
STATE UNIVERSITY OF NEW YORK AT BUFFALO

Department of Computer Science

NUMERICAL QUANTIFIERS AND THEIR USE IN

REASONING WITH NEGATIVE INFORMATION*

Stuart c. Shapiro

February, 1979

Technical Report Number 153

* . This material is based on work supported in part
by a Faculty Research Fellowship from the Research
Foundation of State University of New York, and in
part by the National Science Foundation under
Grant No. MCS78-02274.

Numerical Quantifiers and Their Use in

Reasoning with Negative Information*

Stuart c. Shapiro

Department of Computer Science

State University of New York at Buffalo

Amherst, New York 14226

Key words: Reasoning; logic based reasoning; quantifiers;

numerical quantifiers; negative information;

negation; representation of knowledge; formal

representations; semantic networks.

Abstract

Numerical quantifiers provide simple means of formalizing

such statements as, "at least three people are in that room",

"at most fifteen people are in the elevator", and "everybody

has exactly two parents". Although numerical quantifiers

generalize the existential quantifier, they have different uses

in reasoning. The existential quantifier is most useful for

supplying referents for designating phrases with no previously

explicitly mentioned referent. Numerical quantifiers are most

useful for reasoning by the process of elimination. Numerical

quantifiers would, therefore, be a useful addition to the

operators of a reasoning program or deductive question-answering

system. They have been added to SNePS, the Semantic Network

Processing System, to further enhance its inference capabilities.

* This material is based on work supported in part by a Faculty
Research Fellowship from the Research Foundation of State
University of New York, and in part by the National Science
Foundation under Grant No. MCS78-02274.

- 2 -

,

Introduction

Logic based reasoning programs, that is reasoning pro

grams based on operators (connectives, quantifiers, modals)

which have been studied as part of formal logical systems

benefit from the fact that the inferential properties of their

operators are clear and well known. They need not be restricted,

however, to a minimal set of operators. Minimal sets of

operators are useful for proving properties of logical systems

such as consistency and completeness, but using a logical

system for carrying out inferences is simplified (for people)

by enlarging the set of basic operators. This is one reason

that natural deduction systems like those of [Fitch, 1952],

[Prawitz, 1965] and [Weyhrauch, 1977], with reasonable sets of

connectives and two rules of inference for each one, are easier

to use than axiomatic systems with minimal sets of connectives,

rules and axioms.

This paper is motivated by an interest in programs that

represent knowledge, including the knowledge of rules of

reasoning, and that use those rules to perform reasoning. I

believe that such programs are enhanced by the availability of

a large set of operators that typify and formally model as

many of the modes of human reasoning as possible. This paper

discusses a set of operators, the numerical quantifiers, which

can be implemented in reasoning programs as a single parameterized

operator, and which model an important mode of human reasoning.

Numerical quantifiers, discussed briefly in [Tarski, 1965,

pp. 63-64], are generalizations of the existential quantifier.

They can be used to formalize such statements as:

- 3 -

There are at least two numbers z, such that z+2<6.

There are exactly two numbers x, 2 such that x +4=4x.

There are at most two numbers y, such that y+5<11-2y.

[all from Tarski, 1965, pp. 64, 67).

One numerical quantifier is the more commonly encountered unique

existential, expressed as atxA(x) in the notation of [Kleene,

1950, p. 199]. We will use the notation aixA(x) for "there

exists at least i and at most j x such that A(x)". The usual

existential quantifier, axA(x), can then be considered an - abbreviation of
00 a1xA(x) (although later we will make a

distinction), and the unique existential becomes 1 a1xA(x). In

general, a~xA(x) are the "numerically definite quantifiers"

mentioned in [Lemmon, 1978, pp. 165, 6].

We have found the numerical quantifiers particularly use

ful for the mode of reasoning by the process of elimination:

if the maximal number of positive cases are found, the rest

must be negative; if the maximal number of negative cases are

found, the rest must be positive. Numerical quantifiers thus

can introduce explicit negative information into a data base,

and can make use of negative information to derive positive

information. To set the stage for this discussion, we will

first discuss the role of the simple existential quantifier in

deductive question-answering.

