STATE UNIVERSITY OF NEW YORK AT BUFFALO

Department of Computer Science

Bi-Directional Inference

Jo&o P. Martins, Donald P, McKay & Stuart C. Shapiro

March 1981

Technical Report Number 174

This work was supported in part by the National Science
Foundation under Grants MCS78-§2274 and MCS86-06314 and by the

Instituto Nacional de Investigagfo Cientifica (Portugal) under

Grant No. 20536.

Bi-Directional Inference Page 2

Abstract

In this paper we present a brief overview of the SNePs
deduction system and show through an example the interaction
between forward and backward inference. This interaction --
resulting in a class of inference termed bi-directional inference
—-— enables an easy and elegant way of performing bi-directional
searches and the possibility 6f performing resource-limited
deduction in a natural and simple way. Furthermore,
bi—directionalvinference focus a system's attention towards the
interests of the user and can cut down the fan out of pure

forward or pure backward chaining.

l.Introduction

During the last decade Artificial Intelligence (AI)
researchers tried to create tools to enable inference to be done
by a computer program. Some of the languages which were designed
with this goal are MICRO-PLANNER [Sussman et al. 71], CONNIVER
[McDermott and Sussman 72], FUZzY [LeFaivre 77] and PROLOG
[Coelho et al. 88; Colmerauer 79). These languages allow both
forward and backward inference to be performed but require that
one set of rules be written for forward and another set for
backward inference (eg, the assertion theorems and consequent
theorems of MICRO-PLANNER). This means that if one rule is
written to be used in forward inference it can not be used in
backward inference and vice-versa. Also, in these systems, once
an inference is completed all intermediate results are lost

(unless explicitly stored by the user).

Bi-Directional Inference Page 3

Our inference system relies on a declarative representation
of inference rules (SNePS semantic network) and every rule may be
used both in forward and backward inference. Also, all
intermediate results gathered by an inference are remembered
(unless explicitly erased by the user) so that if in a future
deduction the system needs some of the results generated during a
previous deduction it can make use of them directly instead of
rederiving them. These two features enable a smooth interaction
between forward and backward inference. Such interaction,

resulting in a form of inference termed bi-directional inference,

is described in this paper. Bi-directional inference corresponds
to a search procedure which is more general than "classical"
bi-directional search [Pohl 71; Shubin and Shapiro 81]. 1In
bi-directional search, the system has fixed start and goal states
and tries to find a path connecting them by working forward from
the start state(s) and backward from the goal state in
"parallel". The search terminates with success whenever the two
search frontiers meet. 1In bi-directional inference, there are no
fixed a priori start or goal states. A start state can be any
node which has been added by forward inference and a goal state
can be any node that has been querried by backward inference.
The search is successful whenever the frontier growing from any
start state meets the frontier growing from a goal state. 1In
this way we have a search procedure which adapts itself

dynamically to the past history of deductions.

ke ¢

J—

mwEreuy

Bi-Directional Inference Page 4

2.Basic SNePS network notions

A SNePS semantic network [Shapiro 79a] is a labeled directed
graph in which nodes represent concepts and arcs represent
non-conceptual binary relations between concepts. The labels on
the arcs represent binary semantic relations which are used to
Structure the network and about which no information can be
stored in the network. Each concept is represented by a unique

node [Maida and Shapiro].

There are three kinds of arcs in the network: descending,
ascending and auxiliary. For each relation represented by a
descending arc there is a converse relation represented by an
ascending arc and vice-versa. If a descending arc is labeled R
then its converse ascending arc is 1labeled by RC, Together
descending and ascending arcs are the regular semantic network
arcs referred to above. Auxiliary arcs are used for storing

non-nodal information on nodes. If a path of descending arcs

goes from node pn to node @ we say that node n_dominates node m.

Since in SNePS semantic networks, nodes are used to
represent all information that can be discussed, nodes are used
to represent specific assertions and general deduction rules. We
will refer to nodes which represent deduction rules as ryle
nodes. A rule node represents a propositional formula of
molecular nodes using one of the non-standard connectives
available in SNePS [Shapiro 77; 79al. In this paper our

discussion will be limited to four of them:

l. v-entailment (v->): The formula (Al...Am) v=> (Cl"‘cn)

means that the disjunction of the antecedents implies the

Bi-Directional Inference Page 5

conjunction of the consequents;

2. &-entailment (&~>): The formula (Al,,,Am) &=> (Cl---cn)
means that the conjunction of the antecedents implies the
conjunction of the consequents;

3. AND-OR (nxg): The formula nﬁ;(Al...An) is true just in case
at least i or at most d of the arguments are true;

4. THRESH (h8i): The formula n®i (Aj...A) is true if either

fewer than i arguments are true or all p are true.

The network Ieépresentation of these connectives is shown in

Figure 1. 1In this and in following Figures, descending arcs will

3
C.nX, (Al,..An) d. 8, (Al,..An)
Figure 1
Representation of connectives
be represented by solid arrows, ascending arcs will not be shown,

and auxiliary arcs will be represented by dashed arrows.

The SNePS semantic network system allows the representation

of several kinds of quantifiers in deduction rules [Shapiro 77 ;

Bi-Directional Inference Page 6

79a; 79b]. These quantifiers are represented by arcs connecting

the rule and the variable nodes quantified by the rule.

