ACTES

SIXIEME CONFERENCE CANADIENNE SUR
L'INTELLIGENCE ARTIFICIELLE

PROCEEDINGS

SIXTH CANADIAN CONFERENCE ON
ARTIFICIAL INTELLIGENCE

Commanditée par:
La Société canadienne pour 'étude de lintelligence par ordinateur

Sponsored by :
Canadian Society for Computational Studies of Intelligence

ECOLE POLYTECHNIQUE DE MONTREAL
MONTREAL QUEBEC CANADA

21 - 23 mai/ May 1986



ISBN 2-7L05-0u09-3

Tous droits de reproduction, de traduction
et d’adaptation réservés © 1986
Presses de I'Université du Québec

Dépot légal — 2¢ trimestre 1986
Bibliothéque nationale du Québec
Bibliothéque nationale du Canada

Imprimé au Canada



DEVICE REPRESENTATION
USING INSTANTIATION RULES AND STRUCTURAL TEMPLATESY

Mingruey R Taie. Sargur N Srihari, James Geller and Stuart C. Shapiro

Department of Computer Science
State University of New York at Buftulo
Buffalo, NY 14260, USA
taiemr%buffaloscsnet-relay

Abstract —— A device representation scheme for
automatic electronic device fault diagnosis is described.
Structural and functional descriptions of devices (which
are central to design-model-based fault diagnosis) are
represented as instantiation rules and structural tem-
plates in a semantic network. Device structure is
represented hierarchically to reflect the design model of
most devices in the domain. Each object of the device
hierarchy has the form of a module. Instead of represent-
ing all objects explicitly, an expandable component
library is maintained, and objects are instantiated only
when needed. The component library consists of descrip-
tions of component types used to construct devices at all
hierarchical levels. Each component type is represented
as an instantiation rule and a structural template. The
instantiation rule is used to instantiate an object of the
component type as a module with /O ports and associ-
ated functional descriptions. Functional description is
represented as procedural attachments to the semantic
network: this allows the simulation of the behavior of
objects. Structural templates describe sub-parts and
wire connections at the next lower hierarchical level of
the component type. Advantages of the representation
scheme are compactness and reasoning efficiency.

INTRODUCTION

Ihrst Generation diagnostic expert svstems, such as MYCIN
[10] for medical diagnosis and CRIB {S} for computer hardware
fault diagnosis, are built on empirical rules that associate
ohserved svmptoms with possible fault (disease) hvpotheses.
While these svstems are considered successful, esperience has
shown significant drawbacks in their design methodology:
knowledge acquisition from domain experts is difficult: all possi-
ble faults (diseases) have to be enumerated explicitly, which
results in limited diagnostic power: and they have almost no
capabiiity of svstem peneralization.

Structural and functional descriptions, usualiy seferred to
as “desipn models™ of a device, have been suggested as a solution
to the difficulties of empirical rule based diagnosis systems in
knowledge acquisition, diagnosis capability, and system generali
zation {1,2,4]. Such systems are relerred to as “design model-
based™ or “specification-based™ as opposed 1o Rrst generation svs-
tems W hich are “symptom based 6] Diagnostic architectures for
combining symptom based and specitication-hased reasoning have
also been proposed (11}

1t This work was supported in part by the Air Force Systems Command,
Rome Air Desvelopment Center, Griffiss Air Force Base, New York 13441 5700,
and the Air Force Office of Sientific Research, Bolling AFB DO 20332 wnder con
tract No. Fobt) 8500008,

2

The present work focuses on knowledge representation for
design-model-based diagnosis. The knowledge needed for build-
ing such a system is well-structured and readily available at the
time when a device is designed. There is no need to explicitly
enumerate all possible faults since they are defined generically as
violated expectations at the output ports. This approach makes
adaptation of the system to a new device much easier, because
all that is needed is to describe the device to the system.

