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1 Motivation

SNePS, the Semantic Network Processing System [45, 54], has been designed to be a system for representing
the beliefs of a natural-language-using intelligent system (a “cognitive agent”). It has always been the
intention that a SNePS-based “knowledge base” would ultimately be built, not by a programmer or knowledge
engineer entering representations of knowledge in some formal language or data entry system, but by a human
informing it using a natural language (NL) (generally supposed to be English), or by the system reading
books or articles that had been prepared for human readers. Because of this motivation, the criteria for the
development of SNePS have included: it should be able to represent anything and everything expressible in
NL; it should be able to represent generic, as well as specific information; it should be able to use the generic
and the specific information to reason and infer information implied by what it has been told; it cannot
count on any particular order among the pieces of information it is given; it must continue to act reasonably

even if the information it is given includes circular definitions, recursive rules, and inconsistent information.

*This is a preprint version (missing some figures) of S. C. Shapiro and W. J. Rapaport, The SNePS family. Computers &
Mathematics with Applications 23, 2—5 (January—March, 1992), 243-275. Reprinted in F. Lehmann, Ed. Semantic Networks
e Artificial Intelligence. Pergamon Press, Oxford, 1992, 243-275. All quotes should be taken from and all citations should be
to one of these published versions.



2 Main Concepts

The entities to be represented in SNePS include all entities a cognitive agent can think about or have beliefs
about. This includes individual objects, classes of objects, people, properties, abstractions, actions, times,
and propositions, both specific and generic (generic propositions being rules). This set of entities is not the
same as the set of objects in the world, nor can the entities be mapped one-to-one onto the set of objects
in the world. An agent may believe in the existence of two entities that, in fact, are the same object in the
world; an agent may believe that what are, in fact, two objects in the world are one entity; an agent may have
beliefs about non-existent, fictional, and even impossible entities. In the past, we have called such entities

“Intensions,” “intensional entities,” “Intensional objects,” and even “concepts” and “intensional concepts.”

Henceforth, we will call them “entities,” or, for emphasis, “mental entities” (Cf. [54, 55]).

The SNePS representation formalism consists of nodes and labeled, directed arcs. Nodes comprise the
terms of the formalism; arcs are grammatical punctuation like the parentheses and commas in the standard
syntax of predicate calculus. Every entity represented in SNePS is represented by a node. Even nodes that
represent propositions and nodes that represent rules are terms, so that SNePS can represent beliefs about

beliefs and rules about rules without limit.

There are four types of nodes in SNePS: base nodes, variable nodes, molecular nodes, and pattern nodes.
Base nodes and variable nodes have no arcs emanating from them. A base node represents some particular
entity that is conceptually different from the entity represented by any other node. Additional properties of
the entity are assertionally determined (see [66]) by the rest of the network connected to its node. (Isolated
nodes cannot be created.) Variable nodes also have no arcs emanating from them, and represent arbitrary
individuals, propositions, etc., again as determined by the rest of the network. Molecular and pattern nodes
have arcs emanating from them and are structurally determined (see [66]) by those arcs, the nodes they go to,
the arcs emanating from them, etc. Molecular nodes represent propositions, including rules, or “structured
individuals.” Pattern nodes are similar to open sentences or functional terms with free variables in standard
predicate logic. Every node has an identifier, which uniquely identifies it. Base nodes may have identifiers

determined by the user. All other nodes have 1dentifiers created by the system.

The current version of SNePS; SNePS 2.1, contains SNeBR, the SNePS Belief Revision system [19] as

a standard feature. Therefore, there 1s always a “current context” specified, which consists of a set of

>

hypotheses asserted to the system by the user, and a “current belief space,” consisting of the current context

and all propositions so far derived from them. Nodes representing propositions currently asserted in the



current belief space (either hypotheses or derived propositions), are indicated by the system’s printing an

exclamation mark at the end of their identifiers. These represent the current beliefs of the cognitive agent.

