that is an act (an action on an appropriate object), so instead of saying
“performing an act whose action is z,” we will say “performing the action z,” and hope the
reader will note the distinction between acts and actions. '

Our representation of an act is a node with an ACTION arc to a node that represents
the action, and OBJECT]I, ..., OBJECTN arcs to the required objects of the action. Thus,
the general syntax! of an act is

Syntax 1: act ::= ACTION: action
OBJECTL: object!

OBJECTN: objectN

1Specific actions might have their objects on differently labeled arcs. For example, in Figures 24 the
WALK action uses a TO arc, and in Figure 4 the BUY and OBTAIN actions use OBJECT arcs.
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Figure 4: The network of Figure 3 with a representation of the proposition that a plan for
obtaining some book is to walk to the store and buy the book. Node M19! represents the
proposition using a syntax to be introduced in Section 2.5; node M18 represents a sequence
of two acts, using a syntax to be introduced in Section 4; the first act in that sequence,
represented by node M7, is the very same act that John and Mary did.

Semantics 1: act is a structured individual node representing the act whose action is action

and objectl, ..., objectN are the objects of action. For example, the SNePSUL (the
SNePS User Language) command for building a node representing the act of saying
“FOO” is:

(build action say objectl FOO)

2.5 Primitive and Complex actions

?A'ny behaving entity has a repertoire of primitive actions it is capable of performing. We
will say that an act whose action is primitive is a primitive act. That an action is primitive
is a belief held by SNACTor after we tell it. The belief is represented in the form of an
assertion saying that the action is a member of the class of primitive actions. This is similar
to the MEMBER-CLASS proposition used by CASSIE [Shapiro and Rapaport, 1987]. For
example, the SNePSUL command for asserting that saying is a primitive action is

(assert member say class primitive)

»
-Non-primitive acts, which we will term complez, can only be performed by decomposing
them into a structure of primitive acts, the syntax of which is the same procedural syntax
as used in plans. That some plan p is a plan for carrying out some complex act a, is a

proposition we can assert to SNACTor using the following representation:



Syntax 2: plan-act-proposition ::= ACT: a
PLAN: p

Semantics 2: plan-act-propositionis a proposition node that represents that the proposition
p is a plan for carrying out act a.

The plan p is a structure of acts. The structuring syntax for plans is described in terms of
control actions which are described later. That some plan p is a plan for achieving some goal
-g is also a proposition we can assert to SNACTor:

Syntax 3: plan-goal-proposition ::= GOAL: g
PLAN: p

Semantics 3: plan-goal-proposition is a proposition node that represents that p is a plan
for achieving goal g¢.

The goal ¢ is expressed as a domain specific proposition. Examples of these are given in a
later section (see Section 4).

When the time comes for the agent to perform a complex act, it must find a plan that
decomposes it. Using the above representations SNACTor may be told such plans. SNACTor
is also capable of doing classical planning in case it does not already know any decompositions
for a complex act. This is discussed later.

2.6 Pre— and post—conditions

The remaining notions we must consider are preconditions and effects (postconditions).
Whether we think of them as pre- and post-conditions of plans or of acts is irrelevant since
plans are kinds of acts. A pre-(post-)condition is just a proposition that must be (will be)
true or false before (after) an act is performed. But the proposition that a proposition p is
false is itself a proposition, so we can say that a pre-(post-)condition is a proposition that
must be (will be) true before (after) an act is performed. (We will rely on SNeBR, the SNePS
Belief Revision System [Martins and Shapiro, 1988a] to remove inconsistent beliefs after be-
lieving the effects of an act.) We have thus reduced the storage of pre- and post-conditions
to two simple kinds of propositions:

Syntax 4: precondition-proposition ::= ACT: a
PRECONDITION: p

Semantics 4: precondition-proposition is a node that represents that the pre-condition of
some act a is the proposition p.

For example,

(assert forall $block
ant (build member *block class block)
cq (build act (build action pickup objectl *block)
precondition (build property clear object *block)))
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is the SNePSUL command to assert that before picking up any block it must be clear (i.e.
nothing must be on top of it).

