
INTERACTIVE VISUAL SIMULATORS

FOR BEGINNING PROGRAMMING STUDENTS

Stuart C. Shapiro
Douglas P. Witmer

Computer Science Department
Indiana University

Bloomington, Indiana

i. Introduction

This paper discusses two programs
that have been written to be aids to
introductory programming students. They
both embody the belief that Computer
Assisted Instruction can be a worthwhile
aid to students when properly used and
that one of the best uses is to present
visually to the student a process that he
has some control over and which he would
not otherwise be able to observe. Section
2 of this paper discusses HYCOMP1, an
interactive visual computer simulator.
Section 3 discusses IVF, the Interactive
Visual FORTRAN interpreter. They were
both written in SNOBOL4 ± and run under
the KRONOS Time Sharing System on a CDC
6600 using an Applied Digital Data
Systems, Inc. ADDS Consul 880 terminal,
which is an ASCII terminal with a CRT
display and an addressable cursor.

2. An Interactive Visual Computer
Simulator 2

2.1 Introduction

It is often felt desirable to in-
clude in an introductory computing
course a small section of material on
machine language, even when the course
will mostly use a language such as BASIC,
FORTRAN or ALGOL. The purpose of the
section on machine language is to give
the students an understanding of what a
programmable, digital, sequential com-
puter is, what its basic operations are,
and how a program, made up of very basic
operations can effect a fairly compli-
cated calculation. To accomplish this
purpose, it is not necessary to use a
real computer as an example. Indeed, the

i Griswold, R.E., Poage, J.F., Polonsky,
I.P., The SNOBOL4 Programming Language,
2nd edition, Prentice-Hall, Englewood
Cliffs, N.J., 1971.

2
HYCOMPI was programmed by David A.
Grace.

complexities of a modern computer would
obscure the points to be made. Therefore,
various "hypothetical" computers have been
invented that consist of a basic set of
operations and registers. Students gener-
ally write programs for these hypothetical
computers and find out if their programs
are correct either from a human instructor
or by executing them using a simulator in
a batch environment. In either case, it
is difficult for them to understand the
sequential operation of their programs or
the effect of any bugs that might have
been in them.

In order to provide a better way for
introductory computing students to gain
this basic understanding, we have written
an interactive simulator of one hypothe-
tical computer. This simulator displays
all the storage and active registers of
the hypothetical computer on the screen of
a CRT terminal, allows the student to load
and patch programs, load data, and execute
the program. The simulator traces the
program by changing the information on the
screen at a slow enough rate that the stu-
dent can watch how his program works~ He
can then make any modifications he feels
are necessary and see the effect of those
changes.

2.2 HYCOMPI

The simulator, HYCOMPI was written to
simulate the HYCOMP compute~ of Terry
Walker's introductory text. ~ Walker's
HYCOMP has 1000 words of memory, each
holding a sign plus five decimal digits.
Its instruction code ignores the sign,
uses the two high order digits for an
operation code and the remaining three
digits for an address. In order to dis-
play all of memory on the CRT, we imple-
mented only 100 words for HYCOMP1, and use
the two low order digits for the address,
ignoring the middle digit. HYCOMP and

3 Walker, Terry M., Introduction to Compu-
ter Science: An Interdisciplinary Approach,
Allyn and Bacon, Inc., Boston, 1972.

ii

HYCOMPI have the following active regi-
sters: a sign plus 5 digit arithmetic reg-
ister (KEG); a 5 digit control unit (CU);
a program instruction counter (IC) which
is three digits in HYCOMP and two digits
on HYCOMPI. They also have an overflow
(OF) switch, underflow (UF) switch, and
an end-of-file switch (EOF). Floating
point numbers are stored using the two
high order digits as a biased exponent.
There are forty nine alphanumeric charac-
ters coded two digits per character and
stored two characters per word in the low
order four digits. The 24 instructions
include numeric and alphanumeric I/O, in-
teger and floating point arithmetic and
test and branch instructions. HYCOMP does
not have index registers, but in the
future, they may be added to HYCOMPI using
the middle digit of instructions for the
index register field.

2.3 Usin~ H YCOMPI 4

When the student executes HYCOMPI,
the screen is cleared and written on as
shown in fig. i. He may then load his
program (only machine language is accepted
by HYCOMPI) and his data and run the pro-
gram. He may then patch or change his
program and continue trying and changing
it until he is satisfied or tired. The

HYCOMPI simulator gives the student the
same options he would have if he were
sitting at a HYCOMP1 console, but in
addition, he can observe the execution of
his program.

There are two commands with which the
student can execute his HYCOMPI program -
RUN and CYCLE. With RUN, the student
specifies the starting address of his pro-
gram, and it is executed until it halts or
produces an execution error. If the stu-
dent uses CYCLE, one machine cycle is
executed so that he can study the results
of each instruction at his own speed.