3.0verview of the SNePS deduction system

If deduction rules exist in the network, inference is
triggered using the functions ADD and DEDUCE:

(ADD Ry NSl"°Rn NS,) instructs the deduction system to add to

the network the node with arcs labled Ri to the nodes in the set
NSi (1<i<n) and to do forward inference with that node;
(DEDUCE numb R, NS;...R, NS_) ‘triggers the backward inference
mechanism to try to deduce instances of the node with arcs

labeled R, to nodes in NS; (1<i<n), pumb controls how many

answers are desired [Shapiro 79a].

The SNePS inference system is implemented in MULTI [McKay
and Shapiro 80; Shapiro and McKay 89]. MULTI is a LISP-based
multiprocessing system which consists of a simple evaluator,
System primitives, a scheduler and debugging facilities, The
evaluator continuously executes processes from a process queue
until the queue becomes empty. System primitives include
functions for Creating processes, for scheduling processes to be
€xecuted and for manipulating local variables or registers, The

scheduler inserts a pProcess in the process Jueue.

Depending on the actions they perform, the MULTI processes
used in the SNePS deduction System which will be discussed in

this paper can be divided into four groups:

1. Pattern matchers (INFER and F-INFER): these processes match

Bi-Directional Inference Page 7

a given node (or network structure) against the current
network and do further processing if the match is successful,
i.e. if the process can find in the network assertion or
pattern nodes which match the desired structure;
Data-collectors (ANS-CATCH, TOPINF and TOPMOST-TOPINF) :
these processes receive answers aﬁd remember each answer
received. Everytime they receive an answer not previously
received the answer is sent to all the processes to which the
data—collectbr reports;

Active connectives (CH-processes and IMPLY): each of these

processes 1is responsible for a given rule node. It
corresponds to the active or procedural representation of a
rule instance. Each of them works by creating and scheduling
processes to try to establish a sufficient number of the
rule's antecedents and then waits for answers, instances of
antecedents. When answers are received the process decides
whether it has received sufficient answers to deduce
instances of its consequents.

Mixed purpose (USE, GO-UP and SWITCH) : These processes are
used for several different purposes: setting up the
Structure of processes necessary to wuse some rule (USE);
checking if a rule is asserted (i.e., not dominated by any
other node) and, in some Ccases, traversing arcs (GO-UP) ;
acting as the variable translators between processes working

in two different rules which share some common node structure

(SWITCH) .

The same basic deduction Procedure 1is used by the SNePs

Bi-Directional Inference Page 8

deduction system in both forward and backward inference: to use
some rule the CH-process tries to find instances of its
antecedents, by doing a network pattern match (see [Shapiro 771)
of the antecedents of the rule,. Note that the network match
finds all network nodes which are unifiable with a particular
antecedent. If such instances are found (or derived), messages
reporting this are sent to the CH~-process via data-collectors.
The CH-process considers the answers received so far and decides
whether they are sufficient to deduce the consequents of the
rule. If they are, it reports the instances of the consequents

to all other processes interested in such results.

The network match is avoided if appropriate "producers™
already exist. This avoids redundant work and allows recursive
rules to be used [Shapiro and McKay 80; McKay and Shapiro 81].
After a deduction is completed, the set of processes used during
the deduction is retained by the system unless explicitly
overriden. If later on, during another deduction, the system
needs some process which was already created by a previous
deduction, it is able to use it instead of creating a new one.
The main advantage of this is not merely avoiding the work of
setting up a single new process but rather the system can thereby
use all the processes which report to the process being reused
and all the information which was gathered by the previous
deduction. The set of processes 1left behind after forward
inference is similar to the set of processes that would have been
left behind by backward inference through the same rules. The
processes built in either type of inference are able to intersect

smoothly with each other. The benefits of this are discussed in

Bi-Directional Inference Page 9

section 6.

4 .Forward inference

This section addresses the question of when to do (and when
not to do) forward inference. Forward inference should only be
triggered when the newly ADDed node matches a node which is in
antecedent ©position of some rule, but should it be triggered
every time this situation happens? Perhaps the best way to

analyse this problem is by looking at some examples.

Suppose that the network contains the rule represented in

Figure 2. This rule represents an v-entailment and can be read

Figure 2
Simple rule

as "if M1 then M2". 1In the typical case both Ml and M2 contain
variables and the rule should be interpreted as: "If there is an
assertion in the network, say A, which is a fully ground instance
of the node Ml, with b being the substitution that when applied
to Ml produces A, then we can infer the node resulting from
applying the substitution b to M2". We will henceforth refer to

this by saying that if there is a node, say A, that matches Mlp,

then we can assert M2p.

With rule Rl and the assertion in the network of some node

Bi-Directional Inference Page 10

which matches Milp, by "modus ponens", forward inference ghould
deduce M2b.

But now, Suppose that rule Rl is not asserted in the network
but rather embeded within some other rule, There are two

possible cases for this rule embeding:

1. Rl is in antecedent position of some other rule (Fig.3a).

2. Rl is in consequent position of some other rule (Fig.3b).

(a) (b)

Figure 3
Simple cases of rule embeding

Suppose that, in the first case, we assert a node that
matches Mlb. Since Rl is not assefted in the network we can not
infer M2b since we don't know if the rule Rl "holds". The first
step that we would have to do is to prove that rule Rl holds.
This would have to be done in the following way: assume an
arbitrary instance of M1, and then using only sound rules of
inference deduce a corresponding instance of M2. The SNePS
inference system is not vyet able to do this (but see [Martins and
Shapiro 81]), and therefore when some newly asserted node matches
a node which is in antecedent position of some rule which is in

turn in antecedent position of another rule no forward inference

Bi-Directional Inference Page 11

is done.

