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Abstract 

Numerical quantifiers provide simple means of formalizing 

such statements as, "at least three people are in that room", 

"at most fifteen people are in the elevator", and "everybody 

has exactly two parents". Although numerical quantifiers 

generalize the existential quantifier, they have different uses 

in reasoning. The existential quantifier is most useful for 

supplying referents for designating phrases with no previously 

explicitly mentioned referent. Numerical quantifiers are most 

useful for reasoning by the process of elimination. Numerical 

quantifiers would, therefore, be a useful addition to the 

operators of a reasoning program or deductive question-answering 

system. They have been added to SNePS, the Semantic Network 

Processing System, to further enhance its inference capabilities. 

* This material is based on work supported in part by a Faculty 
Research Fellowship from the Research Foundation of State 
University of New York, and in part by the National Science 
Foundation under Grant No. MCS78-02274. 
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, ..... 

Introduction 

Logic based reasoning programs, that is reasoning pro 

grams based on operators (connectives, quantifiers, modals) 

which have been studied as part of formal logical systems 

benefit from the fact that the inferential properties of their 

operators are clear and well known. They need not be restricted, 

however, to a minimal set of operators. Minimal sets of 

operators are useful for proving properties of logical systems 

such as consistency and completeness, but using a logical 

system for carrying out inferences is simplified (for people) 

by enlarging the set of basic operators. This is one reason 

that natural deduction systems like those of [Fitch, 1952], 

[Prawitz, 1965] and [Weyhrauch, 1977], with reasonable sets of 

connectives and two rules of inference for each one, are easier 

to use than axiomatic systems with minimal sets of connectives, 

rules and axioms. 

This paper is motivated by an interest in programs that 

represent knowledge, including the knowledge of rules of 

reasoning, and that use those rules to perform reasoning. I 

believe that such programs are enhanced by the availability of 

a large set of operators that typify and formally model as 

many of the modes of human reasoning as possible. This paper 

discusses a set of operators, the numerical quantifiers, which 

can be implemented in reasoning programs as a single parameterized 

operator, and which model an important mode of human reasoning. 

Numerical quantifiers, discussed briefly in [Tarski, 1965, 

pp. 63-64], are generalizations of the existential quantifier. 

They can be used to formalize such statements as: 
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There are at least two numbers z, such that z+2<6. 

There are exactly two numbers x, 2 such that x +4=4x. 

There are at most two numbers y, such that y+5<11-2y. 

[all from Tarski, 1965, pp. 64, 67). 

One numerical quantifier is the more commonly encountered unique 

existential, expressed as atxA(x) in the notation of [Kleene, 

1950, p. 199]. We will use the notation aixA(x) for "there 

exists at least i and at most j x such that A(x)". The usual 

existential quantifier, axA(x), can then be considered an - abbreviation of 
00 a1xA(x) (although later we will make a 

distinction), and the unique existential becomes 1 a1xA(x). In 

general, a~xA(x) are the "numerically definite quantifiers" 

mentioned in [Lemmon, 1978, pp. 165, 6]. 

We have found the numerical quantifiers particularly use 

ful for the mode of reasoning by the process of elimination: 

if the maximal number of positive cases are found, the rest 

must be negative; if the maximal number of negative cases are 

found, the rest must be positive. Numerical quantifiers thus 

can introduce explicit negative information into a data base, 

and can make use of negative information to derive positive 

information. To set the stage for this discussion, we will 

first discuss the role of the simple existential quantifier in 

deductive question-answering. 

The Existential Quantifier 

Let us consider statements which: 

1) include an existential quantifier; 
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2) are to be stored in the data base of a deductive 

question-answering system (QAS)1 

3) are to be used by the system to answer questions. 

We will consider what contribution such statements (we 

call these, as well as other general statements, 

deduction rules) can make to the question-answering 

process. 