A machine cycle consists of the fol-
lowing steps:

la. The CRT cursor underlines the con-
tents of the word whose address is
in the IC.

b. That instruction is copied into the
CU and displayed there on the screen.

2. IC is incremented by i, the new
value being displayed properly on
the screen.

3. The instruction in the CU is exe-
cuted. This may ~ause various
things to happen on the screen, for
example:

a. A test instruction causes the dis-
played contents of REG to blink for
a short time.

b. A branch instruction changes the IC.

O0: 01: 02: 03:
07: 08: 09: I0:
14: 15: 16: 17:
21: 22: 23: 24:
28: 29: 30: 31:
35: 36: 37: 38:
42: 43: 44: 45:
49: 50: 51: 52:
56: 57: 58: 59:
63: 64: 65: 66:
70: 71: 72: 73:
77: 78: 79: 80:
84: 85: 86: 87:
91: 92: 93: 94:
98: 99: OF- UF-

EOF1
IC"

04: 05: 06:
11: 12: 13:
18: 19: 20:
25: 26: 27:
32: 33: 34:
39: 40: 41:
46: 47: 48:
53: 54: 55:
60: 61: 62:
67: 68: 69:
74: 75: 76:
81: 82: 83:
88: ~: 90:
95: 97:

CU" REG"

TO SEE A LIST OF AVAILABLE COMMANDS, TYPE HELP
TO PROCEED AFTER AN ERROR MESSAGE APPEARS, HIT NEW LINE
TO LEAVE A MODE, JUST TYPE NEW COMMAND. ? MEANS READY
INPUT APPEARS ON LINE 22, OUTPUT ON LINE 23
?

Fig. i. CRT screen after initialization

4
! A user s guide is available as: Shapiro,

Stu&rt C. and Grace, David A., "A Guide
to the Use of HYCOMPl",~,Technical Report
No. 8, Computer ScienceDept. Indiana
Univ., Bloomington, In., Dec. 10, 1973.

C. Whenever data is read, either from
KEG, a memory word or on the Input
llne, the cursor underlines the data.

d. Data may be written into REG, a
memory word or the Output llne.

e. A floating point instruction may set

12

UF or OF.
f. An input instruction may set EOF.

If an execution error occurs, an appropri-
ate message is written on the screen.
When the student is ready, he can clear
this message and enter additional commands.

The valid commands are:
±nnnnn - The signed five digit number

is put into the word whose address is
the current value of IC and IC is in-
cremented by 1. If the sign is
omitted, + is assumed.

LOAD nn - IC is set to nn, OF, UF, and
EOF are initialized to 0, and the in-
put line is positioned at the first
"card" of data. If nn is omitted, 00
is assumed.

RUN nn - IC is set to nn and the pro-
gram is run to termination or until
an execution error occurs. If nn is
omitted, the current value of IC is
retained.

IC XX - XX is a two digit number. IC
is set to XX.

UF X - X is 0 or 1. UF is set to X.
OF X - X is 0 or 1. OF is set to X.
EOF X - X is 0 or 1. EOF is set to X.
REG n - n is an optionally signed inte-

ger with no more than five digits.
REG is set to n.

CY - One machine cycle is executed.
QUIT - The HYCOMP1 simulator is ter-

minated.
DATA - Allows data to be entered, one

"card" at a time. A card with # in
column 1 signals the end of data
entry and serves as the EOF flag.

DATA ADD - Allows data to be added to
the end of the existing data "deck".
The existing EOF card is automati-
cally removed.

HELP - A list and brief description of
the commands is displayed.

2.4 Summary

HYCOMP1 has not yet had extensive
classroom use. We did have several stu-
dents from an introductory programming
class use it during the latter stages of
its development. Earlier in the semester,
these students had studied HYCOMP and had
written several HYCOMP programs which were
graded by a human grader. Their reaction
to HYCOMP1 was extremely favorable and they
reported that it would have been very help-
ful in their study of machine language.
One student finally understood that there
is no inherent difference between instruc-
tions and data. This kind of insight, if
not gained intellectually, could hardly be
gained by any means other than an inter-
active, visual simulation.

3. The Interactive VIsualFORTRAN Inter-
preter

3.1 Introduction

Learning to program in a higher level
language such as FORTRAN can be a formld-

able task for the beginning student. He
must not only memorize the key words and
statement syntax associated with the lan-
guage, but must learn to assemble meaning-
ful programs from these building blocks.
In this regard, it is essential for the
student to be able to visualize the step-
by-step operation of his programs. The
Interactive Visual FORTRAN Interpreter
(IVF) was designed as an aid to such a
visualization.