The set of arc labels used to structure the network i1s determined by the user, so that SNePS can be used
to experiment with different conceptual structures. However, since SNIP, the SNePS Inference Package, i1s a
standard part of SNePS, and SNIP must be able to interpret rules properly, the arc labels used to represent

rules; and the specific representation of rules have been determined by the designers.

Examples of the 2D notation of SNePS are postponed until additional concepts are introduced in the

next section.

3 History and Variants

3.1 SAMENLAQ

The earliest antecedent of SNePS was SAMENLAQ [59, 58]. The key ideas are listed in the abstract of [59]:

The system is capable of three types of learning: by being explicitly told facts; by deducing
facts implied by a number of previously stored facts; by induction from a given set of examples.
The memory structure is a net built up of binary relations; a relation being a label on the edge
joining two nodes. The relations, however, are also nodes and so can be related to other nodes
which may also be used as relations. Most significantly, a relation can be related to one or more
alternate definitions in terms of compositions of other relations and restrictions on intermediate

nodes.

As indicated by this quote, both entities and relations were represented in SAMENLAQ by nodes. The
information stored about relations was mostly information putting them in relational classes, and a connec-
tion to rules by which instances of the relationship could be deduced. The rules were not as general as allowed
by predicate calculus, rather being from the relational calculus and forming a subset of the “path-based”

inference rules later allowed in SNePS [50].

SAMENLAQ 1T [58] differed from the earlier version mainly in allowing the rules to be recursive, and
allowing all instances of a relationship to be found even when some of them were explicitly stored in the net

while others had to be deduced.
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Figure 1: A 2D picture of a SAMENLAQ network showing the information that Max, John, and David
are male, that Max is the parent of John and David, and that the parent-of relation is the converse of the
child-of relation. Based on [59, p. 49].

The 2D notation for SAMENLAQ is shown in Figure 1. The nodes are MAX, JOHN, DAVID, MALE,
EQUIV, HAS.GENDER, IS.PARENT.OF, and IS.CHILD.QOF(INV), the first three representing individuals, MALE
representing a property, and the last four representing relations. The ovals labeled /1, /2, /3, /4, and
/5 are just collectors of sets of nodes, so that, for example, the arc going from MAX through IS.PARENT.OF
to /2, together with the arcs from /2 to JOHN and DAVID represent the two relationships, Max is the parent
of John and Max is the parent of David. The arc from IS.PARENT.OF through EQUIV to /5 together with
the arc from /5 to IS.CHILD.OF(INV) represents the fact that the parent-of relation is the converse of the
child-of relation. Actually, this piece of information was only used in the direction x ISCHILD.OF y =
yIS.PARENT.OF . Therefore, in SAMENLAQ II, EQUIV was changed to IMPLBY. There was no 2D
notation for the relationship between IS.CHILD.OF(INV) and IS.CHILD.OF. Neither was there a 2D notation

for the rest of the rule syntax.



SAMENLAQ and SAMENLAQ IT were implemented in SNOBOL3.

3.2 MENTAL
3.2.1 Shapiro’s Version

MENTAL [40, 41] was a question answering system that used the MENS knowledge representation formalism,
and was part of the MIND system [12]. The two major advances of MENS over SAMENLAQ were the

representation of statements (relationships, propositions) by nodes, and the representation of rules by nodes.

SAMENLAQ had statements represented by three nodes and an arc that tied them together in the
correct order. The move that allowed the representation of statements in MENS was to use one node for
the statement, and three differently labeled arcs from the statement node to the three SAMENLAQ nodes.
Following to a suggestion from Martin Kay, Fillmore’s Case Grammar Theory [6] was used as a model, and
the number of labeled arcs was increased from three to an arbitrary number, one for the verb and one for

each case.

Figure 2 shows an example MENS network for the information in the sentences

1) Jane saw (2) John hit Henry.
3) Henry loves Jane.

5

Narcissus loves himself.

(1)
(3)
(4) John loves Jane.
()
(6)

6

Jane loves John.