The Existential Quantifier

Let us consider statements which:

1) include an existential quantifier;

- 4 -

2) are to be stored in the data base of a deductive

question-answering system (QAS)1

3) are to be used by the system to answer questions.

We will consider what contribution such statements (we

call these, as well as other general statements,

deduction rules) can make to the question-answering

process.

Existential quantifiers can either be outside or inside the

scope of universal quantifiers. If outside the scope of any

universal quantifier, for example "There is a man who owns a dog"

or gx(Man(x)&:;ry(Dog(y),owns(x,y))), there is no need to retain

the quantifier in the data base, one can simply create a new

individual constants (Skolem constants) and substitute them for

the quantified variables, storing the three facts Man(m1),

Dog(d1), and 0Wns(m1,d1).

Existential quantifiers within the scope of universal

quantifiers can be eliminated by replacing them with Skolem

functions. So,

(1) "Every person has a mother"

can be represented by vx(Person(x)-+:Iy(Person(y)&Mother(y,x))) or

byvx(Person(x)+(Person(f(x))&Mother(f(x),x))), where f is

a new function. This rule could be used to answer the question,

"Does John have a mother?", but the point of the Skolem function

is that for each person a new person must be postulated to be

his or her mother. So, knowing just this rule, and that John

is a person, if we asked "Who is John's mother?", the answer

would be some individual about whom we know nothing except that

- 5 -

-

she is a person and is John's mother.

It may seem strange that asking a question can cause the

creation of a new individual, but consider definite descriptions

that refer to individuals which have not been explicitly

introduced. This often arises in statements. Consider "The

mother of John owns a dog", or "John's mother owns a dog".

Normally, we would loo~ in the data base for John's mother and

assert that she owns a dog, but in this case there is no record

of John's mother in the data base. However, rule (1) justifies

creating a new individual to be John's mother. "John's mother

owns a dog" presupposes that John has a mother. With neither

an explicit mother, nor the rule, the sentence has a failed

presupposition and should not be accepted. Compare the situation

in which we ask, "Does John's mother own a dog?" In the absence

of an explicit mother and rule (1), the correct response, as

[Kaplan, 1978] points out, would be something like "I didn't

know that John had a mother". In the presence of rule (1),

however, the correct response would be, "I don't know". (Under

the closed world assumption that any statement not in the data

base is false [Reiter, 1978], the answers would be, "John doesn't

have a mother", and "No", respectively).

What if the data base contained both rule (1) and

(2) Jane is John's mother

and we input, "John's mother owns a dog."? In this case,

rule (1) is at best useless, and at worst, harmful. If the

rule were activated, it would have to produce a new mother, and

the phrase "John's mother" would be ambiguous. If rule (1) were

- 6 -

not activated, "Jane owns a dog" would be stored. This is

technically wrong (consider replacing "mother" with "parent"),

but probably what the speaker intended.

In sununary, existential quantifiers need be stored in the

data base of a QAS only when within the scope of a universal

quantifier, and they are most useful for supplying referents

for designating phrases with no previously explicitly mentioned

referent.

Maximal Numerical Quantifiers

......

Let us consider the data base containing (2), "Jane is

John's mother" and the question, "Is Mary John's mother?" In

order to get the correct answer, "No", we need the rule

(3) Every person has at most one mother.

(We will ignore, in this paper, the problem of identity or

extensional equivalence. That is, the even more correct answer,

"Only if Mary is the same person as Jane". See [Shapiro, 1978]

for a solution to this problem using a combination of path

tracing and deduction rules.) Let us call quantifiers of the

form 3jxA(x), read "there exists at most j x such that A of x",

maximal numerical quantifiers. In this notation, (3) becomes

(3') vx(Person(x)~31y(Person(y)&Mother(y,x)))

Another example of maximal numerical quantifiers is, "Every

football team must have at most eleven players on the field

at any time".

Unlike the simple existential quantifier, the maximal

numerical quantifiers do not justify the introduction of new

- 7 -

-

individuals. However, we can derive negative statements from

them once the maximal number of individuals satisfying the

quantified statement are known. In our example, rule (3)

justifies the answer, •No, Mary is not John's mother".

-
Suppose the data base consists of rules (1) and (3) only.