Existential quantifiers can either be outside or inside the 

scope of universal quantifiers. If outside the scope of any 

universal quantifier, for example "There is a man who owns a dog" 

or gx(Man(x)&:;ry(Dog(y),owns(x,y))), there is no need to retain 

the quantifier in the data base, one can simply create a new 

individual constants (Skolem constants) and substitute them for 

the quantified variables, storing the three facts Man(m1), 

Dog(d1), and 0Wns(m1,d1). 

Existential quantifiers within the scope of universal 

quantifiers can be eliminated by replacing them with Skolem 

functions. So, 

(1) "Every person has a mother" 

can be represented by vx(Person(x)-+:Iy(Person(y)&Mother(y,x))) or 

byvx(Person(x)+(Person(f(x))&Mother(f(x),x))), where f is 

a new function. This rule could be used to answer the question, 

"Does John have a mother?", but the point of the Skolem function 

is that for each person a new person must be postulated to be 

his or her mother. So, knowing just this rule, and that John 

is a person, if we asked "Who is John's mother?", the answer 

would be some individual about whom we know nothing except that 
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she is a person and is John's mother. 

It may seem strange that asking a question can cause the 

creation of a new individual, but consider definite descriptions 

that refer to individuals which have not been explicitly 

introduced. This often arises in statements. Consider "The 

mother of John owns a dog", or "John's mother owns a dog". 

Normally, we would loo~ in the data base for John's mother and 

assert that she owns a dog, but in this case there is no record 

of John's mother in the data base. However, rule (1) justifies 

creating a new individual to be John's mother. "John's mother 

owns a dog" presupposes that John has a mother. With neither 

an explicit mother, nor the rule, the sentence has a failed 

presupposition and should not be accepted. Compare the situation 

in which we ask, "Does John's mother own a dog?" In the absence 

of an explicit mother and rule (1), the correct response, as 

[Kaplan, 1978] points out, would be something like "I didn't 

know that John had a mother". In the presence of rule (1), 

however, the correct response would be, "I don't know". (Under 

the closed world assumption that any statement not in the data 

base is false [Reiter, 1978], the answers would be, "John doesn't 

have a mother", and "No", respectively). 

What if the data base contained both rule (1) and 

(2) Jane is John's mother 

and we input, "John's mother owns a dog."? In this case, 

rule (1) is at best useless, and at worst, harmful. If the 

rule were activated, it would have to produce a new mother, and 

the phrase "John's mother" would be ambiguous. If rule (1) were 
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not activated, "Jane owns a dog" would be stored. This is 

technically wrong (consider replacing "mother" with "parent"), 

but probably what the speaker intended. 

In sununary, existential quantifiers need be stored in the 

data base of a QAS only when within the scope of a universal 

quantifier, and they are most useful for supplying referents 

for designating phrases with no previously explicitly mentioned 

referent. 

Maximal Numerical Quantifiers 

...... 

Let us consider the data base containing (2), "Jane is 

John's mother" and the question, "Is Mary John's mother?" In 

order to get the correct answer, "No", we need the rule 

(3) Every person has at most one mother. 

(We will ignore, in this paper, the problem of identity or 

extensional equivalence. That is, the even more correct answer, 

"Only if Mary is the same person as Jane". See [Shapiro, 1978] 

for a solution to this problem using a combination of path 

tracing and deduction rules.) Let us call quantifiers of the 

form 3jxA(x), read "there exists at most j x such that A of x", 

maximal numerical quantifiers. In this notation, (3) becomes 

(3') vx(Person(x)~31y(Person(y)&Mother(y,x))) 

Another example of maximal numerical quantifiers is, "Every 

football team must have at most eleven players on the field 

at any time". 

Unlike the simple existential quantifier, the maximal 

numerical quantifiers do not justify the introduction of new 
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individuals. However, we can derive negative statements from 

them once the maximal number of individuals satisfying the 

quantified statement are known. In our example, rule (3) 

justifies the answer, •No, Mary is not John's mother". 

- 
Suppose the data base consists of rules (1) and (3) only. 