Since a design model-based fault diagnosis system reasons
directly on the structure and function of a device and usually
uses a simple inlerence engine, the representation of the device is
vital to system performance. We use a hierarchical representa-
tion of knowledge to provide abhstraction levels of devices. This
allows a fault diagnosis system to focus on either individual
objects or on several objects at a time.

Compactness of device representation is desirable for
memory economy and diagnostic reasoning efliciency. It s
observed that many parts of an electronic device of ten have the
same component tvpe and thus show the same function. There-
fore we find that representing every detail of a device creates
unnecessary redundancy. Instead of representing all objects
explicitly, an expiandable component library is maintained, and
obijects are instantiated onlv as needed. An object, which may be
the device itsell or a sub-part of 1t at any hierarchical level, is
represented as a module.

Thé component library consists of descriptions of all com-
ponent 1vpes used to construct the devices at all abstraction lev-
els. Lach component type is in turn abstracted at two levels: at
level-1, 1t is @ module (a black box in the usual sense) with 170
ports and functional descriptors; at level-2, sub-parts and wire
connections are envisioned. In a previous implementation, two
instantiation rules were used for the representation [9], this was
satisfuctory for simple cases, but perlormance degraded when
dealing with more complex devices. In this paper, we present a
new device representalion scheme that uses both instantiation
rules and struciural templates in a semantic network. Func-
tional description s represented as a procedural attachment to

the  semantice network. This allows the simulation of the

behavior of objects,

The representation scheme has been used 1o represent
several devices, including several multiplier/adder boards and a
siv channel POM (Pulse Code Modulation) board for telephone
communication, in a Versatile Maintenance Ixpert System
(VAMES) [9]. The result shows that the representation scheme 1s
effective. and that S\el’S [7]. the semantic network processing
svstem used as un underlving representation tool and inference
package, 1s suitable for this purpose.

In the following sections, details of the representation
scheme are described, an example of using the representation
scheme for electronic circuit board trouble-shooting is presented.
and the methad of “lazy instantiation™ is investigated.




REPRESENTATION SCHEME

To build a design-model-based Tault diagnosis system, it is
necessaTy to extract structural and functional information {rom
the design madel of the device. This information has to be
represenfed 1n an appropriste formalism. Oneé way 1o represent
the device is to describe every detail of the device ditectly to the
system. This could lead o inefficiencies in memory usage and tn
system development. Instead of hand-coding every detail of the
device, VMES Keeps a component library which describes every

“type” of component.

The representation scheme is implemented as a semantic
network for several reasons. The semantic network representa-
tion has long been around as a knowledge representation tech-
nique for expert systems [3]. It is able to represent subset and
element taxonomic information, and has the potential for a
smooth interface with natural language subsystems {3} Second,
a printed circuit board can be viewed as a constrained petwork,
and U is very natural to represent it as a semantic network
Third, SNel’S provides mechanisms for representing both declara-
tive and procedural knowledge; the former is good for represent
ing device structure, and the latter for device function,

In the representation scheme, each component type is
abstracted at two levels and represented by a S\el’S rule and a
SNelS assertion. The former is categorized as an “instantiation
rule”, and the latter a “structural template”™. The structural
representation reflects the part hierarchy of a device. Sub-parts
of o device are instantiated only when thev are needed. 'This
inereases memory efficiency.,

Level- 1 Abstraction:
Instantiation Rule_for /O Ports and Function

At level 1 abstraction, knowledge about a compuonent type
is represented as a SNePS rule. The rule is used later on t
instantiate an object of the component fype as a module with s
own 170 ports and associsted functionad descriptor. The func
tional descriptor contains information about the functional
description ot the component type. The representation ol the
level-1 abstraction of component fype “M3IA27 1S shown in Iy
ure 1. (M3A2 is an artificial board which consists of three mul
tipliers and two adders.) Its structure 15 shown n Figure 2.

Figure 1(a) shows the level 1 abstraction of the M3IA2
type. The function of the component is abstracted as mathemats
cal equations. This s good tor dipital circunts i peneral. Digure
1(b} and 1{c) contain our representation for the abstraction.