Suppose now that in the case represented in Figure 3b we
assert a node matching Mlp. Again, we can not use rule Rl unless
we prove that it holds. But in this case, "modus ponens" enables
us to infer Rlb provided that M3b holds. What the forward
inference system then does is start working on rule R2D, trying
to prove its antecedent, i.e. trying to show that an instance of
M3b can be deduced with the existing facts and rules. In the

case of such a proof's being successful, M2b can be asserted.

This line of reasoning can be applied directly to the SNePS
connectives v-> and &->, the only difference between them being
that for v-> all the consequents of the rule are deduced as soon
as one antecedent is shown, whereas for &=> gll the antecedents
of the rule need to be deduced (in a consistent binding) before
the consequents can be deduced. The representation of AND-OR and
THRESH made no distinction among their arguments (see Section 2).
This means that one particular argument may be considered an
antecedent or a consequent depending on the situation. If we ADD
to the network a node which is an instance of an ARGument of one
of these connectives, the node matched will be looked at as being
one antecedent and, depending on the parameters of the
connective, we might or might not need to find more antecedents.
In any case all the ARGuments that are not derived are considered
to be consequents. Thus, the path of arcs to be followed during
forward inference is represented in Fiqure 4 where "top?" means
that a node is not dominated by any other node, i.e., is a top

level assertion in the network.

Bi-Directional Inference Page 12

C
ANT

|5 M L L

c
ARG

Figure 4
Path of arcs to be followed during forward inference

5.Backward Inference

In this section the backward inference mechanism is
discussed. When the wuser asks a question using the function
DEDUCE, the inference system does a network pattern match. Among
the set of matched nodes are constant nodes which are answers to
the original question. 1In addition, the system looks for rules
which may enable an answer to be deduced. Consider again the
rule represented in Fiqure 2. If the user asks for an instance
of M2b, i.e. some question node matches M2 with a binding b, the
System will try to find an instance of Mlp and if such an
instance is found M2b can be deduced. The rule in Figure 3a will
not be used to deduce M2b because of the reasons pointed out in
the last section. Now consider the case represented in Figure
3b. If the user asks for an instance of the node M2b the system
looks at rule Rl and realizes that this rule may enable the
deduction of such a node provided that it can prove that rule Rlb
holds. To do that it follows the CQ arc leading to rule R2 and
tries to prove M3b. If such an instance is found modus ponens
enables the deduction of Rlb and now the inference system may

start looking for an instance of Mlb which in turn enables the

deduction of M2b.

Bi-Directional Inference Page 13

As before the analysis presented above only directly applies
to the connectives v-> and &->. The discussion for the other
connectives is very similar to the one presented in the 1last

section and will not be presented here. The path of arcs to be

followed during backward inference is shown in Figure 5. Note
d =* ES IE 3
CQJ .[ﬁRG] . top?
Figure 5

Path of nodes to be followed during backward inference

that this path of arcs being only "top?" corresponds to the case
of finding an instance of a node explicitly asserted in the

network.

6.Interaction between forward and backward inference

In this section an example of how forward and backward

inference interact is fully developed.

Suppose that the assertions and rules represented in Figure
6 exist in the network. Suppose also that we use the function
(ADD MEMB JO CLASS HARD WORKER) to build and do forward inference
on node N1. The function ADD creates an F-INFER process which
matches N1 against the network tofind rules to be used in forward
inference. This process finds Ml, which 1is in antecedent
position of rule Rl (see section 4 for definition of antecedent
position). F-INFER builds two processes: an IMPLY process which

will be responsible for rule Rl and a GO-UP process that checks

Bi-Directional Inference Page 14

OMPUTER BUL

Figure 6
Current network

whether the rule Rl is asserted in the network and if not follows
CQ® or ARGS arcs (if such arcs exist) to examine the rules which
contain Rl. The process GO-UP is scheduled. Figure 7 shows the
processes built so far -- later in the text we will explain why
Pl also created processes P7 and P8. 1In this Figure and in the
following Figures, each Process is represented by a rectangle, on
top of which is the name of the process and its unique identifier
(of the form Pn); inside the rectangle there is the set of
registers used by the process and their values; a solid arrow
going from process A to process B means that A can report (send
messages) to process B (sometimes said that B is the "boss" of
A); a dashed arrow going from process A to process B means that
process A creates process B. If process A also schedules process
B, the arrow head will be solid. The job of the F-INFER process

is now completed, it stops execution and the scheduler initiates

the process P3.

P3 looks at rule Rl and since it is asserted in the network

Bi-Directional Inference Page 15

IMPLY P2

CO: (R2) TOPINE ___P7

RULE:R1 E: Ml

BNDG: (J0O/V1) ~IDATA: (N1 (JO/V1)})
w v

Go-up__ (P3 E-INFER °,, P1 .- INFER I P8
-------- e
BNDG: (JO/V BNDG; (JO/V1

Figure 7
Complete set of processes - phase 1

it creates processes to use the rule, i.e., an ANS-CATCH (P4) and
a USE (P5), and schedules process P5 (see Figure 8). The
scheduler initiates process P5 which determines the connective
for rule Rl and accordingly creates a CH-process to work on the

rule, in this case, a CHENT (P6), which interprets v-entailments.