The nodes (which were called “items” in the original papers) labeled with numbers, a simplification of the
original node labeling scheme, represent the corresponding propositions. Each arc has two labels, one for
each direction. For example, the arc from node 1 to node 2 is labeled 0, while the arc from node 2 to node

1 1s labeled *0.

Since one proposition can be the object of another, it is necessary to have some means of noting which
nodes represent propositions that are asserted (as opposed to merely used) in the system. This was done by
the “independent statement flag”, which “is a single pointer which, when present, always points to the same
item ...[it] indicates that the item it is attached to represents some information that has been alleged to be

true. Two other cases are possible—the information may have been alleged to be false ...or no allegation
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Figure 2: A MENS network based on [41, Figs. 2-4].




may have been made as to its truth value” [40, p 106].

A conscious decision was made not to use class membership or any other particular relation for the
basic structure of the network, but to allow rules as representationally complete as the predicate calculus
to be represented and used. This required techniques for representing variables, logical connectives, and
quantifiers. It was decided to use nodes to represent variables, even though this would seem counter to the
notion that every node represents some conceptual entity. (The representation and semantics of variables in
SNePS remains a research topic to this day.) It was also decided to use nodes to represent quantifiers and

connectives, even though their conceptual status was unclear. (This was changed in the next version. See

below.)

Variables were allowed to range over all entities represented by nodes, but not over relations represented
by arcs, because, “As Quine says, ‘The ontology to which one’s use of language commits him comprises
simply the objects that he treats as falling ... within the range of values of his variables.” [33, p. 118]” [41,
p. 518], and, although this allows the representation of Russell’s and other paradoxes, “this possibility will
be accepted. We make no type distinctions among the items and impose no restraints in item existence,

leaving the avoidance of paradoxes the responsibility of the human informant” [ibid.].

The logical connectives included were: NOT, IMPLIES, IFF, AND, OR, and MUTIMP. “MUTIMP
stands for mutual implication. It i1s a predicate with an arbitrary number of arguments and says that
its arguments mutually imply each other by pairs (are pairwise equivalent)” [41, footnote, p. 519]. A node
representing a non-atomic proposition had an arc labeled OP to the connective node, and one of the following
sets of arcs: an arc labeled ARG to the one argument of NOT; arcs labeled ARG1 and ARG?2 to the two
arguments of IMPLIES and IFF; an arc labeled MARG to each of the arbitrary number of arguments of
AND, OR, and MUTIMP.

Restricted quantification was used to represent quantified propositions. A node representing a quantified
proposition had an arc labeled @Q to the quantifier node, an arc labeled VB to the variable being bound,
an arc labeled R to the restriction, and an arc labeled S to the scope. Both the restriction and the scope
could be arbitrary propositions with the variable free. Thus, this was more general than the usual notion of
restricted quantification, which allows restriction only by class (a unary predicate). Restricted quantification

actually obviates most uses of IMPLIES.

Propositions containing either quantifiers or connectives were termed “deduction rules” because they act

like derived rules of inference in other inference schemes. Figure 3 shows the MENS representation of the
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Figure 3: MENS representations of “If a male is a child of someone, he is the son of that person” (Based on

[41, p. 519-520].)




deduction rule, “If a male is a child of someone, he is the son of that person.”

MENTAL was partially implemented in PL/I, and ran interactively on an IBM System/360. The imple-
mentation included “all the procedures for storing information into the data structure, as well as all those

for explicit retrieval and some of those for implicit retrieval [inference]” [41, p 512].

3.2.2 Kay’s Version

Although discussing the same project, Kay [12] gave a description of the semantic network of the MIND
system that differed in some details from that given above, and differed even more in the look of the 2D
notation. Figure 4 shows this notation for the representation of the information in the sentence “Jane saw
John hit Henry.” The arcs labeled TV pointing to node 4 are the independent statement flags mentioned
above. Note that Kay distinguished the proposition that John hit Henry from the act of John’s hitting

Henry, and made the latter the object of Jane’s seeing.