Then if we ask, "Is Jane John's mother?", it might seem that

rule (1) would create a new Skolem constant to be John's mother,

and then by rule (3) the answer would be •No". However, rule (1)

must not be invoked in this case, because it is illegal to

instantiate an existentially quantified variable to a constant

we already know something about. Since John's mother is not

known explicitly, Jane is not ruled out and the correct answer

in this case is "I don't know".

The formula 3jxA(x) is therefore useful when we already

know j different individuals satisfying A and are asked if a

(j+1)st individual, t, also satisfies A. The formula -A(t) is

then derivable.

Minimal Numerical Quantifiers

Let us now consider formulas of the form,

-

- (4) 3ixA(x)

read "There exists at least ix such that A of x". We will

call quantifiers of this form, minimal numerical quantifiers.

What useful information does (4) provide that is not provided

by 3xA(x)? If the universe under discussion contains n

individuals, and we already know of n-i individuals y such that

- 8 -

.......

-A(y), we can deduce about any (n-i+1)st individual, t,

that A(t). Consider five faculty members, three of whom

are in a meeting. If I know who the five people are, and I've

seen two in the hall, I can deduce who is in the meeting •

since the usefulness of minimal numerical quantifiers

depends on some universe of objects, it is convenient to introduce

domain restricted minimal numerical quantifiers. We will use

the notation aix(P(x):Q(x)), where P(x) and Q(x) are

arbitrary formulas with x free, to mean, "of all objects x

such that P(x), at least i of them satisfy Q". In a data

base without the closed world assumption, we can seldom be sure

that the objects known to satisfy Pare the only ones that

actually do. For example, the following corpus, representing

the example above, is insufficient for deducing who is in the

meeting.

.....

(5) a3x(MEMBER(x,FACULTY) :IN(x,MEETING))

(6) Vx(IN(x,HALL)+-IN(x,MEETING))

(7) MEMBER(PAT,FACULTY)

(8) MEMBER(GABOR,FACULTY)

(9) MEMBER(NICK,FACULTY)

(10) MEMBER(JOHN,FACULTY)

(11) MEMBER(STU,FACULTY)

(12) IN(PAT,HALL)

(13) IN(NICK,HALL)

However, it may be that whoever provided rule (5) knows that there

are only five faculty members. To record such information, we

- 9 -

-

will add another parameter to the minimal numerical quantifiers

giving the schema, ngix(P(x) :Q(x)), where n is the number

of objects which satisfy P. Notice that this amounts to a

closed sub-world assumption. If we replace (5) in the above

corpus by

(51
) 583x(MEMBER(x,FACULTY):IN(x,MEETING))

stating that •of the five faculty members, at least three are

in the meeting•, then we can derive

IN(GABOR,MEETING),IN(JOHN,MEETING) and IN(STU,MEETING).

-

With minimal numerical quantifiers, negative information

can be used to deduce positive information. Given the rule

n3ix(P(x):Q(x)), and n-i individuals y such that P(y)&-Q(y),

we can deduce for any other individual t such that P(t) holds

that Q(t) also holds. -
Numerical Quantifiers

The minimal and maximal numerical quantifiers can be combined

into what we shall simply call the numerical quantifiers

(14) 8~x(P(x) :Q(x)) n i

which are read, •of then individuals x such that P(x), at least

i and at most j are such that Q(x)•, or simply, •Between i

and j of then Ps are Qs". The other quantifiers we have

discussed may be obtained by leaving out appropriate parts of

schema (14).

The regular existential quantifier, 8xA(x), is the same

as the numerical quantifier

(15)
00

31xA(x).

- 10 -

......

It is now clear why it seldom helps us determine whether A(t)

holds for a fixed individual, t. Rule (15) cannot derive -A(t),

since there is no maximum -- all individuals might satisfy A.

Rule (15) can seldom produce A(t), since that would require

knowing that all other individuals satisfy -A, and we rarely

have a finite list of all the individuals in the domain. Because

of this, the implementor of a deductive question-answering

system may wish to distinguish the existential quantifier from

the numerical quantifiers, and continue to prohibit invokation

of a rule that would bind an existentially quantified variable

to a constant.