P6 creates and schedules processes to establish instances of

MPLY B2
CQ: (R2)

RULE:R]

BNDG: (JO/V1)

GO-~UP P3 ANS-CATCH)_ P4
CQ:R1 --»[DATA: ()]
BNDG: lefil,.——«/’

USE_ & (5 CHENT P6
CQ: (R2) CQ: (R2)

RULE:R1 -~ ~s{ ANT : (M1)

BNDG: (JO/V1 BNDG; (JO/V1)
TOPINF P7
CQ: M1
DATA: (N1 (JO/V1))
INFER P8
CQ: M1 1
IBNDG:(JO/VI)

Figure 8

Complete set of processes - phase 2

the antecedent of rule Rl1. P6 attempts to create an INFER
process to match the antecedent of Rl against the network and a
TOPINF, a data-collector to which the INFER reports. The TOPINF,
in turn, would report to the CH-process. 1In this case, however,
since forward inference was triggered by the ADDition of N1 which

matched M1, these two processes have already been created by the

W

Bi-Directional Inference Page 16

F-INFER (Pl) which anticipated that these pProcesses would be
needed. The set of processes (P7 and P8) is linked to the
process P6 (see Fig.8). The advantage of having F-INFER create
these processes is that the system does not need to perform a
network match to find if there is a node which matches M1{Jo/v1},
because N1 is already known to be such a node. After linking P7
and P8 to P6, P6 receives a message from P7 stating that an
instance M1{JO/V1} was found. P6 deduces R2{JO/V1} and sends a

message to the ANS-CATCH (P4).

P4 compares the answer received with the data stored in its
DATA: register (containing a record of all the messages received
so far) and if a similar message has not been received before, as
is the present case, it reports the message to its bosses, in

this case P2.

When P2 gets this message, it looks at the consequent of R1
and, since it is a rule (R2), P2 sets up the structure of
processes necessary to use R2{J0O/V1}, which, as we have already
seen, is a USE process (Pll) which reports to an ANS-CATCH (P14).
Furthermore, P2 also creates another IMPLY process (P12) which is
responsible for rule R2 and creates a path going from P2 to P12
via an ANS-CATCH (P9). The job of the IMPLY process is now done,
it schedules the newly created Pll and stops execution (see

Figure 9).

The scheduler now initiates process P11 which, as before,
determines what kind of rule R2 is, creates a CHENT process (P13)
to work on this rule, which, in turn, creates and schedules an

INFER process (P15) to work on the antecedent of R2 (M2) and a

e e

Bi-Directional Inference Page 17

IMPLY P12
CQ: (M3)
RULE:R2
BNDG: (JO/V1)
~
.- ANS=CATCH| Pl
. ~>-=[DATA: ()
¥ LT __\
IMPLY . P2 .- USE P11 CHENT P13
CQ: (R2) e CQ: (M3) CQ: (M3)
RULE:R1l = [===~---. »| RULE:R2 -~ | ANT: (M2) .
BHDG; (JO/V1) BNDG: (JO/V1) | BNDG: (JO/V1) KN
Go-Uf P3 ANS~CATCH) P4 TOPINF P14 ;\
CQ:R DATA: (R2 (J0O/V1) CQ: M2 L
IBNDG:(J;ézill__'f7—__—i__ri——ZL_—l] lDATA:() 1 \
+
USE P5 CHENT P6 INFER I P15)
CQ: (R2) CQ: (R2) CQ:M2 —l .
RULE:R1 ANT: (M1) NDG: (Jo/v1) ¥
BNDG: (JO/V1) BNDG: (JO/V1)
TOPINF P7
[CQ:MI
DATA: (N1 (JO/V1))
NFER P8
CQ:M1
BNDG: (JO/V1)
Figure 9

Complete set of processes - phase 3
data-collector TOPINF (Pl14). When process P15 1is initiated it
tries to find nodes in the network which match M2{Jo/Vl1}, but
since there are none, it stops execution without initiating any
other process. The process queue now becomes empty and the

inference process stops (see Figure 9).

Suppose now that the function (DEDUCE MEMB JO CLASS AI BUM)
is used. The processes created for this question are shown in
Figure 10. DEDUCE creates a TOPMOST-TOPINF data-collector (P16)
to receive answers concerning the instances of M6{J0O/V2} and an
INFER process (P17), reporting to Pl6, which tries to find such
instances in the network, and schedules P17. Pl7, which is
looking for instances of a temporary node (T1) matching
M6{JO/V2}, fails to find such instances explicitly stored in the

network but notices that rule R3 may enable the derivation of

Bi-Directional Inference Page 18

such instances. It therefore creates and schedules a GO-UP
process (P18) which focuses the attention of the inference system
on rule R3. When P18 is initiated it follows the CQ€ ;rc leading
from M6 to R3, creates an IMPLY process (P2#) which is
responsible for rule R3 and creates and schedules a GO-UP process
(P21) which checks whether R3 is asserted. When P21 is scheduled
it creates a USE (P23) which, in turn, creates a CH&ENT process
(P24) to work on the &-entailment represented by node R3 which in
turn creates INFER and TOPINF processes for each of the
antecedents of R3 (P25, P26, P27 and P28) and schedules processes

P26 and P28 for execution.