Instead of representing quantifiers explicitly, Kay used a Skolem function technique where free variables
were assumed to be universally quantified, and existentially quantified variables had an arc labeled F to the
universally quantified variables they depended on. For example, Figure 5 shows how he would represent the
rule, “Every boy owns a dog.” Notice that both the dog and the particular owning act are represented as

Skolem functions of the boy.

3.3 SNePS 79

When a revised version of MENS/MENTAL was implemented in Lisp, its name was changed to SNePS
(Semantic Network Processing System), and, when SNePS was later revised, the original version was retroac-

tively named SNePS 79 in honor of the date of publication of [45], the main reference for SNePS.

SNePS 79 had “three kinds of arcs: descending, ascending, and auziliary. For each relation represented
by descending arcs, there is a converse relation represented by ascending arcs and vice versa ...Auxiliary
arcs are used for hanging nonnodal information on nodes and for typing the nodes” [45, p 180]. Besides
base, variable, molecular, and pattern nodes, SNePS 79 had auziliary nodes, which “are connected to each
other and to other nodes only by auxiliary arcs. Auxiliary nodes do not represent concepts but are used
by the SNePS system or the SNePS user to type nonauxiliary nodes or to maintain a reference to one or

more nonauxiliary nodes” [:bid]. Additionally, there were temporary variable; molecular, and pattern nodes.
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Figure 4: The MIND semantic network representation of “Jane saw John hit Henry” as based on [12, Figures
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Figure 5: The MIND semantic network representation of “Every boy owns a dog” as based on [12, p 182-184].
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Figure 6: 2D notation of SNePS 79, showing various kinds of nodes and arcs. Based on [45, Figure 1].

Temporary molecular and pattern nodes “have no ascending arcs coming into them from the nodes they
dominate. Temporary nodes are not placed on any permanent system list and are garbage-collected when no
longer referenced. They are invisible to all the semantic network retrieval operations ... Temporary nodes
are used to build patterns of network structures, which can be matched against the network but do not
match themselves” [45, p 181]. Figure 6 shows various kinds of nodes and arcs. In that figure, the arcs
labeled MEMBER and CLASS are descending arcs, those labeled MEMBER- and CLASS- are ascending arcs, and
those labeled :VAL, :VAR, and :SVAR are auxiliary arcs. The nodes MOBY-DICK and WHALE are base nodes,
V1 is a variable node, M1 is a molecular node, P2 is a pattern node, Q1 is a temporary variable node, T2 1s a
temporary pattern node, and X, Y, and T are auxiliary nodes. All variable nodes in the network have : VAR
auxiliary arcs to the auxiliary node T. Pattern nodes have :SVAR auxiliary arcs to the free variable nodes
they dominate. These auxiliary arcs and nodes are not normally shown in SNePS 79 diagrams. Neither
are ascending arcs, since there is an ascending arc for every descending arc except when it would go to a
temporary node. The SNePS 79 user could name the ascending arc anything, but we typically used the

name of the descending arc with “~” appended.

In SNePS, we no longer represented quantifiers and logical connectives explicitly as nodes. Instead, a
quantifier was represented as an arc from the node representing the scope of quantification to the node

representing the bound variable, and logical connectives were represented implicitly by particular structures
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of arcs emanating from the node representing the non-atomic formula. The logical connectives used in SNePS

79 all took one or two sets of propositions as arguments. They are:

or-entailment: {A4,,... A, }V— {C1,...,Cp,}is true just in case each A; entails each C;. It is represented

by an ANT arc to each A; and a CQ arc to each Cj.

and-entailment: {4,,..., A, }A— {C4,...,C}} is true just in case each Cj is entailed by the conjunction

of all the A;. It is represented by an &ANT arc to each A; and a CQ arc to each Cj.

and-or: , )O(Z:{Pl, ..., P,} is true just in case at least ¢ and at most j of the P are true. It is represented by
a MIN auxiliary arc to the auxiliary node i, a MAX auxiliary arc to the auxiliary node j, and ARG arcs

to each of the Ps.

thresh: ,0,{P;,..., P,} is true just in case either fewer than i of the P are true, or else they all are. Tt is

represented by a THRESH auxiliary arc to the auxiliary node i, and ARG arcs to each of the Ps.