Numerical Quantifiers in SNePS

Numerical quantifiers have recently been added to SNePS,

the Semantic Network Processing System [Shapiro, 19791, which

already included universal and existential quantifiers as well

as a set of non-standard connectives (see also [Shapiro, 1977]).

SNePS accepts numerically quantified formulas of the form

(16)

(17)

(18)

ngix(P1(x), ••• ,Pk(x) :Q(x))

gji<P1<x>, ••• ,Pk<x> :o<x>>

where k~O and x represents a sequence of variables each of

which is free in at least one of P1(x), ••• ,Pk(x),Q(x). The

meaning of (16) is that of the n combinations of individuals

satisfying P1(x)& ••• &Pk(x), at least i and at most j of

these combinations also satisfy Q(x). Rule (17) means that at

least i of the n combinations of individuals satisfying

- 11 -

P1{x)& ••• ,Pk{x) also satisfy Q{x). Rule (18) states that at

most j of the combinations of individuals satisfying

P1(x), ••• &Pk(x) also satisfy Q(x).

As an example of (16) involving a sequence of variables,

consider the many-many relationship of dog ownership. Several

people in a family may own one dog, and several dogs may be

owned by the same person. The formula

5a~x,y{Person(x) ,Dog(y),OWns(x,y) :Spoils(x,y))

says that of the five dog ownership relations (which may involve

one to five dogs and one to five people), between. two and four

involve spoiling the dog.

Rules of the form of (16) are represented in the SNePS

network by a node with:

an auxiliary arc labeled EMIN to i

an auxiliary arc labeled EMAX to j

an auxiliary arc labeled ETOT ton

descending arcs labeled PEVB to the nodes representing

the variables in x

descending arcs labeled &ANT to the nodes representing

the formulas P1{x), ••• ,Pk(x)

a descending arc labeled CQ to the node representing Q(x).

In SNePS, auxiliary arcs may connect semantic network nodes to

arbitrary data structures, including numbers. A descending arc

goes from a network node to another network node and has a paired

ascending arc in the reverse direction.

- 12 -

-

If a rule of the form of (16) is in the network, and a

derivation of Q(a) is requested, where a is a substitution

instance of x, subgoal derivations of P1(x), ••• ,Pk(x), and Q(x)

are begun. One of the following cases will occur:

1. j substitution instances of x are found for

which P1(x)& ••• &Pk(x)&Q(x). If this occurs, let

Q' (x) be -Q(x).

2. n-i substitution instances of x are found for

which P1(x)& ••• &Pk(x)&-Q(x). If this occurs,

let Q' (x) be Q(x).

3. Neither case (1) nor case (2) ever occurs. In this

case rule (16) is incapabile, in the current data base,

of deriving either Q(a) or -o(a)

If case (1) or (2) occurs, there are two possibilities. If

P1(a)& ••• &Pk(a) has been derived, Q'(a) is thereby derived.

If this has not happened, the process implementing this rule

changes itself into one implementing the rule

P1(a)& ••• &Pk(a}+Q'(a), retains the relevant data already

accumulated, and continues processing.

This has been a simplified account since the details would

require a general discussion of the way SNePS processes

deduction rules. This general discussion is contained in

[Shapiro and McKay, forthcoming]. A few points, however, are

worth noting. A process which implements a deduction rule, i.e.

- 13 -

uses the rule for a specific derivation, creates a process

for each subgoal deduction. All processes are executed in

parallel, so the occurrence of case (3) above, would not

prevent some other rule's derivation of Q(a) or -Q(a). A

process that derives many substitution instances of a formula

returns them as they are generated rather than waiting for

completion. This is why the two possibilities mentioned

above can occur.

Examples

In this section, we will show SNePS runs of some of the

examples from above. Lines beginning with"**" or••• were

typed by the user. The character "1" indicates that the rest

of the line is a comment. Each example was begun with an empty

network so that the two •mother" examples would not interact.

Input is in SNePSUL, the SNePS User Language, [Shapiro, 19791,

but it is hoped that, with the aid of the comments and the

previous discussion, the reader will be able to follow it.