Let us assume that P28 is executed first. It looks for
instances of M5 and finds N5. It sends a message to P27 which in
turn reports to P24. When P24 receives this message it records
it and does nothing because it is not enough to deduce the
Consequent of R3. Process P26 is initiated. It can not find an
instance of M4 explicitly stored in the network but it finds a
rule (R2) that may enable the deduction of such an instance. In
order to get an instance of M4{JO/V2}, P26 will try to use rule
R2. However, since M3 and M4 are in different rules, with
different variables, rule R2 is not directly applicable to rule
R3 and, for this reason, process P26 creates a SWITCH process
(P29) which acts as a variable name translator between the nodes
M3 and M4. P26 also creates and schedules a GO-UP process (P30)
to work on node M3. When P30 is scheduled it finds R2 at the end
of the CQ® arc leaving M3 and notices that there is already a
pProcess working on such a rule, namely the IMPLY process Pl12. In

this case P30 creates a path going from P12 to P29 via an

SRR

Bi-Directional Inference Page 19

TOPMOST-TOPINF___Pl6

CQ:T1
DATA: ()
P-ANS: 0
N-ANS: 0
INFER \
X ANS-CATCH plg] SIITCH | P29
H L.~ DATA: () CQ: M4
o-Up ¢+ (pi8 .-~ PLBNDG;: (JO/V2)
CQ: M6 <" IMPLY P20 .
BNDG; (J0/V2 “s~.._[Co: () ./ GO-UP P3¢
v *! RULE:R3 ,[§§?ﬁi""'"'""]
) BNDG: (JO/V2) ' |BNDG: (JO/V1)
' N t
GO-UP 4 /P21 ANS-CATCH| P22 Y
CQ:R3 | ... +{DATA: () '
BNDG: (JO/V2 |

CHEENT P24
CQ: (M6)

"""" 1 ANT: (M4 MS)

] I _BNDG: (JO/V2 N

1

Y

P

1)
TOPINF) v P25

@ 1]
TOPINF v/(p27 \
cQ:Mg
\

ANS-CATCH P31
DATA: ()

P L

DATA:

s 1
'INFER P26
CQ:M4

ANS~CATCH P9
DATA: (R2 (JO/V1))

_IMPLY P2
€Q: (R2)

RULE:R1

BNDG: {J0/V1)

ANS— H NF
DATA: (R2 (JO/V1)) CQ:M2

DATA:
CHENT P6 INFER P15
CQ: (R2) CQ: (R2) CQ:M2
RULE:R1 ANT: (M1) . BNDG: (JO/V1
BNDG: (JO/V1)

TOPINF P7
CQO: M1

[QATA:(NI (Jo/v1))
INFER P8
CQ: M1 1
BNDG: (JO/V1)

Figure 10
Complete set of processes - phase 4

ANS-CATCH (P31) and since the rule R2 has not been used yet P3g

does not schedule any further process and the inference system

Stops, leaving behind the set of processes represented in Figure

10,

Suppose now that the function (ADD MEMB JO CLASS CS MAJOR)

is executed, Creating node N2, The function ADD creates an

Bi-Directional Inference Page 29

F-INFER process to do forward inference with node N2. When this
process is initiated, it notices that there is a process (P15)
which is waiting for the assertion of such a node. The F-INFER
then sends P15 the node N2. This triggers a propagation of
messages through the network: P13 deduces the consequent of R2.
When P12 hears about this, it asserts an instance of M3{Jo/vii,
and informs P31 which, in turn, sends M3{JO/V1} to P25 via the
SWITCH process. The significance of the SWITCH process 1is
described in [McKay and Shapiro 81]. P25 informs P24 which now
can deduce the consequent of R3 with binding {JO/V2}. It sends a
message to P20 which asserts the node M6{JO/V2} and informs Plé6,
which tells the user that a positive answer to the question was

found. And the inference mechanism stops.

We present next the output generated by the SNePS deduction
system when running the example above. The program sends its
output through a generating ATN [Shapiro 79c] for generating
English sentences from the nodes of the network.

** (SURFACE
* (BUILD AVB $X
* ANT (BUILD MEMB *X CLASS HARD/ WORKER)
* CQ (BUILD ANT (BUILD MEMB *X CLASS CS/ MAJOR)
* CQ (BUILD MEMB *X
* CLASS COMPUTER/ PROGRAMMER)
*) = R2))
FOR EVERY V1, IF V1 IS A HARD WORKER

THEN IF V1 IS A CS MAJOR

THEN V1 IS A COMPUTER PROGRAMMER

(DUMPED)

** (SURFACE
* (BUILD AVB *X
* ANT (BUILD MEMB *X CLASS CLEVER)
* CQ *R2))
FOR EVERY V1, IF V1 IS CLEVER

THEN IF V1 IS A CS MAJOR

THEN V1 IS A COMPUTER PROGRAMMER

(DUMPED)