The Universal (Existential) Quantifier was represented by an arc labeled AVB (EVB) from the node representing
the scope of the quantifier to the variable node being bound. Restricted quantification was eliminated because

it was felt to be unnecessary, an opinion since reversed.

SNIP [20, 42, 53], the SNePS Inference Package included as a part of SNePS 79, implemented the
elimination rules for all of the quantifiers and connectives (deriving either a positive or a negative proposition),
and the introduction rule for and-or. SNIP could use any rule either for backwards chaining, or for forward

chaining, depending on whether the user asked a question or added new data (see [52]).

Later, the numerical quantifier (see [44]), path-based inference (see [43, 61, 50]), function nodes (see [47]),
and default rules (see [46] and [54, p 285-287]) were added. The numerical quantifier is a way of storing
and reasoning with statements of the form “Between 3 and 5 people are in the meeting” or “Every person
has exactly one mother and exactly one father.” Path-based inference 1s a way of specifying and using rules
that infer an arc between two nodes from the existence of a path of arcs between those two nodes, and
allows inheritance rules to be specified. Function nodes were a form of procedural (semantic) attachment,
where the instances of a proposition were computed rather than being inferred, and where forward inference
could trigger action. Default rules were representing by allowing default consequences on and-entailment
and or-entailment rules, and were implemented by having SNIP try to derive the negation of the default

consequent, and assert the consequent only if the negation were not derivable.

13
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Figure 7: A SNePS 79 representation of “Jane believes that John didn’t hit Henry, but he did,” based on
[45, Figure 17]

Since )OG{P} means the assertion of P, the independent statement pointer was no longer needed.
Instead, every propositional node (a molecular node representing a proposition) with no descending arc
coming into it was taken to represent a proposition asserted in the network (believed by the cognitive agent).
For example, Figure 7 shows the SNePS 79 representation of “Jane believes that John didn’t hit Henry, but
he did,” using the representation of atomic propositions used in [45]. Node M1 represents the proposition
that John hit Henry, node M2 uses and-or to represent the proposition that John didn’t hit Henry, while node
M4 uses and-or to represent the proposition that, indeed, John hit Henry. Node M3 represents the proposition
that Jane believes the proposition represented by node M2. The technique whereby the asserted nodes are
precisely the non-dominated nodes specifies that the cognitive agent believes the propositions represented

by nodes M3 and M4.

In [45], it was explicitly stated that one could reuse a molecular node, as node M1 is being used both by

node M2 and node M4, or one could duplicate it by having another node with the same set of arcs to the same
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set of nodes. Later experience and thought convinced us that such node duplication should not be done, but

SNePS 79 never enforced that decision.

SNePS 79 was implemented in a series of dialects of Lisp running on a series of different computers at

Indiana University and SUNY at Buffalo.

3.4 SNePS 2.0

SNePS 2.0 was a complete redesign and reimplementation of SNePS in CoMMON LIsP using an abstract
data type approach explicated in [21]. It also incorporated theoretical decisions that had been made during

experiments with SNePS 79. Some of the prominent differences of SNePS 2.0 from SNePS 79 were:

e Auxiliary nodes and function nodes were eliminated as not making conceptual sense. Function nodes

are being replaced by a new theory of acting [13, 14, 51].

e An assertion tag was added to each node. The assertions of the system (beliefs of the cognitive agent)
were now the set of nodes with the assertion tags set on. This eliminated much use of the and-
or assertion operator, which had the additional problem of it’s not being clear what the conceptual
difference was between, e.g., nodes M1 and M4 in Figure 7. Figure 8 shows the Sneps 2.0 version of

((|77

Figure 7. Asserted nodes are indicated by their identifiers being printed with appended. Because
of the elimination of auxiliary nodes, the parameters of the and-or are now regular nodes, but this will

be changed in the future.