Then if we ask, "Is Jane John's mother?", it might seem that 

rule (1) would create a new Skolem constant to be John's mother, 

and then by rule (3) the answer would be •No". However, rule (1) 

must not be invoked in this case, because it is illegal to 

instantiate an existentially quantified variable to a constant 

we already know something about. Since John's mother is not 

known explicitly, Jane is not ruled out and the correct answer 

in this case is "I don't know". 

The formula 3jxA(x) is therefore useful when we already 

know j different individuals satisfying A and are asked if a 

(j+1)st individual, t, also satisfies A. The formula -A(t) is 

then derivable. 

Minimal Numerical Quantifiers 

Let us now consider formulas of the form, 

- 

- (4) 3ixA(x) 

read "There exists at least ix such that A of x". We will 

call quantifiers of this form, minimal numerical quantifiers. 

What useful information does (4) provide that is not provided 

by 3xA(x)? If the universe under discussion contains n 

individuals, and we already know of n-i individuals y such that 



- 8 - 

....... 

-A(y), we can deduce about any (n-i+1)st individual, t, 

that A(t). Consider five faculty members, three of whom 

are in a meeting. If I know who the five people are, and I've 

seen two in the hall, I can deduce who is in the meeting • 

since the usefulness of minimal numerical quantifiers 

depends on some universe of objects, it is convenient to introduce 

domain restricted minimal numerical quantifiers. We will use 

the notation aix(P(x):Q(x)), where P(x) and Q(x) are 

arbitrary formulas with x free, to mean, "of all objects x 

such that P(x), at least i of them satisfy Q". In a data 

base without the closed world assumption, we can seldom be sure 

that the objects known to satisfy Pare the only ones that 

actually do. For example, the following corpus, representing 

the example above, is insufficient for deducing who is in the 

meeting. 

..... 

(5) a3x(MEMBER(x,FACULTY) :IN(x,MEETING)) 

(6) Vx(IN(x,HALL)+-IN(x,MEETING)) 

(7) MEMBER(PAT,FACULTY) 

(8) MEMBER(GABOR,FACULTY) 

(9) MEMBER(NICK,FACULTY) 

(10) MEMBER(JOHN,FACULTY) 

(11) MEMBER(STU,FACULTY) 

(12) IN(PAT,HALL) 

(13) IN(NICK,HALL) 

However, it may be that whoever provided rule (5) knows that there 

are only five faculty members. To record such information, we 



- 9 - 

- 

will add another parameter to the minimal numerical quantifiers 

giving the schema, ngix(P(x) :Q(x)), where n is the number 

of objects which satisfy P. Notice that this amounts to a 

closed sub-world assumption. If we replace (5) in the above 

corpus by 

(51
) 583x(MEMBER(x,FACULTY):IN(x,MEETING)) 

stating that •of the five faculty members, at least three are 

in the meeting•, then we can derive 

IN(GABOR,MEETING),IN(JOHN,MEETING) and IN(STU,MEETING). 

- 

With minimal numerical quantifiers, negative information 

can be used to deduce positive information. Given the rule 

n3ix(P(x):Q(x)), and n-i individuals y such that P(y)&-Q(y), 

we can deduce for any other individual t such that P(t) holds 

that Q(t) also holds. - 
Numerical Quantifiers 

The minimal and maximal numerical quantifiers can be combined 

into what we shall simply call the numerical quantifiers 

( 14) 8~x(P(x) :Q(x)) n i 

which are read, •of then individuals x such that P(x), at least 

i and at most j are such that Q(x)•, or simply, •Between i 

and j of then Ps are Qs". The other quantifiers we have 

discussed may be obtained by leaving out appropriate parts of 

schema (14). 

The regular existential quantifier, 8xA(x), is the same 

as the numerical quantifier 

(15) 
00 

31xA(x). 
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It is now clear why it seldom helps us determine whether A(t) 

holds for a fixed individual, t. Rule (15) cannot derive -A(t), 

since there is no maximum -- all individuals might satisfy A. 