The first three lines of the instantiation rule shown on -
ure 1(b) say that “i" a2 is an M3IA2 and 18 to be instantiated at
level-1 abstraction CTHILLTA), then do the following™ The nest
five fines will mstantiate the 10 ports of the objrct when s
rufe is fired. 170 ports of an obget are the places Where the
input/output values of the objct are stored.  Measured
(observed) 1O values depict the real behavior of the obkct, and
calculated 170 values show its expected (normal) behavior. The
last two “builds” create the funcuional descriptors of the object.
T'he function of an object in the domain can be best abstracted as
the relation between its inputs and outputs. The first one says
“in order to simulate the value of the hrst output, use the func-
tion M3A2outl which takes three parameters namely the inputs
of the object x in order”. Similar functional descriptors can be
included for the mput ports 1 the inference of mput value from
outputs and other inputs is desired (these are not shown in the
figure).

125

The functional description should be usable to simulate the
compenent behavior, te., to calculate the values of cutput ports
if the values of the input ports are given. It should also be
usable to infer the values of the input ports in terms of the
values of other 170} ports. This is important if hypothetical rea-
soning is used for fault diagnosis. Though at this stage, VMES
only uses the functional description to calculate values at output
ports, our representation scheme can be used both ways.

As shown in ligure 1(b). the functional descriptor of a
poTt contains @ pointer to its functional description as well as
other information concerning the use of the functional descrip-
tion. The functional description itself is implemented as a LISP
function (see Figure 1(0)), which calculates the desired port
value in terms of the values of other ports. Lvery port of &4 com-
ponent type his such a function associated with 1t. Some more
discussion about functional representation is given in Section ..

inpl ¢
> outl
inp2 ¢ M3A2type
[ out2
inp3
outl = inpl+inp2 + inpl*npd

out2 = inpl*inp3 + inp2+inp3

Figure 1la). Level-1 abstraction of component type

M3A2.

(build
avh Sx
ant (build objct *x type M3A2 state TBI-L1A)
cq ((build inport-of *x inp-id 1) = INP/
(build inport-of *x inp-id 2) = INP2
(build inport-of *x inp-id 3) = INP3
(build outport-of *x out-id 1) = OUTJ
(build outpert-of *x out-id 2) = OUT2
(build port *OUT 1 f-rule M3A2outl
pn 3 pl *INPIp2 Y INP2p3*INP3)
{buitd port *OU/7°2 (-rule M3A2out2
pn 3 pl *INPI p2 *I NP2 p3 *INP3]

Figure 1{b). Instantiation rule for the level-1 abstraction
of component type M3A2: 1/O ports and functional
descriptors. \ariables are shown in italics, and "*" is a
SNel’S macro for variable value substitution.

(defun M3A2o0utl (inpl inp2 inp3)
(plus {product inpl inp2)
(product inpl inp3}

(defun M3Aout? Gopt p2 inpd)
(plus {product inpl inp3)
(product inp2 inp3]

Figure lc). Functional description of component ype
M3A2.




Level-2 Abstraction:
Structural Template for Subparts and Wire Connections

At the level-2 abstraction, a structural template, which is
implemented as a S\eP$S assertion, is used to describe the sub-
parts of the object at the next hierarchical level, and the wire
connections between the object and its sub-parts, as well as those
among the sub-parts themselves. In figure 2(a), the abstraction
of component type M3A2 at this level is illustrated. Note that
the sub-parts are abstracted at their own level-1 abstraction, i.e.,
modeled as modules with 170 ports. 'The component fypes of
sub-parts are also indicated.