Syntax 5: postcondilion-proposition ::= ACT: a
EFFECT: p

Semantics 5: postcondition-proposition is a node that represents that the post-condition of
some act a is the proposition p.

For example,

(assert forall $block
ant (build member *block class block)
cq (build act (build action pickup object1l *block)
effect (build property holding object *block)))

is the SNePSUL command to assert that after picking up any block, it is being held.

Thus, effects and preconditions of an act are represented in the same way as other beliefs
about other mental objects; we do not need a special data structure (or an operator for-
malism) for acts in which pre- and post-conditions are special fields. Such a representation
also enables us to assert context-dependent effects of actions[Wilkins, 1988], i.e. the effects
of doing some action are determined by the context in which the action is performed. For
example,

(assert forall ($block $support)
&ant ((build member *block class block)
(build member *support class object) -
(build rel on argl *block arg2 *support))
cq (build act (build action pickup objectl *block)
effect (build property clear object *support)))

asserts that if a block is on some support then after you pick up the block the support is
clear. The scope of the context being referred to is the set of beliefs held by the system at
the time the action is about to be performed. Using rules like these, context-dependency is
guaranteed by ensuring-that the effect is conditional on the antecedents being true before
the act is performed. This is a more natural way of modeling actions and avoids the need
for specifying multiple operators for doing the same action in different situations, which is a
major criticism of earlier planners[Drummond, 1987].

2.7 Types of actions

We discussed three kinds of acts: a primitive act is unstructured and is in the repertoire of
the agent; a complez act is unstructured—to perform it, the agent must find a plan for it; a
plan is a structured act—the structure determines how the agent performs the component
acts.

The structure of a plan can determine how the agent performs the component acts,
because the structure, itself, is a primitive acticn.

Primitive actions fall into three classes:



e external actions that affect the world;
e mental actions that affect the agent’s beliefs;
e control actions that affect agent’s intentions.

External actions are domain specific actions like pickup, putdown etc. in the Blocksworld.
The two mental actions that we have are believing a proposition, and disbelieving a proposi-
tion. Our repertoire of control actions includes sequencing, conditional, iterative, and achieve
‘actions. A sequencingaction represents the agent’s intention to perform its object actions in a
given sequence. The conditional and iterative actions are modeled after Dijkstra’s guarded-if
and guarded-loop commands respectively [Dijkstra, 1976]. The achieve action deduces plans
for achieving some proposition and forms the intention of performing one of them. The con-
ditional and iterative control actions enable the specification of non-linear partial plans. We
have also designed a control action that can be used for posting constraints on plan variables

(as in [Wilkins, 1988]).

2.8 Modeling external effects of actions

As mentioned above, external actions are domain specific actions that affect the outside
world. For example, if the agent has an arm and is asked to pick up a block, the arm
actually moves to the block, grasps it, and then lifts it up. Depending on the set of interfaces
provided to the agent (like an arm, a speech synthesizer, etc.) we need to be able to carry
out the action in the external world. This is done by writing Common Lisp functions that
access the external interface. For instance, we can model the external effects of the “say”
action by driving a speech synthesizer or by simply printing the message on the screen. The
define-primaction function enables us to do this. Thus, to model saying something by
printing it on the screen, we will have

(define-primaction say (n)
"'n is the node representing the act of saying. The node at the
end of objectl arc is printed. choose.ns and pathfrom are
SNePS interface functions to access parts of a structured node."
(format t " “A " (choose.ns (pathfrom ’objecti n))))

Thus when the agent executes the action represented by
(build action say objecti FO0O)

the above code for say is executed, resulting in “FOO” appearing on the screen. How an
action gets scheduled to be executed is discussed in the next section.