3.2 Basic Description

The IVF accepts a FORTRAN program and
graphically simulates its execution on an
interactive time-sharing terminal with a
cathode ray tube (CRT) screen. During the
simulation the executable statements are
displayed on the screen. An arrow is
caused to point at each statement in the
order in which execution would normally
take place. Current values of variables
are displayed in the unused space to the
right of the program, and are updated with
each move of the arrow. Thus the immediate
state of the program is visually apparent
at all times in terms of current values
of variables and flow of control.

Figure 2 shows a short program as it
would appear during simulation on the IVF.
The arrow indicates that execution of the
statement "X = (I ** 2) / 2" is being
simulated. The current values of "I" and
"X" are displayed on the right side of the
screen. In this example the arrow will
next move to the "IF" statement. Simula-
tion of the "IF" statement succeeds and
the arrow moves to the statement whose
label is "4". Now the value of "I" is in-
cremented and the new value is displayed
on the right. The simulation proceeds in
this manner until execution of the "IF"
statement is simulated with the current
value of "I" equal to I0. At this time
the arrow moves to the "END" statement and
the simulation is terminated.

Upon termination of the execution
phase, the IVF displays an appropriate
message and the user is given the option to
exit the IVF or attempt another simulation.
The FORTRAN program Just simulated is not
lost in either case. The user may have it
simulated again (as discussed later) or
dispose of it in some other fashion.

The IVF assumes a naive user, and is
therefore self-explanatory. Instructions
may be received at the beginning of each
session by responding appropriately to the
program's inquiries. In addition, all
portions of the program requiring a user
response will recognize errors and prompt
as necessary.

Although the IVF is primarily an aid
to the visualization of FORTRAN program
execution, it is also an interactive FOR-
TRAN statement accepter with a number of
error checking facilities. The IVF will
accept FORTRAN lines and continuation lines
until a complete statement has been
entered. It then checks for syntax errors,

13

.>

I-0
I-I+ 1
X " (I ** 2) / 2
IF(I .LT. i0) GO TO 4
END

I: 1

X: 0.4999999999

Figure 2

errors in "DO" loop nesting, and multiply
defined statement numbers. If the IVF
detects an error, the statement is re-
Jected and an appropriate error message is
displayed. The user is thus made aware of
his mistake immediately and is given
another opportunity to enter a correct
statement.

3.3 Additional Features

A user may optionally bracket a
portion of his FORTRAN program by
placing a "+" in the continuation field
of a noncontinuation line to turn the
"STEPPED MODE" on. The "STEPPED MODE"
is turned off in an analogous fashion
with a "-". Within the bracketed sec-
tion the user must press the "RETURN"
key after the execution of each FORTRAN
line has been simulated. This permits
a slowing of the simulation over a
portion of the user's program for more
careful study.

The IVF saves a copy of the FOR-
TRAN program simulated, and makes it
available on a file reserved for that
purpose. The user may optionally sub-
mit complete programs to the IVF
rather than enter them one line at a
time. Error checking is performed on
each statement as with on-line entry.
The complete program may have originated
from any source, including a session with
the IVF.

3.4 Im~lementatlon

The IVF is written in the SNOBOL4
programming language. Each FORTRAN state-
ment accepted by the IVF is translated
into a sequence of SNOBOL statements.
Steps are taken to adjust operator
precedence and make type conversions as
necessary. This is bracketed by state-
ments which move the arrow and update dis-
played information during the simulation.
This block of SNOBOL statements is con-
catenated into a string of such blocks for
later compilation, utilizing the CODE
function.

Simulation of a FORTRAN program is
accomplished by first displaying its
executable statements on the CRT screen,
and then executing the compiled SNOBOL
statements discussed above. During simu-
lation the IVF displays output from the
FORTRAN program on the bottom line of the
screen, and acceptsinput on the line
above. The position of the. executable
FORTRAN statements on the CRT screen is
never changed. The CRT's cursor (which
underlines the next printable position) is
moved about as necessary to prevent erasure
of valuable information and to facilitate
input and output.

3.5 Summary

Visualization of the execution of his
programs is of utmost importance to the
beginning programmer. It is hoped that the
IVF will serve as an effective aid to such
visualization. It is further hoped that
the IVF will be found flexible in its fea-
tures and yet simple enough for use by a
beginning programmer.

IVF can readily be adapted to run on
a number of computing systems which support
time-sharing terminals and provide inter-
active execution. The primary restrictions
are the need for a CRT display at the
time-sharing terminal and a sufficiently
large character set to support control of
the display.

The IVF is written in a straight-
forward manner with numerous Comments. An
experienced programmer should, therefore
be able to expand the scope of the IVF to
suit the needs of his local users. He
might even cause the IVF to simulate some
language other than FORTRAN.

14