Rule (15) can seldom produce A(t), since that would require 

knowing that all other individuals satisfy -A, and we rarely 

have a finite list of all the individuals in the domain. Because 

of this, the implementor of a deductive question-answering 

system may wish to distinguish the existential quantifier from 

the numerical quantifiers, and continue to prohibit invokation 

of a rule that would bind an existentially quantified variable 

to a constant. 

Numerical Quantifiers in SNePS 

Numerical quantifiers have recently been added to SNePS, 

the Semantic Network Processing System [Shapiro, 19791, which 

already included universal and existential quantifiers as well 

as a set of non-standard connectives (see also [Shapiro, 1977]). 

SNePS accepts numerically quantified formulas of the form 

(16) 

(17) 

(18) 

ngix(P1(x), ••• ,Pk(x) :Q(x)) 

gji<P1<x>, ••• ,Pk<x> :o<x>> 

where k~O and x represents a sequence of variables each of 

which is free in at least one of P1(x), ••• ,Pk(x),Q(x). The 

meaning of (16) is that of the n combinations of individuals 

satisfying P1(x)& ••• &Pk(x), at least i and at most j of 

these combinations also satisfy Q(x). Rule (17) means that at 

least i of the n combinations of individuals satisfying 
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P1{x)& ••• ,Pk{x) also satisfy Q{x). Rule (18) states that at 

most j of the combinations of individuals satisfying 

P1(x), ••• &Pk(x) also satisfy Q(x). 

As an example of (16) involving a sequence of variables, 

consider the many-many relationship of dog ownership. Several 

people in a family may own one dog, and several dogs may be 

owned by the same person. The formula 

5a~x,y{Person(x) ,Dog(y),OWns(x,y) :Spoils(x,y)) 

says that of the five dog ownership relations (which may involve 

one to five dogs and one to five people), between. two and four 

involve spoiling the dog. 

Rules of the form of (16) are represented in the SNePS 

network by a node with: 

an auxiliary arc labeled EMIN to i 

an auxiliary arc labeled EMAX to j 

an auxiliary arc labeled ETOT ton 

descending arcs labeled PEVB to the nodes representing 

the variables in x 

descending arcs labeled &ANT to the nodes representing 

the formulas P1{x), ••• ,Pk(x) 

a descending arc labeled CQ to the node representing Q(x). 

In SNePS, auxiliary arcs may connect semantic network nodes to 

arbitrary data structures, including numbers. A descending arc 

goes from a network node to another network node and has a paired 

ascending arc in the reverse direction. 
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If a rule of the form of (16) is in the network, and a 

derivation of Q(a) is requested, where a is a substitution 

instance of x, subgoal derivations of P1(x), ••• ,Pk(x), and Q(x) 

are begun. One of the following cases will occur: 

1. j substitution instances of x are found for 

which P1(x)& ••• &Pk(x)&Q(x). If this occurs, let 

Q' (x) be -Q(x). 

2. n-i substitution instances of x are found for 

which P1(x)& ••• &Pk(x)&-Q(x). If this occurs, 

let Q' (x) be Q(x). 

3. Neither case (1) nor case (2) ever occurs. In this 

case rule (16) is incapabile, in the current data base, 

of deriving either Q(a) or -o(a) 

If case (1) or (2) occurs, there are two possibilities. If 

P1(a)& ••• &Pk(a) has been derived, Q'(a) is thereby derived. 

If this has not happened, the process implementing this rule 

changes itself into one implementing the rule 

P1(a)& ••• &Pk(a}+Q'(a), retains the relevant data already 

accumulated, and continues processing. 