3 The Planning Paradigm
Besides having a current set of beliefs about the world, the system also has beliefs about plans

for achieving goals, and about how complex actions can be decomposed into partial plans.
The overall architecture of the system is similar to that of the PRS system [Georgeff, 1988].
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The acting executive (called an interpreter or a reasoning mechanism in PRS) manipulates
these components. It maintains an acting queue (referred to as a process stack in PRS) that
contains all the scheduled actions to be performed as a part of some plan, thereby representing
the system’s intentions. The system can also form its own intentions in response to changing
beliefs. SNIP, the SNePS inference package is used for several tasks: to find plans for complex
tasks; as part of the achieve action, to find a plan to achieve some goal; and also as the truth
criterion (also called the question answering procedure, see [Drummond and Tate, 1987)).
Hence, it is used as the plan decision procedure in our system. SNIP is implemented on a
‘simulated multi-processing system{McKay and Shapiro, 1980]. In the future, we will be able
to do hypothetical reasoning using SNeBR [Martins and Shapiro, 1988b], for state-based
plan projection.

3.1 The acting executive

We want the system to carry out plans, as well as to discuss them, reason about them, and
recognize them. Certainly, since the system is currently without eyes, hands, or mobility,
its repertoire of primitive actions is small, but, for now, as shown above, we can simulate
other actions by appropriate printed messages. SNACTor, the acting system, is composed
of a queue of acts to be carried out, and an acting executive. The queue of acts represents
the system’s intentions for carrying out the acts on the queue in that order. Intentions are
formed by either an explicit request from a user to do something, or by committing to a
plan that needs to be executed to fulfill a complex act or a goal. Explicit requests are made
using the perform command. For example,

(perform (build action say F0O))

is an explicit request to the system to say “PFOO” The act is put on the act-queue and the
acting executive takes charge. Currently, the acting executive is the following loop:

while act-queue is not empty do
if the first-act on the act-queue has preconditionms
and they are not currently satisfied
then insert the achieving of them on the front of the act-queue
else remove the first-act from the act-queue;
deduce effects of first-act,
and insert the believing of them on the front
of the act-queue;
if first-act is primitive
then perform it
else deduce plans for carrying out first-act
(using SNIP and available rules),
choose one of then,
and insert it on the fronmt of the act-queue
end if
end if
end while

11



Notice that the effects of the act about to be performed are retrieved and scheduled to
be believed before the act is actually performed. This guarantees that proper effects of
the act are retrieved depending on the context that exists at that time. This flexibility
in dynamically determining the effects of acts is what enables us to avoid having multiple
operators for the same action.

When preconditions for an act exist and some of them are found not to be true, we
schedule the achieving of all of them on the queue. The intention to perform the act is now
pushed behind the intention to achieve these preconditions. Once all the preconditions are
achieved, and we are ready to perform the act, they are checked again (just in case achieving
some precondition renders another one false). Later on, we intend to incorporate critics,
that will enable detecting of such conflicts and more sophisticated reasoning about plans.

From the above loop, it can be seen that at this stage of our work, we are assuming that
a plan will be found for every complex act, and that every act will be successful. These
assumptions will be removed as we proceed. SNACTor can also be made to do classical
planning in case it is not able to find a plan to achieve a goal. This is done in the spirit of
STRIPS|Fikes and Nilsson, 1971] by reasoning about effects of actions. As mentioned above,
SNeBR can be used for hypothetical reasoning.

4 Syntax and semantics of control actions

We are now ready to examine the syntax and operational semantics of our current set of
control actions.

Syntax 6: sequence ::= ACTION: SNSEQUENCE
OBIJECT1: act!
OBJECT2: act?

This means that a sequence act is represented by a node with an ACTION arc to the node
SNSEQUENCE, an OBJECT] arc to an act node, and an OBJECT2 arc to another act node.

Semantics 6: act2 is inserted on the front of the act queue, and then actl is inserted in
front of it.

For example, a plan to get a block on a support is to pick it up and then put it down on the
support. This can be derived using the plan-goal-proposition and snsequence as

(assert forall ($block $support)
&ant ((build member *block class block)
(build member *support class object))

cq (build plan (build action snsequence
objectl (build action pickup objectl *block)
object2 (build action putdown

objectl *block object2 *support))
goal (build rel on argi *block arg2 *support)))

Another example of a sequence is represented by node M18 in Figure 4. Since either or both
of actl and act2 can themselves be snsequence acts, we have a general structure for plans of
sequential actions.