e Temporary nodes were eliminated, since an unasserted permanent node could be used to represent a

proposition the cognitive agent is contemplating.

e The system will not build a new node that dominates the same structure as an already extant node,

thus enforcing the Uniqueness Principle.

e The Unique Variable Binding Rule, according to which two variables in one rule cannot be instantiated

to the same term (see [48]), was implemented and enforced by SNIP 2.0.

e The Universal Quantifier is only supported if on a proposition whose main connective is one of the
entailments, thus enforcing a kind of restricted quantifier. (The Existential Quantifier has not yet been

reimplemented.) The arc used to represent the Universal Quantifier is FORALL instead of AVB.
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Figure 8: The Sneps 2.0 version of Figure 7. Asserted nodes are indicated by “!” appended to their

1dentifiers.

16



e Thresh was given an additional parameter. n@g{Pl, ..., Py} is true just in case either fewer than i or

more than j of the P are true, The arc THRESHMAX goes to j.

e Auxiliary arcs were eliminated. Ascending arcs are no longer discussed—they are just considered to

be following descending arcs backwards.

e Default consequences, the Existential Quantifier, and the Numerical Quantifier were not yet reimple-

mented.

3.5 SNePS 2.1

SNePS 2.11s SNePS 2.0 with the inclusion of SNeBR, the SNePS Belief Revision System [19]. The significance
of this was discussed above in Section 2. In brief summary, the assertion flag was replaced by a pointer to
the context in which the proposition is either an hypothesis or a derived proposition, so the appearance of

the “1” suffix becomes dependent on the current context, which can be changed by the user.

If a contradiction ever arises in SNePS 2.1, by the assertion of a proposition and its negation in the same

context, the system will engage the user in a dialogue to identify the culprit and remove it from the context.

SNePS 2.1 can use the hypothetical reasoning facilities of SNeBR [17] to implement the entailment

introduction rules and the rule of Universal Generalization.

4 Examples of Use

4.1 “Standard Tricky” Example

Probably because so much linguistic work was done by missionaries working to translate the Christian Bible
into “native” languages, the Christian “Lord’s Prayer” is often taken to be a “standard tricky” example of
linguistic analysis. In this section, we show a possible representation of that example using SNePS/CASSIE

case frames. For those unfamiliar with it, one version of the “Lord’s Prayer” is the following:

Our Father which art in heaven,
Hallowed be thy name.

Thy kingdom come.

17



Thy will be done in earth, as it is in heaven.
Now, CASSIE is not yet a poet, so let us instead consider the following, more prosaic, version:

Our Father, who is in heaven,
[T pray that] your name [will] be hallowed,
[T pray that] your kingdom [will] come,

[T pray that] your will [will] be done on earth [in the same way that] it is [done] in heaven.

Note that in this version we have interpolated some phrases to clarify (or make more understandable) the
syntax. Clearly, some of these interpolations are, in fact, interpretations. An even more streamlined version,

which is the one we choose to represent, is this:

I pray that our Father (who is in heaven)’s name will be hallowed, kingdom will come, and will

will be done on earth in the same way that it is done in heaven.

The representation is shown in Figure 9, and a key to the figure is given in Figure 10. The representation
is incomplete: we have used the linguist’s triangles to hide the structure of node m16, about which we shall
say more, and there would also be rules such as those in Figure 11. Also, the representation of ‘in heaven’is a
vastly oversimplified version of the representation described in Yuhan (forthcoming). Yuhan’s theory would

interpret the sentence ‘My Father is in heaven’ by a semantic network containing the following information:

Due to the existing act of my Father,

the Figure Object, individual b2

where

b2 is the Father of bl

and

b2 is named Jehovah

was BE-LOCated

at a place that has a Spatial Relation of “in”
to the Ground Object, individual m8

where m8 1s named heaven.