** (SURFACE

Bi-Directional Inference Page 21

* (BUILD AVB S$Y
* &ANT (BUILD MEMB *Y CLASS COMPUTER/ PROGRAMMER) = M4
* &ANT (BUILD AGENT *Y VERB KNOWS OBJ LISP)
* CQ (BUILD MEMB *Y CLASS AI/ BUM)))
FOR EVERY V2, IF V2 IS A COMPUTER PROGRAMMER AND
V2 KNOWS LISP
THEN V2 IS AI BUM

(DUMPED)

** (SURFACE (BUILD AVB *Y

* ANT *M4

* CQ (BUILD MEMB *Y CLASS COMPUTER/ BUM)))

FOR EVERY V2, IF V2 IS A COMPUTER PROGRAMMER
THEN V2 IS COMPUTER BUM
(DUMPED)

** (SURFACE (BUILD MEMB JO CLASS CLEVER))
JO IS CLEVER
(DUMPED)

** (SURFACE (BUILD AGENT JO VERB KNOWS OBJ LISP))
JO KNOWS LISP
(DUMPED)

** (SURFACE (ADD MEMB JO CLASS HARD/ WORKER))

SINCE
JO IS A HARD WORKER
WE INFER
IF JO IS A CS MAJOR
THEN JO IS A COMPUTER PROGRAMMER

JO IS A HARD WORKER
(DUMPED)

** (SURFACE (DEDUCE MEMB JO CLASS AI/ BUM))
(DUMPED)
** (SURFACE (ADD MEMB JO CLASS CS/ MAJOR))

SINCE

JO IS A CS MAJOR

WE INFER

JO IS A COMPUTER PROGRAMMER

SINCE

JO IS A COMPUTER PROGRAMMER AND
JO KNOWS LISP

WE INFER

JO IS AI BUM

JO IS A CS MAJOR AND

JO IS A COMPUTER PROGRAMMER AND
JO IS AI BUM

(DUMPED)

Bi-Directional Inference Page 22

7.Three different modes of inference

In the last section we completely developed an example of
bi-directional inference, i.e., combined forward and backward
inference. 1In this Section we compare the results obtained using
such inference with the results obtained using backward or
forward inference only. Figure 11 shows an AND-OR graph

representing the dependencies among the nodes in Figure 6. The

Figure 11
Nodes used in bi-directional inference

double 1lines represent the arcs followed in the example of
Section 6 and therefore show the nodes actually used during
bi-directional inference. Notice that although node M8 could
have been used by the inference system to deduce R2, it was not
used because we ADDed a node matching M1 which caused R2 to be
proved. Also, an instance of M7 could have been derived, but
since the user asked for an instance of M6 this fact caused the
inference system to focus its attention on node M6, and when an
instance of M2 was asserted the path leading to M7 was ignored.
Let us further notice that if 1later on the user asks for an
instance of M7 the system will find it much faster than if the

question were asked prior to any inference since in this case

Bi-Directional Inference , Page 23

some of the processes that the inference system will use already

exist with the appropriate data stored in their registers.

Now consider the case of pure backward inference. Suppose
that there exist in the network instances of the nodes M1, M8, M2
and M5 (i.e., "JO is a hard worker", "JO is clever", "JO is a CS
major" and "JO knows Lisp") and that no previous inference has
been done. The AND-OR graph of Figure 12 shows the dependencies
generated during backward inference from M6 and in Appendix 1 is
presented the output generated by the program running in pure
backward inference. 1If the user asks for an instance of M6 ("is
JO AI bum?) the inference system sets up two goals: proving M4
and proving M5. The latter can be proved immediately and then to
prove M4 the system tries to prove M3 which entails proving R2
and M2. R2 can be proved in two different ways either by finding
an instance of Ml or by finding an instance of M8. 1In this case
the system tries to prove M1 and M8 in "parallel" and as soon as
one of them is proved (assume that M8 is proved first) the system

concludes R2 and then, by proving M2, it can conclude M6. Notice

Figure 12
Nodes used in pure backward inference

that, again, in this case M7 was not proved since the user was

not interested in such a node.

Bi-Directional Inference Page 24

Let wus now consider the case of pure forward inference.
Assume that instances of M5 and M8 exist in the network and that
the user ADDs a node matching Ml. The AND-OR graph in Figure 13
shows the dependencies for full forward inference and in Appendix
2 is presented the output generated by the program running in
pure forward inference. The inference system will deduce R2 but
it can not proceed to deduce M3 (and M4) since it can not prove
M2. 1If the user now ADDs an instance of M2 the inference system
deduces M3 and does forward inference with this node resulting in

the derivation of M7 and M6. Notice that in this case both M6

Figure 13
Nodes used in pure forward inference

and M7 are derived. Furthermore, M7 i% derived first since its
derivation only entails proving one node whereas to derive M6 the

system has to prove two nodes and the system works in "parallel”.

8.Bi-directional Inference and Resource-Limited Processing

In the example of section 6 we deliberately asserted
M2{JO/V1} 1last to force a breakpoint in the growing of the
processes: both the processes for forward and backward inference
needed M2{J0O/V1l} to proceed. When these processes failed to find

such node the whole inference was guspended. We stress the word

Bi-Directional Inference : Page 25

suspended since the inference was not aborted, like in most
systems, but rather entered a latent state which was resumed as

soon as relevant data was ADDed to the network.