12



Syntax 7: do-one ::= ACTION: DO-ONE
OBJECT1:{acti}

This means that a do-one act is represented by a node with an ACTION arc to the node
DO-ONE, and OBJECT1 arcs to an arbitrary number of act nodes.

Semantics 7: Chooses one acti and puts it on the front of the act queue. As currently
implemented, the choice is arbitrary. However, we intend to implement a do-one that
will reason about the acti and pick the “best” one.

For example, an act of giving an arbitrary greeting by saying “HELLO” or “JAMBO” or
“G-DAY” can be expressed as

(build action do-one
objectl ((build action say objectli HELLO)
(build action say objecti JAMBO)
(build action say objectl G-DAY)))

Syntax 8: do-all ::= ACTION: DO-ALL
OBJECT1: {acti}

Semantics 8: Forms the intention of doing all the acti by placing them on the front of the
act queue in some unspecified order.

For example, an agent’s “things-to-do-today” list can be represented using such an act as

(build action do-all
objectl ((build action buy object *BOOK)
(build action pay object *PHONE-BILL)
(build action see object *NIAGARA-FALLS)))

Syntax 9: conditional ::= ACTION: SNIF
OBJECT1: {CONDITION: propositioni
THEN: acti}

This means that a conditional act is represented by a node with an ACTION arc to the node
SNIF, and OBJECT1 arcs to an arbitrary number of nodes, each with a CONDITION arc to a
proposition node and a THEN arc to an act node.

Semantics 9: If no proposition is true, does nothing. Otherwise, a do-one act whose objects
are all the acti having their corresponding propositioni true is put on the front of the
act queue. (Based on Dijkstra’s guarded if [Dijkstra, 1976].)

For example, an act of saying “HELLO” contingent upon having permission can be expressed
as

13



(build action snif
objecti (build condition (build have permission)
then (build action say objectl HELLO)))

Syntax 10: iteration ::= ACTION: SNITERATE
OBJECT1: {CONDITION: propositioni
THEN: acti}

Semantlcs 10: If no proposition is true, does nothing. Otherwise, puts on the front of the
act queue a sequence whose OBJECT1 is a do-one act whose objects are all the acti
having their corresponding propositioni true, and OBJECT?2 is the iteration node itself.
(Based on Dijkstra’s guarded loop [Dijkstra, 1976].)

For example, the act of repeatedly saying “HELLO” contingent upon having “hello-permission”
and saying “THERE” contingent upon having “there-permission” can be expressed as

(build action sniterate
objectl ((build condition (build have hello-permission)
then (build action snsequence
objectt (build action say objecti HELLO)
object2 (build action forget
objecti (build have hello-permission))))
(build condition (build have there-permission)
then (build action snsequence
object1l (build action say objectl THERE)
object2 (build action forget
objectl (build have there-permission))))))

Syntax 11: achieve ::= ACTION: ACHIEVE
OBJECTL1: proposition

Semantics 11: If proposition is true, does nothing. Otherwise, deduces plans for achieving
proposition, chooses one of them, and puts it on the front of the act queue.

For example, in order to achieve a state in which BLOCKA is clear we'll have the act

(perform (build action achieve
objectl (build property clear object BLOCKA)))

Thus, we can write plans for achieving goals as well as plans for decomposing a complex
act. The domain normally determines the kinds of plans required (i.e. goal-based or act-
decomposition based or both). However, as we will see, in the case of the blocksworld,
and possibly in other domains, it may become hard to distinguish between something that
characterizes a state and something that expresses an act. For example, ”Clear BLOCKA”
could be interpreted as a command to perform the act of clearing BLOCKA or a goal to
achieve a state in which BLOCKA is clear. We are still exploring this issue. In any case, if
required, we can model and use both interpretations.

Other control acts may be defined in the future, in particular a parameterized act that
uses a sensory act to identify some object, and then performs some action on the identified
object.