The runs were transcribed to make them easier to read, and

edited only to add the comments in the right margin and to remove

typographical errors and some trace printing. SNePS is written

in Lisp and runs interactively on a CYBER 173. A compiled version

of SNePS was used for the first two examples.

- 14 -

Example 1:

**;Every person has a mother.
*(BUILD AVB $X ;
* ANT (BUILD MEMBER *X CLASS PERSON) ;
* CQ (BUILD EVB $Y MIN 2 MAX 2 ;
* ARG ((BUILD MEMBER *Y CLASS PERSON) ;
* (BUILD A1 *YR MOTHER A2 *X))) ;
(MS); This is the SNePS node representing the rule.
62 MSECS

Vx
[Person(x)+
m,
(Person(y)&
Mother(y,x))] -

**;John is a person.
* (BUILD MEMBER JOHN CLASS PERSON)
(M6)
7 MSECS

**;John's mother owns a dog.
*(DESCRIBE
*(BUILD A1 (FIND A1- (DEDUCE A1 %X R MOTHER A2 JOHN)); John's mother
* R OWNER ; owns
* A2 (BUILD MEMBER- (BUILD CLASS DOG)))) ; a dog.
(M12 (A1 (B1)) (R (OWNER)) (A2 (M11))); Theassertionthatwasbuilt.
(DUMPED)
266 MSECS

**(DUMP B1 M11); To find out everything about B1 and M11.
(B 1 (MEMBER- (M9)) (A 1- (M12 M8)))
(M11 (A2- (M12)) (MEMBER- (M1fl)))
(DUMPED)

- 1{1 MSECS

**(DUMP M9 M12 M8 M1fl); To print all assertions about B1 and M11.
(M9 (MEMBER (li1)) (CLASS (PERSON))) ; B1 is a person.
(M12 (A1 (B1)) (R (OWNER)) (A2 (M11))) ; B1 owns M11.
(M8 (A1 (B1)) (R (MOTHER)) (A2 (JOHN))) ; B1 is John's mother.
(M1ll (MEMBER (M11)) (CLASS (DOG))) ; M11 is a dog.
(DUMPED)
17 MSECS

Example 2:

**;Jane is a person.
*(BUILD MEMBER JANE CLASS PERSON)
(M13)
8 MSECS

- 15 -

••;John is a person.
• (BUILD MEMBER JOHN CLASS PERSON)
(M14)
8 MSECS

••;Jane is John's mother.
*(BU!LD A1 JANE R MOTHER A2 JOHN)
(M15)
1fl MSECS -

- ••;Every person has at most one mother.
*(BUILD AVB $X
• ANT (BUILD MEMBER •x CLASS PERSON)
* CQ (BUILD EMAX 1 PEVB $Y
* &ANT (BUILD MEMBER *Y CLASS PERSON) ;
• CQ (BUILD A1 *YR MOTHER A2 *X))) ;
(M21)
62 MSECS

. , vx
[Person(x)-+

a:1y
(Person(y):
Mother(y,x))]

;
;

••;Mary is a person.
*(BUILD MEMBER MARY CLASS PERSON)
(M22)
7 MSECS

••;Is Mary John's mother?
*(DESCRIBE (DEDUCE A1 MARY R MOTHER A2 JOHN))
(M24 (MIN (fl)) (MAX (fl)) (ARG (M23))) ;
(M23 (A1 (MARY)) (R MOTHER)) (A2 (JOHN))) ;
(DUMPED)
827 MSECS

It is not the case that
Mary is John's mother.

Example 3:

••;At least 3 of the 5 faculty members are in the meeting.
*(BUILD ETOT 5 EMIN 3 PEVB $X ; 5:3:3X
* &ANT (BUILD MEMBER •x CLASS FACULTY) ; [MEMBER(x,FACULTY)
• CQ (BUILD A1 •x R IN A2 MEETING)) ; -+IN(x,MEETING)]
(M4)
695 MSECS

**;Whoever is in the hall is not in the meeting.
*(BUILD AVB $X
* ANT (BUILD
* CQ (BUILD

A1 *X R IN A2 HALL)
MIN fl MAX fl
ARG (BUILD A1 *X R IN A2 MEETING))) ;

; vx
[IN(x,HALL) ;

•
(MS)
193 MSECS

;
IN(x,MEETING)]