We plan to augment the SNePS inference system with
resource-limited processing. When a process creates another
process it will allocate to this new process a certain amount of
its resources. During computation a process expends its
resources by creating and scheduling other processes and/or
performing network pattern matches. When resources are

exhausted, execution is suspended until allocated more resources.

Under this approach bi-directional inference is even more
attractive: the functions ADD or DEDUCE will allocate some
amount of resources to the processes scheduled for a particular
inference. When the allocated resources are exhausted, the
inference system enters a suspended state until new resources are
allocated to the suspended processes. This will occur when an
active process 1is interested in the results that are being
generated by some suspended process (the details of how this is
done are presented in [McKay and Shapiro 81]). If resources are
allocated to some suspended process it resumes any inference it
was doing as well as supplying any results it had already
produced. 1In this case bi-directional inference corresponds to
having two sets of processes growing towards each other and their
growfh can be interupted either by the 1lack of data in the

network or by the exhaustion of available resources.

Bi-Directional Inference Page 26
9.Conclusions

We have seen that combined backward and forward inference,
which we term bi-directional inference, focuses a system's
attention towards the interests of the user and can cut down the
fan out of pure forward or backward chaining. This style of

inference corresponds to bi-~directional search since the system

ends up building two different sets of processes growing toward

each other, one of them growing backwards from the goal node
(question asked) and the other growing forwards from the relevant
data. As soon as enough data 1is found, these two sets of
processes intersect smoothly and information flows through them,

producing the desired answer.

Bi-Directional Inference Page 27

10.

11.

12.

13.

14.

15‘

References

Coelho H, Cotta J. and Pereira L., "How to solve it with
PROLOG", Laboratdrio Nacional de Engenharia Civil, Lisbon,
1980.

Colmerauer A., "Sur les bases theoriques de PROLOG", Groupe
de I.A., Université d'Aix-Marseille II, 1979.

LeFaivre R., "FUZZY reference manual", Computer Science
Department, Rutgers University, 1977.

Maida T. and Shapiro S., "Intensional Concepts in
Propositional Semantic Networks", Department of Computer
Science, SUNY at Buffalo, 19840.

Martins J. and Shapiro S., "A Belief Revision System based
on Relevance Logic and Heterarchical Contexts", Department of
Computer Science, SUNY at Buffalo, 1981.

McDermott D. and Sussman G., "The CONNIVER reference
manual"™, Technical Report 259, MIT, 1972.

McKay D. and Shapiro S., "MULTI - a LISP Based
Multiprocessing System", Proc, 1980 LISP Conference, 29-37.

McKay D. and Shapiro S., "Using Active Connection Graphs for
Reasoning with Recursive Rules", Department of Computer
Science, SUNY at Buffalo, 1981.

Pohl I., "Bi-directional Search", in Machine Intelligence,
Meltzer and Michie (eds.), American Elsevier, 1971, 127-140.

Shapiro S., "Representing and Locating Deduction Rules in a
Semantic Network", in Proc. Workshop on Pattern-Directed

Inference System, SIGART Newsletter, No. 63, (June 1977),
14-18. .

Shapiro S., "The SNePS Semantic Network Processing System",
in Associative Networks, N.V. Findler (ed.), Academic Press,
1979%a, 179-203.

Shapiro S., "Numerical Quantifiers and their use in Reasoning
with Negative Information", Proc, IJCAI-79, 1979b, 7%1-796.

Shapiro S, "Generalized Augmented Transition Network
Grammars fo Generation from Semantic Networks", Proc. l7th
Anual Meeting of the ACL, 1979c, 25-29.

Shapiro S. and McKay D., "Inference with Recursive Rules",
Proc., First AAAI Conference, 1986, 151-153.

Shubin H. and Shapiro S., "Inference and Control in
Multiprocessing Environments", Department of Computer
Science, SUNY at Buffalo, 1981.

Bi-Directional Inference Page 28

16.

17.

Sussman G., Winograd T. and McDermott D., "MICRO-PLANNER
reference manual", Technical Report 263, MIT, 1971.

Wand M. "The Frame Model of Computation”, Techical Report
No.20, Computer Science Department, Indiana University, 1974.

Al: Run in Pure Backward Inference ' Page 29

APPENDIX 1: Run in Pure Backward Inference

In this Appendix we present the output generated by the
SNePS deduction system when running the example presented in

section 6, using backward inference only.

** (SURFACE (BUILD AVB $X

* ANT (BUILD MEMB *X CLASS HARD/ WORKER)
* CQ (BUILD ANT (BUILD MEMB *X CLASS CS/ MAJOR)
* CQ (BUILD MEMB *X

*

CLASS COMPUTER/

PROGRAMMER)

*) = R2))

FOR EVERY V1, IF V1 IS A HARD WORKER
THEN IF V1 IS A CS MAJOR

THEN V1 IS A COMPUTER PROGRAMMER

(DUMPED)

843 MSECS
** (SURFACE (BUILD AVB *X
* ANT (BUILD MEMB *X CLASS CLEVER)
* CQ *R2))

FOR EVERY V1, IF V1 IS CLEVER
THEN IF V1 IS A CS MAJOR

THEN V1 IS A COMPUTER PROGRAMMER
(DUMPED)
393 MSECS

** (SURFACE (BUILD AVB S$Y
&ANT (BUILD MEMB *Y CLASS COMPUTER/ PROGRAMMER)

*

M4
&ANT (BUILD AGENT *Y VERB KNOWS OBJ LISP)
CQ (BUILD MEMB *Y CLASS AI/ BUM)))
FOR EVERY V2, IF V2 IS A COMPUTER PROGRAMMER AND
V2 KNOWS LISP
THEN V2 IS A AI BUM