The structural template representation is shown in Figure
2Ab). The representation can be viewed as consisting of three
parts. The first part, which is the second line of Vigure 2An),
denotes that the representation is the structural template (ST)
for component type M3A2 at level-2 abstraction (1.2A) The
second part describes the sub-parts. Associated with each sub-
part are a part-id, an ext-name, and a class indicator. The part-id
identifies the sub-part of the component {ype. The ext-nume is
for name extension, and class is the component {ype ol the sub-
part. This information is used for instantiating a sub-part. lor
example. if when diagnosing a device D1 of tvpe M3A2, the
second sub-part (with part-id M3A2-p2 inside the structural
template) is found suspicious, then an object is created with a
name of 1D1-:M2 and a type of MULT. The last part of the struc-
tural template specifies the wire connections shown in ligure
2a).

A structural template provides the necessary knowledge
about the sub-structure of all objects of the same component
type without representation overhead. Unlike instantiation
rules, structural templutes are never executed (fired) to produce a
representation for any specific object.  When reasoning on the
cub-structure of an object is required, instead of instantiuting the
suh-structure {all the sub-parts and wire connections) and then
reasoning on the resuited representation, we do it directlv on the
structural template ol the object. 1f suspicious sub-parts are
lovated, they (but not all sub-parts) are instantiated at the level-
1 abstraction by the instantiation rules for further examination.

Device representation by instantiation rule and structurai
template is very compact and effective. In the next section, an
apphication example of  using this representaiton scheme 18
demonstrated.

M3A2

pA p—p

p!
o D—'L_C
—
p2
—
p3 o—J

Multiptier: pl, p2, p3
Adder: p4, pS

—y
—c

Figure 2(a). Level-2 abstraction of component type
M3A2.

126

(build
tvpe M3A2 state ST-1.2A
sub parts
((build part-id M3A2-p1 ext-name MI class MULT)
(build part-id M3A2-p2 ext-name M2 class MULT)
(build part-id M3A2-p3 ext-name M3 class MULT)
(build part-id M3A2-pd ext-name Al class ADDER)
(build part-id M3A2-pS ext-name A2 class ADDER))
connections
({build from (build inport-of M3A2 inp-id 1)
to  ((build inport-of M3A2-pl inp-id 1)
(build inport-of M3A2-p2 inp-id 1))
(huild from (build inport-of M3A2 inp-id 2)
1o ((build inport-of M3A2-pl inp-id 2)
(build inport of M3A2-p3 inpid 1))
(build from (build inport-of M3A2 inp-id 3)
to ((build inport-of M3A2-p2 inp-id 2)
(build inport-of M3A2-p3 inp-id 2)))
(build from (build outport-of M3A2-pl out-id 1)
to  (build inport-of M3A2-p4 inp-id 1))
(huild Irom (build outport-of M3A2-p2 out-id 1)
o ((build inport of M3A2-pdnpid 2)
{build inport-of M3A2 pS inpid 1)
{huild from (build outport-of MIA2-p3 out-id 1)
to  {build inport-of M3A2-p5 inp-id 2))
(build Trom (build outport-of M3A2-p4 out-id 1)
to  (build outport-of M3A2 cut-id 1))
(build from (build outport-of M3A2-p5 out-id 1)
to  (build outport-of M3A2 out-id 23]

Figure 2(b). Structural template for the level-2 abstrac-
tion of component type M3A2: sub-parts and wire
connections.

N APPLICATION EXAMPLE

We are developing a versatile maintenance expert system
(VMES) tor digital arcuit trouble-shooting [8] . VMLS is
intended Lo be versatile in several senses: good for a wide range
of devices 1 the domain; good for most common faults in the
domain: and able to communicate with the user by several
media [9). VMES consists of two major modules: an expandable
component lihrary for device representation and an inference
engine for diagnostic reasoning. The representation scheme
described above is used for the current implementation of the
component library.

inference Engine of VMES

The inference engine for fault diagnosis follows a simple
control structure. It starts from the top level of the structural
hierarchv of the device and tries to find output ports that violate
an expectation. “Violated expectation” is defined as a mismatch
between the expected (calculated) value and the observed (meas-
ured) value at some output. After detecting a violated expecta-
tion, the svstem reasons on the structural template to find a sub-
set of components at the next lower hierarchical level which
might be responsible for the bad outputs. This process is then
continued with the suspicious parts. A partis declared faulty if
it show's some violated expectation at 1ts output port and it is at
the bottom level of the structural hierarchy. The hottom of the
hierarchyv will contain the smallest replaceable units for the
intended maintenance level. In other words. if a device can be
replaced but not repaired in a certain Gituation, then there is no
need o represent its internal structure.