This has been a simplified account since the details would 

require a general discussion of the way SNePS processes 

deduction rules. This general discussion is contained in 

[Shapiro and McKay, forthcoming]. A few points, however, are 

worth noting. A process which implements a deduction rule, i.e. 
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uses the rule for a specific derivation, creates a process 

for each subgoal deduction. All processes are executed in 

parallel, so the occurrence of case (3) above, would not 

prevent some other rule's derivation of Q(a) or -Q(a). A 

process that derives many substitution instances of a formula 

returns them as they are generated rather than waiting for 

completion. This is why the two possibilities mentioned 

above can occur. 

Examples 

In this section, we will show SNePS runs of some of the 

examples from above. Lines beginning with"**" or••• were 

typed by the user. The character "1" indicates that the rest 

of the line is a comment. Each example was begun with an empty 

network so that the two •mother" examples would not interact. 

Input is in SNePSUL, the SNePS User Language, [Shapiro, 19791, 

but it is hoped that, with the aid of the comments and the 

previous discussion, the reader will be able to follow it. 

The runs were transcribed to make them easier to read, and 

edited only to add the comments in the right margin and to remove 

typographical errors and some trace printing. SNePS is written 

in Lisp and runs interactively on a CYBER 173. A compiled version 

of SNePS was used for the first two examples. 
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Example 1: 

**;Every person has a mother. 
*(BUILD AVB $X ; 
* ANT (BUILD MEMBER *X CLASS PERSON) ; 
* CQ (BUILD EVB $Y MIN 2 MAX 2 ; 
* ARG ((BUILD MEMBER *Y CLASS PERSON) ; 
* (BUILD A1 *YR MOTHER A2 *X))) ; 
(MS); This is the SNePS node representing the rule. 
62 MSECS 

Vx 
[Person(x)+ 
m, 
(Person(y)& 
Mother(y,x))] - 

**;John is a person. 
* (BUILD MEMBER JOHN CLASS PERSON) 
(M6) 
7 MSECS 

**;John's mother owns a dog. 
*(DESCRIBE 
*(BUILD A1 (FIND A1- (DEDUCE A1 %X R MOTHER A2 JOHN)); John's mother 
* R OWNER ; owns 
* A2 (BUILD MEMBER- (BUILD CLASS DOG)))) ; a dog. 
(M12 (A1 (B1)) (R (OWNER)) (A2 (M11))); Theassertionthatwasbuilt. 
(DUMPED) 
266 MSECS 

**(DUMP B1 M11); To find out everything about B1 and M11. 
(B 1 (MEMBER- (M9)) (A 1- (M12 M8))) 
(M11 (A2- (M12)) (MEMBER- (M1fl))) 
(DUMPED) 

- 1{1 MSECS 

**(DUMP M9 M12 M8 M1fl); To print all assertions about B1 and M11. 
(M9 (MEMBER (li1)) (CLASS (PERSON))) ; B1 is a person. 
(M12 (A1 (B1)) (R (OWNER)) (A2 (M11))) ; B1 owns M11. 
(M8 (A1 (B1)) (R (MOTHER)) (A2 (JOHN))) ; B1 is John's mother. 
(M1ll (MEMBER (M11)) (CLASS (DOG))) ; M11 is a dog. 
(DUMPED) 
17 MSECS 

Example 2: 

**;Jane is a person. 
*(BUILD MEMBER JANE CLASS PERSON) 
(M13) 
8 MSECS 
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••;John is a person. 
• (BUILD MEMBER JOHN CLASS PERSON) 
(M14) 
8 MSECS 

••;Jane is John's mother. 
*(BU!LD A1 JANE R MOTHER A2 JOHN) 
(M15) 
1fl MSECS - 

- ••;Every person has at most one mother. 
*(BUILD AVB $X 
• ANT (BUILD MEMBER •x CLASS PERSON) 
* CQ (BUILD EMAX 1 PEVB $Y 
* &ANT (BUILD MEMBER *Y CLASS PERSON) ; 
• CQ (BUILD A1 *YR MOTHER A2 *X))) ; 
(M21) 
62 MSECS 

. , vx 
[Person(x)-+ 

a:1y 
(Person(y): 
Mother(y,x))] 

; 
; 

••;Mary is a person. 
*(BUILD MEMBER MARY CLASS PERSON) 
(M22) 
7 MSECS 

••;Is Mary John's mother? 
*(DESCRIBE (DEDUCE A1 MARY R MOTHER A2 JOHN)) 
(M24 (MIN (fl)) (MAX (fl)) (ARG (M23))) ; 
(M23 (A1 (MARY)) (R MOTHER)) (A2 (JOHN))) ; 
(DUMPED) 
827 MSECS 

It is not the case that 
Mary is John's mother. 