- 16 -

**;Pat is a faculty member.
*(BUILD MEMBER PAT CLASS FACULTY)
(M9)
3fl MSECS

**;Gabor is a faculty member.
*(BUILD MEMBER GABOR CLASS FACULTY)
(M1fl)
33 MSECS

**;Nick is a faculty member.
*(BUILD MEMBER NICK CLASS FACULTY)
(M11)
34 MSECS

**;John is a faculty member.
*(BUILD MEMBER JOHN CLASS FACULTY)
(M12)
31 MSECS

**;Stu is a faculty member.
* (BUILD MEMBER STU CLASS FACULTY)
(M13)
33 MSECS

**;Pat is in the hall.
*(BUILD A1 PATRIN A2 HALL)
(M14)
4fl MSECS

**;Nick is in the hall.
*(BUILD A1 NICK R IN A2 HALL)
(M15)
42 MSECS

**;Who is at the meeting?
* (DESCRIBE (DEDUCE A 1 "X R IN A2 MEETING))
(M17 (MIN (J1)) (MAX (fl)) (ARG (M16))) ; It is not the case that
(M16 (A1 (PAT)) (R (IN)) (A2 (MEETING))) ; Pat is in the meeting.
(M19 (MIN (j1)) (MAX (J1)) (ARG (M18))) ; It is not the case that
(M18 (A1 (NICK)) (R (IN)) (A2 MEETING))) ; Nick is in the meeting.
(M20 (A1 (GABOR)) (R (IN)) (A2 (MEETING))) ; Gabor is in the meeting.
(M21 (A1 (JOHN)) (R (IN)) (A2 (MEETING))) ; John is in the meeting.
(M22 (A 1 (STU)) (R (IN)) (A2 (MEETING))) ; Stu is in the meeting.
(DUMPED)
4fl33 MSECS

- 17 -

Example 4:

••;of 5 dog ownership relationships between 2 and44 involve spoiling.
*(BUILD ETOT 5 EMIN 2 EMAX 4 PEVB ($X $Y) ; 5g2x,y
• &ANT ((BUILD MEMBER -x CLASS PERSON) ; [MEMBER(x,PERSON)
* (BUILD MEMBER *Y CLASS DOG) ; &MEMBER(y ,DOG)
• (BUILD Al •x R OWNER A2 *Y)) ; &OWNS(x,y)
* CQ (BUILD A 1 •x R SPOILS A2 •Y)) ; +SPOILS (x,y)]
(MS)
284 MSECS