14



{Blocks Horld

Figure 5: An initial Blocksworld situation

5 An Example

A natural language understanding component has been implemented in a Generalized ATN
grammar(Shapiro, 1982] and is used for analyzing sentences and for generating English re-
sponses. SNACTor begins with an empty knowledge-base. In the role of informant, we
interact with SNACTor using English sentences about the domain, instructing SNACTor
about the various actions that it can do, and how to solve problems in that domain. A nat-
ural language generation grammar takes the new beliefs and expresses them back in English
to show SNACTor’s understanding to the informant. Requests to do some action are sent
to an acting executive that may then generate and execute a plan to fulfill the request. The
informant may also ask questions about plans and the way the system would solve various
problems.

After instructing SNACTor about the various actions and plan formulations we describe
a particular state, e.g.,

Input: Blocka is on the table. Blockb is clear and on the table.
Blockc is clear and on blocka.

Response: I understand that blocka is on the table. I understand that
blockb is clear. I understand that blockb is on the table.
I understand that blockc is clear. I understand that blockc
is on blocka.

For the Blocksworld, we can also instruct SNACTor about constructing a graphic analog of
the world so that when we describe a state, it can actually construct it in a graphics window
(shown in Figure 5). Now we are ready to ask SNACTor to do things. E.g.,

Input: Pile blocka on blockb on blockc.
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Response: I understand that you want me to perform the act of piling
on blocka and blockb and blockc.

SNACTor now goes into its acting executive which realizes that piling is a complex act and
so needs to be decomposed. This is where the earlier dialog comes in handy and it finds
decompositions:

Contd.: A plan to pile blocka on blockb on blockc is to achieve
that blockc is on the table and then achieve that blockb is
on blockc and then achieve that blocka is on blockb.

And this decomposition continues depth-first until it finds an appropriate action to execute

Contd.: Want to achieve blockc is on the table.
Want to achieve blockc is held.

Want to achieve blockc is clear. Already achieved.

Unstack blockc from blocka. Disbelieve blockc is on blocka.
Believe blocka is clear. Disbelieve blockc is clear. Believe
blockc is held. Putdown blockc on the table.

Effects of an action are derived as and when an action is performed. SNACTor can also be
made to do classical planning in case it is not able to find a plan to achieve a goal. This is
done in the spirit of STRIPS[Fikes and Nilsson, 1971] by reasoning about effects of actions.
As mentioned above, SNeBR can be used for hypothetical reasoning.

5.1 Discussing plans

We have seen how we can instruct SNACTor about planning in a domain and how we can
describe situations to it and subsequently ask it to do things by using the plans it derives.
We can also discuss plans with SNACTor by asking questions about solving problems in
specific or generic situations. E.g.,

Input: How would you pile blocka on blockb on blockc?
How would you clear a block?

And SNIP, the plan decision procedure, will derive an appropriate plan and respond to the
query.

6 Plan Recognition

In this section we will briefly look at the beginning of a plan recognition component based
on our representations. The initial idea that we are exploring is based on the observation
that if an actor is performing an act that, when we perform it we are are in the process of
executing some plan, the actor could possibly be performing the act as a part of a similar
plan. Expressed more clearly, we have the rule

16



if an actor z performs an act al,
and al is a PLAN-COMPONENT of a proposition p
then if a2 is the ACT of p
then z may be engaged in carrying out a2
and if g is a GOAL of a proposition p
then z may be trying to achieve g.

We can express what it means to be a plan-component using SNePS path-based inference
"[Shapiro, 1978; Srihari, 1981] as:

(define-path PLAN-COMPONENT
(compose PLAN
(kstar (or (compose (kstar OBJECT2) (or OBJECT! OBJECT?2))
(compose OBJECT1 THEN})))))

This defines a virtual arc PLAN-COMPONENT to be one that goes from a plan-act-proposition
or a plan-goal-proposition to every act within the plan. For example, the following SNePS
node represents that the act of greeting someone (give-greetings) can be accomplished by
a plan to repeatedly say “HELLO THERE” thus using the act defined in Section 4 above.