The inference engine 15 a rule-based system implemented in
(NelS. The control flow is entorced by a LISP driving function
called “diagnuse”. §Nel’S can do both forward and back ward
inference, and is capable of doing its own reasoning to diagnose a
fault. The LISP driving function” hes been introduced” tor
efhciency reasons only,

A small set of SNeDlS rules 1s activated at every sr'ug_c of
the diagnosis. For example, three rules are activated when rea-
soning about a possible violated expectation of a specific port of a
device. One rule is to deduce the measured value of the port. If
the value can not be deduced from the wire connections, the rule
would activate a LISP function which asks the user to supply
one. A similar rule 1s activated lor the calculared vilue, and the
last rule is used 10 compare the two values to decide 1f there s a
violated expectation. Iigure 3 shows the last rule in both Shel’S
code and in English, '

In SNePS code:

{build

avb (Sp Svc Svm)

&ant ((build port *p value *\¢
(build port *p value *vm source measured )

cq (build
min 1 max 1
arg (build pame: THIY - MATCH pl fve p2 *vm)
arp (build port *p state vio eapet)

sourve caleulated !

In English:

If the calculated and measured values of port poare vo & vin,
one and onlv one of the following statements s true:

(1) veand vm agree;

(2) port pdisplays a violated expectation.

Figure 3. SNePS rule for detecting violated expectation
at output ports.

The diagnosis strategy along with the combination of a
LISP driving function and SNel’S rules turns out to be very
efficient. The diagnosis can be monitored by the SNelS text or
graphic inference trace.

A Diagnostic Example

Figure 4 shows the representation scheme used by VMLS
in diagnosing a multipher/adder board. Again, the component
type M3A2 is used as our example.

We first name the board D1. Figure 4(a) shows the result
of instantiating D! using the instantiation rule for M3A2 type
device (see Figure 1(b)). After the instantiation, 21 has its own
170 ports and functional descriptors, and thus its 1/0 values can
be assigned. The result of value assignments is also shown in
I'igure 4(a). Then the inference engine begins to check the out-
puts of D1 by using the functional description of Di. It con-
cludes that there is a violated-expectation at the first output port
of 1D1 as shown in Figure 4(b), since the expected value, which
is calculated using the functional description, should be a “4”
instead of the observed “2".

At this stage, it is necessary to check the substructure of
D1 w0 locate the faulty parts. Thus VMES turns to the structural
template for M3A2 (see Iigure 1{c)). i.e, the component type of
D1. From the wire connection depicted by the structural tem-
plate, VMES determines that sub-parts p1, p2, and p4 ol D1 may
be responsible for the malfunctioning of D1. 'This is shown in
ligure 4(c). Note thut sub-part p2 may be excluded if a “single

fault assumption (SIFA)” 1s made for diagnosis. The reason is
that @ faulty sub-part p2 1s inconsistent with the observed
behavior of 1)1 under SFA. In other words, a bad output of
sub part p2 should cause violated-expectation at both ocutput
ports of 131, but this 1s not the case.

Suppose SFA is not made for this example. The next step
is 10 instantiate all suspicious sub-parts of 131, and move the
dragnosis process to those sub-parts. Pigure 4(d) shows the
istantiation of these sub-parts. Sub-part pl is instantiated as
DI-M1, p2 as D1-M2, and pd as DI-A1 using the information
supplied by the structural template of the component type of
1M, e, M3A2. Note that sub-parts p3 and pS are not touched at
all. This is the main advantage of this representation scheme.