* * N

(DUMPED)

821 MSECS
** (SURFACE (BUILD AVB *Y
* ANT *M4
* CQ (BUILD MEMB *Y CLASS COMPUTER/ BUM)))

FOR EVERY V2, IF V2 IS A COMPUTER PROGRAMMER
THEN V2 IS COMPUTER BUM

(DUMPED)

242 MSECS

** (SURFACE (BUILD MEMB JO CLASS CLEVER))
JO IS CLEVER

(DUMPED)

77 MSECS

** (SURFACE (BUILD AGENT JO VERB KNOWS OBJ LISP))

Al: Run in Pure Backward Inference

JO KNOWS LISP
(DUMPED)
87 MSECS

** (SURFACE (BUILD MEMB JO CLASS HARD/ WORKER))

JO IS A HARD WORKER
(DUMPED)
81 MSECS

** (SURFACE (BUILD MEMB JO CLASS CS/ MAJOR))

JO IS A CS MAJOR
(DUMPED)
78 MSECS

**(SURFACE (DEDUCE MEMB JO CLASS AI/ BUM))

SINCE
JO IS CLEVER

WE INFER
IF JO IS A CS MAJOR
THEN JO IS A COMPUTER PROGRAMMER

SINCE
JO IS A HARD WORKER

WE INFER
IF JO IS A CS MAJOR
THEN JO IS A COMPUTER PROGRAMMER

SINCE
JO IS A CS MAJOR

WE INFER
JO IS A COMPUTER PROGRAMMER

SINCE
JO IS A COMPUTER PROGRAMMER AND
JO KNOWS LISP

WE INFER
JO IS AI BUM

JO IS A COMPUTER PROGRAMMER AND
JO IS AI BUM

(DUMPED)

3595 MSECS

Page 30

A2: Run in Pure Forward Inference Page 31

APPENDIX 2: Run in Pure Forward Inference

In this Appendix we present the output generated by the
SNePS deduction system when running the example presented in

section 6, using only forward inference.

** (SURFACE (BUILD AVB $X

* ANT (BUILD MEMB *X CLASS HARD/ WORKER)

* CQ (BUILD ANT (BUILD MEMB *X CLASS CS/ MAJOR)
* CQ (BUILD MEMB *X

* CLASS COMPUTER/
PROGRAMMER)

*) = R2))

FOR EVERY V1, IF V1 IS A HARD WORKER
THEN IF V1 IS A CS MAJOR
THEN V1 IS A COMPUTER PROGRAMMER

(DUMPED)

846 MSECS
** (SURFACE (BUILD AVB *X
* ANT (BUILD MEMB *X CLASS CLEVER)
* CQ *R2))

FOR EVERY V1, IF V1 IS CLEVER
THEN IF V1 IS A CS MAJOR
THEN V1 IS A COMPUTER PROGRAMMER

(DUMPED)

382 MSECS
** (SURFACE (BUILD AVB S$Y
* &ANT (BUILD MEMB *Y CLASS COMPUTER/ PROGRAMMER)
= M4
* &ANT (BUILD AGENT *Y VERB KNOWS OBJ LISP)
*

CQ (BUILD MEMB *Y CLASS AI/ BUM)))
FOR EVERY V2, IF V2 IS A COMPUTER PROGRAMMER AND
V2 KNOWS LISP
THEN V2 IS AI BUM

(DUMPED)

834 MSECS
** (SURFACE (BUILD AVB *Y
* ANT *M4
* CQ (BUILD MEMB *Y CLASS COMPUTER/ BUM)))

FOR EVERY V2, IF V2 IS A COMPUTER PROGRAMMER
THEN V2 IS A COMPUTER BUM

(DUMPED)

254 MSECS

** (SURFACE (BUILD MEMB JO CLASS CLEVER))
JO IS CLEVER

(DUMPED)

78 MSECS

** (SURFACE (BUILD AGENT JO VERB KNOWS OBJ LISP))

A2: Run in Pure Forward Inference Page 32

JO KNOWS LISP
(DUMPED)
92 MSECS

** (SURFACE (ADD MEMB JO CLASS HARD/ WORKER))

SINCE
JO IS A HARD WORKER

WE INFER
IF JO IS A CS MAJOR
THEN JO IS A COMPUTER PROGRAMMER

JO IS A HARD WORKER
(DUMPED)
1109 MSECS

** (SURFACE (ADD MEMB JO CLASS CS/ MAJOR))

SINCE
JO IS A CS MAJOR

WE INFER
JO IS A COMPUTER PROGRAMMER

SINCE
JO IS A COMPUTER PROGRAMMER

WE INFER
JO IS A COMPUTER BUM

SINCE
JO KNOWS LISP AND
JO IS A COMPUTER PROGRAMMER

WE INFER
JO IS AI BUM

JO IS A CS MAJOR AND

JO IS A COMPUTER PROGRAMMER AND
JO IS A COMPUTER BUM AND

JO IS AI BUM

(DUMPED)

2624 MSECS