(M36! (ACT GIVE-GREETINGS)

(PLAN
(M32 (ACTION (M6 (LEX SNITERATE)))
(OBJECT1
(M27 (CONDITION (M21 (LEX PERMISSION)))
(THEN

(M26 (ACTION (M1 (LEX SNSEQUENCE)))
(OBJECT1 (M18 (ACTION (M10 (LEX SAY))) (OBJECT1 HELLO)))
(OBJECT2 (M24 (ACTION (M16 (LEX FORGET))) (OBJECT1 (M21)))))))
(M31 (CONDITION (M28 (LEX PERMISSION2)))
(THEN
(M30 (ACTION (M1)) (OBJECT1 (M19 (ACTION (M10)) (OBJECT1 THERE)))
(OBJECT2 (M29 (ACTION (M16)) (OBJECT1 (M28)))))))))N))

Next we give the plan recognition rule to SNACTor. This rule says that if someone is doing
an act which is part of some plan, assume that that person is engaged in the plan.

(assert forall ($agent $reported-act $planned-act)
&ant ((build agent *agent act *reported-act)
(build plan-component *reported-act act *planned-act))
cq (build agent *agent act *planned-act))

Now we can tell the system that John performed the act of saying “HELLO”
(add agent john act (build action say objecti HELLO))

and ask about the act(s) that John periormed
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(describe (deduce agent john act $johns-acts))

(M38! (ACT (M18 (ACTION (M10 (LEX SAY))) (OBJECT1 HELLO))) (AGENT JOHN))
(M52! (ACT GIVE-GREETINGS) (AGENT JOHN))

CPU time : 6.65 GC time : 0.00

As we can see, it comes back with a response saying that John is performing the acts of saying
“HELLO” as well as give-greetings. We do not yet have a way of dealing with “may be
engaged in” nor with “may be trying to achieve,” but this rule indicates our approach to
plan recognition within the design of the planning/acting SNePS component described in
this report.

7 Discussion

Our goal is to model a rational cognitive agent whose behavior is driven by its beliefs,
desires, and intentions. We want our agent to do natural language understanding, reason
about beliefs, act rationally based on its beliefs, do plan recognition, and plan based text
generation. Doing all these tasks in a single coherent framework poses several constraints.
We are discovering that SNePS and its underlying theories contribute effectively towards our
goal. We have designed and implemented intensional propositional representations for plans.
This is a major advancement over operator-based descriptions of plans. Operator-based
formulations of actions tend to alienate the discussion of operators themselves. Operators
are usually specified in a different language than that used for representing beliefs about
states. Moreover, plans (or procedural networks) constructed from these operators can only
be accessed by specialized programs (critics, executors) and, like operators, are represented
in still another formalism. Qur representations for acts, actions, goals, and plans build upon
and add to the intensional propositional representations of SNePS. This framework enables
us to tackle various tasks mentioned above in a uniform and coherent fashion.

Our current system is being advanced in several directions. In the context of planning,
there are issues associated with conjunctive goals{Waldinger, 1977], non-linear plans [Sacer-
doti, 1977; Tate, 1977; Drummond and Tate, 1987], and dealing with the effects of actions.
As mentioned in {Drummond, 1987] explicitly specifying the disbelieving of propositions as
a result of performing some action is not natural.. We propose to use belief revision (SNeBR)
to detect inconsistencies after asserting the effects of an action.

Language used in planning contexts, is slightly more constrained than in arbitrary dis-
course. Sentences describing plans tend to be declarative, with a syntactically decomposable
structure involving goal, effect, and plan definition. Handling reference is simplified by
the assumption that common noun phrases correspond to typed variables. Indefinite noun
phrases introduce new variables, definite noun phrases refer to previously introduced vari-
ables. Natural language generation of plans and rules involves careful selection of relevant
attributes of these variables.
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8 Summary

In this report, we have described the design, and aspects of the implementation, of an
intensional representation for plans. These representations have been constrained by issues
in cognitive modeling, belief representation, reasoning, and natural language understanding.
Plans are structured individual mental concepts, consisting of a structure of acts. Acts are
structured individual mental concepts of an action process independent of actor and time.
Actions are primitive or complex and fall into three classes—external, mental, and control.
‘The system models intentionality with a queue of acts, and may form new intentions based
on its current belief status. Currently, we have an implementation of a Blocksworld involving
natural language dialogues about plans, planning and execution of Blocksworld plans, and
some examples of plan recognition.
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