Example 3: 

••;At least 3 of the 5 faculty members are in the meeting. 
*(BUILD ETOT 5 EMIN 3 PEVB $X ; 5:3:3X 
* &ANT (BUILD MEMBER •x CLASS FACULTY) ; [MEMBER(x,FACULTY) 
• CQ (BUILD A1 •x R IN A2 MEETING)) ; -+IN(x,MEETING)] 
(M4) 
695 MSECS 

**;Whoever is in the hall is not in the meeting. 
*(BUILD AVB $X 
* ANT (BUILD 
* CQ (BUILD 

A1 *X R IN A2 HALL) 
MIN fl MAX fl 
ARG (BUILD A1 *X R IN A2 MEETING))) ; 

; vx 
[IN(x,HALL) ; 

• 
(MS) 
193 MSECS 

; 
IN(x,MEETING)] 
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**;Pat is a faculty member. 
*(BUILD MEMBER PAT CLASS FACULTY) 
(M9) 
3fl MSECS 

**;Gabor is a faculty member. 
*(BUILD MEMBER GABOR CLASS FACULTY) 
(M1fl) 
33 MSECS 

**;Nick is a faculty member. 
*(BUILD MEMBER NICK CLASS FACULTY) 
(M11) 
34 MSECS 

**;John is a faculty member. 
*(BUILD MEMBER JOHN CLASS FACULTY) 
(M12) 
31 MSECS 

**;Stu is a faculty member. 
* (BUILD MEMBER STU CLASS FACULTY) 
(M13) 
33 MSECS 

**;Pat is in the hall. 
*(BUILD A1 PATRIN A2 HALL) 
(M14) 
4fl MSECS 

**;Nick is in the hall. 
*(BUILD A1 NICK R IN A2 HALL) 
(M15) 
42 MSECS 

**;Who is at the meeting? 
* (DESCRIBE (DEDUCE A 1 "X R IN A2 MEETING)) 
(M17 (MIN (J1)) (MAX (fl)) (ARG (M16))) ; It is not the case that 
(M16 (A1 (PAT)) (R (IN)) (A2 (MEETING))) ; Pat is in the meeting. 
(M19 (MIN (j1)) (MAX (J1) ) (ARG (M18))) ; It is not the case that 
(M18 (A1 (NICK)) (R (IN)) (A2 MEETING))) ; Nick is in the meeting. 
(M20 (A1 (GABOR)) (R (IN)) (A2 (MEETING))) ; Gabor is in the meeting. 
(M21 (A1 (JOHN)) (R (IN)) (A2 (MEETING))) ; John is in the meeting. 
(M22 (A 1 (STU)) (R (IN)) (A2 (MEETING))) ; Stu is in the meeting. 
(DUMPED) 
4fl33 MSECS 
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Example 4: 

••;of 5 dog ownership relationships between 2 and44 involve spoiling. 
*(BUILD ETOT 5 EMIN 2 EMAX 4 PEVB ($X $Y) ; 5g2x,y 
• &ANT ( (BUILD MEMBER -x CLASS PERSON) ; [MEMBER(x,PERSON) 
* (BUILD MEMBER *Y CLASS DOG) ; &MEMBER(y ,DOG) 
• (BUILD Al •x R OWNER A2 *Y)) ; &OWNS(x,y) 
* CQ (BUILD A 1 •x R SPOILS A2 •Y)) ; +SPOILS (x,y)] 
(MS) 
284 MSECS 