Now the diagnostic reasoning process moves to D1-M1, D1-
M2 and DE-AT with the same inference strategies used for diag-
nosing D1 As shown in Vigure $(e), DI-M1 and DI1-M2 show
no problem, but DI1-A1 shows 4 violated expectation at its out-
put. The process will wrn to the structural template of the
component fype of DI1-A1 (an ADDERY i D1-A1 is not an object
at the bottom level of the structural hierarchyv. This 1s not the
case in this simple example, where DI-AT is an SRU (smaliest
replaceable unit) for the intended maintenance level. Therefore,
1AL s finally dentified as the faulty part.

1 g
> 2
1 A D1
o 6
REF=!
(a)
1 Violated Fxpectation
7 otl-obsv; f -expct?
| o D1
k> 6
3 o
(b)
M3A2
o Vio-Expet
=3
(c)
1 ) 1q
DI-M1 DI-M2 D1-A1 2
1 3 =
(d)
' vt i DIM2 o3 DI-A1 3
el h el | PIM2 ko 303 ; : y
(® e ’

Figure 4. A diagnostic example for the device represen-
tation scheme. (D1 is an M3A2 rype device).




USSION

Iland coding every detail, ie., all sub-parts at all hierarchi-
cal levels, of a device is inefficient. It results in unnecessary
redundancies in device representation since many parts of a dev-
ice may be identical in the domain of electronic circuit boards.
For instance, the six PCM chips on a six channel PCM board are
exactly the same.

Representing a device as a hierarchically arranged set of
objcts, each of which is modeled as a module, is hardly a new
idea. What is significant in our representation scheme are the
clear distinction between the two levels of the abstraction and

the use of an instantiation rule and a structural template to-

represent the different fevels. The representation scheme along
with an expandable component library leads to several impor-
tant advantages: compact representation and system eficiencies
in both svstem development and operating phases.

We first claim that a clear distinction between the two
Jevel ahstractions of an objct is desirable. In some points during
diagnosis, we would like to treat an object as a complete black
box — that means only the knowledge from the level-1 abstrac-
tion, which consists of 170 ports and a functional description of
the object, 1s needed. To represent the sub-structure of the object,
which is the level-2 abstraction, together with the level-1
abstraction s ineficient, since the sub-structure of the object
may never be needed.

The use of structural templates to represent the substruc-
ture of objects of a component type has advantages over a pro-
cedural representation which uses a procedure or an instantiation
rule for it [1,9]. Whenever it is needed to reason about the sub-
structure of an object, it is carried out on the unique structural
template for the component type of the object. Only the sub-
parts that requires further examination will be instantiated (by
the proper instantiation rules for them). Unlike the strictural
template representation, a procedural representation is used 10
instantiate “all” sub parts of an object, and then the reasoning is
carried out over the resufting substructures. This creates
unnecessary representation. and thus is memery ineflicient. This
is also execution inefficient due to the overhead of instantiating
all sub-parts. An extreme example is an objct with one hun-
dred sub parts at the nest hierarchical level, only three of them
needing further investigution. The advuntage of the structural
template 15 guite significant in memory and processor critical
environments, such as the widespread microprocessor hased com-
puters.

Since different ports of different component tvpes might
have the same function, some functions can be shared. For
instance, the simpie function “LCTIOT defined as:

tdetun BCNO Gnp) inp)

is shared by several different component types namelyv by the
tvpe Ssuper-buffer”, the tvpe “wire” and the ivpe "l 1ol
transformer”™.  All these comporient types show  the sume
behavior at our level of component abstraction: they echo the
input to the output. As depicted above, the functional descrip-
tion is versatile in that it supports the simulation and the infer-
ence of the device behavior; it also supports hypothetical reason-
ing and the representation scheme is guite simple.