••1John is a person.
• (BUILD MEMBER JOHN CLASS PERSON)
(M6)
31 MSECS

••;Jane is a person.
• (BUILD MEMBER JANE CLASS PERSON)
(M7)
31 MSECS

••;Mary is a person.
* (BUILD MEMBER MARY CLASS PERSON)
(M8)
567 MSECS

**;Jim is a person.
*(BUILD MEMBER JIM CLASS PERSON)
(M9)
31 MSECS

••;Rover is a dog.
• (BUILD MEMBER ROVER CLASS DOG)
(Mlfl)
32 MSECS

••;spot is a dog.
*(BUILD MEMBER SPOT CLASS DOG)
(Ml 1)
30 MSECS

••;Lassie is a dog.
*(BUILD MEMBER LASSIE CLASS DOG)
(M12)
32 MSECS

- 18 -

••;John owns Rover.
• (BUILD A 1 JOHN R OWNER A2 ROVER)
(M13)
41 MSECS

**;John owns Spot.
*(BUILD A1 JOHN R OWNER A2 SPOT)
(M14)
42 MSECS

••;Mary owns Lassie.
*(BUILD A1 MARY R OWNER A2 LASSIE)
(M15)
42 MSECS

••;Jane owns Spot.
*(BUILD A1 JANE R OWNER A2 SPOT)
(M16)
43 MSECS

••;Jim owns Lassie.
*(BUILD A1 JIM R OWNER A2 LASSIE)
(M17)
41 MSECS

••;John spoils Rover.
*(BUILD A1 JOHN R SPOILS A2 ROVER)
(M18)
44 MSECS

••;John spoils Spot.
*(BUILD A1 JOHN R SPOILS A2 SPOT)
(M19)
44 MSECS

**;Jane spoils Spot.
*(BUILD A1 JANE R SPOILS A2 SPOT)
(M20)
43 MSECS

••;Mary spoils Lassie.
*(BUILD A1 MARY R SPOILS A2 LASSIE)
(M21)
41 MSECS

- 19 -

**;Who spoils whom?
*(DESCRIBE (DEDUCE A1 IX R SPOILS A2 %Y))
(M18 (A1 (JOHN)) (R (SPOILS)) (A2 (ROVER))) ; John spoils Rover.
(M19 (A1 (JOHN)) (R (SPOILS)) (A2 (SPOT))) ; John spoils Spot.
(M20 (A1 (JANE)) (R (SPOILS)) (A2 (SPOT))) ; Jane spoils Spot.
(.M21 (A 1 (MARY)) (R (SPOILS)) (A2 (LASSIE))) ; Mary spoils Lassie.
(M23 (MIN (f)) (MAX (i)) (ARG (M22))) ; It is not the case that
(M22 (A1 (JIM)) (R (SPOILS)) (A2 (LASSIE))) J Jim spoils Lassie.
(DUMPED)
3965 MSECS

Sununary

We have discussed the roles of existential and numerical

quantifiers in reasoning programs. The roles are different

and both are important. The existential quantifier is most

useful for supplying referents for designating phrases with

no previously explicitly mentioned referent. Numerically

quantified rules are concise representations of rules that

govern reasoning by the process of elimination and thereby

can introduce explicit negatives into a data base or can use

negative statements for deriving positive statements. The

most general schema for numerical quantifiers that we have

discussed is n3tx(P1(x), ••• ,Pk(x) :Q(x)), which says that

at least i and at most j of the n combinations of

individuals that satisfy P1(x)& ••• &Pk(x) also satisfy Q(x).

We showed how rules of this form can be represented in SNePS,

the Semantic Network Processing System, and gave examples of

SNePS runs that used such rules for carrying out inferences.

Acknowledgements

The author is grateful to Don McKay for help in SNePS

development and to him and Rich Fritzson for SNePS and Lisp

system support. He is also grateful to Brian Funt and Don

McKay for comments on an earlier draft.

- 20 -

References

Fitch, F.B. Symbolic Logic: An Introduction. Ronald Press Co.,

New York, 1952.

Kaplan, s.J. Indirect responses to loaded questions. In D. Waltz,

ed. TINLAP-2: Theoretical Issues in Natural Language

Processing-2. ACM, New York, 1978, 202-209.

Kleene, s.c. Introduction to Metamathematics. D. Van Nostrand,

Princeton, New Jersey, 1950.

Lemmon, E.J. Beginning Logic. Hackett, Indianapolis, 1978.

Prawitz, D. Natural Deduction - A Proof-Theoretical Study.

Almqvist and Wiksell, Stockholm, 1965.

Reiter, R. On closed world data bases. In H. Gallaire and

J. Minker, eds. Logic and Data Bases, Plenum Press, New

York, 1978.

Shapiro, s.c. Representing and locating deduction rules in a

semantic network. Proc. Workshop on Pattern-Directed

Inference Systems. SIGART Newsletter, 63 (June, 1977),

14-18.

Shapiro, s.c. Path-based and node-based inference in semantic

networks. In D. Waltz, ed. TINLAP-2: Theoretical Issues

in Natural Language Processing-2. ACM, New York, 1978,

219-225.

Shapiro, s.c. The SNePS semantic network processing system. In

N. Findler, ed. Associative Networks - The Representation

and Use of Knowledge by Computers, Academic Press, New

York, 1979, 179-203.

- 21 -

Shapiro, s.c. and McKay, D.P. The representation and use of

deduction rules in a semantic network. Department of

Computer Science, SONY/Buffalo, Amherst, New York,

forthcoming.

Tarski, A. Introduction to Logic and to the Methodology of

Deductive Sciences. oxford University Press, New York,

1965.

Weyhrauch, R.W. A users manual for FOL, Memo AIM-235.1,

Stanford Artificial Intelligence Laboratory, Stanford,

California, 1977.