••1John is a person. 
• (BUILD MEMBER JOHN CLASS PERSON) 
(M6) 
31 MSECS 

••;Jane is a person. 
• (BUILD MEMBER JANE CLASS PERSON) 
(M7) 
31 MSECS 

••;Mary is a person. 
* (BUILD MEMBER MARY CLASS PERSON) 
(M8) 
567 MSECS 

**;Jim is a person. 
*(BUILD MEMBER JIM CLASS PERSON) 
(M9) 
31 MSECS 

••;Rover is a dog. 
• (BUILD MEMBER ROVER CLASS DOG) 
(Mlfl) 
32 MSECS 

••;spot is a dog. 
*(BUILD MEMBER SPOT CLASS DOG) 
(Ml 1) 
30 MSECS 

••;Lassie is a dog. 
*(BUILD MEMBER LASSIE CLASS DOG) 
(M12) 
32 MSECS 
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••;John owns Rover. 
• (BUILD A 1 JOHN R OWNER A2 ROVER) 
(M13) 
41 MSECS 

**;John owns Spot. 
*(BUILD A1 JOHN R OWNER A2 SPOT) 
(M14) 
42 MSECS 

••;Mary owns Lassie. 
*(BUILD A1 MARY R OWNER A2 LASSIE) 
(M15) 
42 MSECS 

••;Jane owns Spot. 
*(BUILD A1 JANE R OWNER A2 SPOT) 
(M16) 
43 MSECS 

••;Jim owns Lassie. 
*(BUILD A1 JIM R OWNER A2 LASSIE) 
(M17) 
41 MSECS 

••;John spoils Rover. 
*(BUILD A1 JOHN R SPOILS A2 ROVER) 
(M18) 
44 MSECS 

••;John spoils Spot. 
*(BUILD A1 JOHN R SPOILS A2 SPOT) 
(M19) 
44 MSECS 

**;Jane spoils Spot. 
*(BUILD A1 JANE R SPOILS A2 SPOT) 
(M20) 
43 MSECS 

••;Mary spoils Lassie. 
*(BUILD A1 MARY R SPOILS A2 LASSIE) 
(M21) 
41 MSECS 
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**;Who spoils whom? 
*(DESCRIBE (DEDUCE A1 IX R SPOILS A2 %Y)) 
(M18 (A1 (JOHN)) (R (SPOILS)) (A2 (ROVER))) ; John spoils Rover. 
(M19 (A1 (JOHN)) (R (SPOILS)) (A2 (SPOT))) ; John spoils Spot. 
(M20 (A1 (JANE)) (R (SPOILS)) (A2 (SPOT))) ; Jane spoils Spot. 
(.M21 (A 1 (MARY)) (R (SPOILS)) (A2 (LASSIE))) ; Mary spoils Lassie. 
(M23 (MIN (f)) (MAX (i)) (ARG (M22))) ; It is not the case that 
(M22 (A1 (JIM)) (R (SPOILS)) (A2 (LASSIE))) J Jim spoils Lassie. 
(DUMPED) 
3965 MSECS 

Sununary 

We have discussed the roles of existential and numerical 

quantifiers in reasoning programs. The roles are different 

and both are important. The existential quantifier is most 

useful for supplying referents for designating phrases with 

no previously explicitly mentioned referent. Numerically 

quantified rules are concise representations of rules that 

govern reasoning by the process of elimination and thereby 

can introduce explicit negatives into a data base or can use 

negative statements for deriving positive statements. The 

most general schema for numerical quantifiers that we have 

discussed is n3tx(P1(x), ••• ,Pk(x) :Q(x)), which says that 

at least i and at most j of the n combinations of 

individuals that satisfy P1(x)& ••• &Pk(x) also satisfy Q(x). 

We showed how rules of this form can be represented in SNePS, 

the Semantic Network Processing System, and gave examples of 

SNePS runs that used such rules for carrying out inferences. 
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