Along with the representation scheme using instantiation
rules and structural templates is the idea of an expandable com-
ponent fibrary. This makes life very easy in adapting VMLES to
other devices. All that the user has to do is to add the structural
and functional information of the “new” component types to the
companent library. A new component type is defined as a com-

1248

ponent type which has not been described to the component
libraryv. The new device itself 1s a new component tvpe by our
definition. The effort required to adapt the system 10 new dev-
ices should be minimal since digital circuit devices have a lot of
common components, and the structural and functional descrip-
tion are readily available at the time a device is designed.

In order to test this idea as well as the suitability of
hierarchical structural representation, we invented another
artificial device (ype called XM3A2 and entered its description
into the svstem. The XM3A2 type has three inputs and two out-
puts exactly like the M3A2 type, but it only has a single sub-
part which is of M3A2 type. Actually. it is a device which has
an extra laver of packaging on top of an M3A2 type device.
Given that the M3A2 type has been known to the system, only
the NM3A2 type had to be added, which was done by adding a
simple instanuiation rule and & simple structural template.
There was no need for a new functional description since the
function of XM3A2 is the same as the function of M3A2. The
NM3A2 device has three leveis of structural hierarchy, and our
test successfully found the faulty part at the lowest level.
Though the example of NM3A2 is somewhat simplistic, it shows
the capability of our system to deal with a wide range of dev-
ices in the domain with arbitrary complexity. Actually, a real
six channel PCM board has been represented and a fault has been
successfully located.

Acknowlicdgement

The authors would like to thank Scott S. Campbell, Dale
Richards and Norman Sturdevant for their help and useful com-
ments on the development of VMES.

References

1. R. Davis and H. Shrobe, “Representing Structure and Behavior of Digital
tHardware,” Computer, pp. 75-82 ((kt. 1983).

2. R. Davis, “Dhagnostic Reasoning Based on Structure and Behavior,”
Artificial Intelligence 24 pp. 347-410 {1984).

3 R. 0. Duda, P. E. Hart, N. J. Nilson, and G. L. Sutherland, “Semantic Net-
work representations in Rule Based Inference Systems,” in  Pattern-
Directed Inference Systems, e«d. 1. Hayes-Roth.Academic Press, New
York (1978).

4. M. R Genesereth, “The Use of Design Descriptions in Automated Diag-
nosis,” Arti ficial Intelligence 24 pp. 411-436 {1984 ).

5. R.T. Hardey, “How Expert Should an Expert System Be?,” pp. §62-867
in Pyoceedings of the 7th [nternational Joint Conference on Al,
(August 1981 ).

6. ). i Richardson, R. A. Keller, R. A. Maxion, P. G. Poison, and K. A.
Delong, “Artificia) Inteiligence in Maintenance: Synthesis of Technical
Issues.” APHRITR 85 7, Airforce Systems Command, Air Force Human
Resources. Laboratory, Brooks Air Force Base, TX 78235 (1985).

7. S0 € Shapiro, “The Sh\ePS Semantic Network Processing System.” pp.
179203 in Associative Networks: The Representation and Use of
Knowledge by Computers, ed. Nicholas V. Findler, Academic Press, New
York (1979).

8. S. C. Shapiro, S. N. Srihari, J. Geller, and M. R. Taie, “A Fault Diagnosis

Svstem  Rased on an Integrated knowledge Base™ IEEE Software
32X\ arch, 1986).

9. S € Shapiro, S N. Srihan, M. R, Taie, and 1. Geller, “VMES: A Network -
Based Versatile Maintenance Fxpert Svstem.” pp. (to appear) in Proc. of
Ist Iniernational Con ference on Applications of Al to Engineering
Problems, . Southampton, LK. (April 1986).

10 FO AL Shorthffe, Computer-Based Medical Consultations: MYCIN, Amer-
ican Llsevier North Holland, New York (1976).

11 7. Ndang and SONC Srihar, “A Strategy for Diagnosis Based on Empirical
and Madel knowledge.” pp. (1o appear? in Proc. of Sixth Int. Workshop
on Fxpert Sysiems and their Applications, . Avignon, France (April
1986).