In Figure A, we have represented the phrase ‘thy will be done on earth as it is in heaven’ as if it were

interpreted to mean “the manner in which thy will is done on earth be the same as the manner in which

18



Figure 9: SNePS/CASSIE representation of the Lord’s Prayer.
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Figure 10: Interpretation of the nodes in Figure 9.
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Figure 11: Sample rule node for Lord’s Prayer network: For all v1, v2, v3, if v3 is a v2 of v1, then v3 is a
v2.

thy will is done in heaven” (and we have omitted the details of the representation of “the manner in which
thy will is done (at place X)”). There are a myriad of hermeneutic, representational, and methodological
issues here. On the hermeneutic side, there is the question of how best to interpret the original phrase. For
instance, the interpretation we have outlined is that the phrase asserts an equivalence. But that loses a

certain asymmetry in the original. Perhaps a better alternative would be one of the following:
1. ... that all properties of the way in which our Father’s will is done in heaven be properties of the way
in which 1t is done on earth.
2. ... that Yz[z is our Father’s will in heaven —  is our Father’s will on earth]
3. 1t is the case that our Father’s will is done in heaven, and I pray that it be done on earth, and I pray

that {one of the above).

But this leads to the methodological issue, which is the most important: it is not the job of the knowledge-
representation researcher to do Biblical exegesis. Once an interpretation is chosen, however, the KR re-

searcher can decide how best to represent it. Perhaps it can be represented using already existing case
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frames; but perhaps new case frames, and attendant rules characterizing their inferential behavior, need to

be developed (with the help of linguists and philosophers).

5 Some Current Uses of SNePS

In this section, we briefly summarize some current research projects that are using SNePS.

5.1 Planning and Acting.

SNACTor, the SNePS acting system [14, 49, 51, 60], is being developed to model in SNePS rational cognitive
agents who can also plan and act. The modeled agent should be able to understand natural language; reason
about beliefs; act rationally based on its beliefs; plan; recognize plans; and discuss its plans, acts, and
beliefs. Doing all these tasks in a single coherent framework poses severe constraints. We have designed and

implemented intensional propositional representations for plans.

We treat acts and plans as mental objects. This enables the modeled agent to discuss, formulate, use, rec-
ognize, and reason about acts and plans, which is a major advance over operator-based descriptions of plans.
Operator-based formulations of actions tend to alienate the discussion of operators themselves. Operators
are usually specified in a different language from that used for representing beliefs about states. Moreover,
plans (or procedural networks) constructed from these operators can only be accessed by specialized pro-
grams (critics, executors) and, like operators, are represented in still another formalism. Our representations
for acts, actions, goals, and plans build upon and add to the intensional propositional representations of
SNePS. This framework enables us to tackle various tasks mentioned above in a uniform and coherent fash-
ion. Figure 5.1 shows an example of our representations of plans in SNePS. The node M19 represents the
proposition “M18 is a plan to perform the act represented by M17.” M17 represents the act of performing
the action “stack” on A (which is represented by node M15) and B (which is represented by node M12). M18
is the act (“snsequene”) of sequencing two acts M11 followed by M14. M11 represents the act of performing
“put” on B and the TABLE, and M14 is the act of performing “put” on A and B. Thus M19 is believed by

the agent as “A plan to stack A on B is to first put B on the table and then put A on B.”

Beliefs are stored as SNePS propositions in the agent’s belief space (called a SNeBR context, see [19]).
SNeBR (the SNePS system for Belief Revision), an assumption-based truth maintenance system [18, 17, 19],

ensures that the agent’s belief space 1s always consistent. In SNACTor, all interaction with the agent is done

22



snsequence

lex

objectl

M18

plan

A

action /’_\\ action

object2

/- T\ objectl

objectl

M11 M M13 <
lex
object2
@ object
lex
TABLE

M14 >

\J

object2

lex

QiQ!

act

M17

action

lex

stack

Figure 12: A representation for, “A plan to stack A on B is to first put B on the table and then put A on B”
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using a domain-specific (blocks-world) natural language component. Sentences are parsed by a grammar
(written in an ATN) and translated into SNePSUL (the SNePS User Language) commands that form beliefs
in the agent’s belief space. World-model rules for reasoning in the agent’s belief space are also translated

and represented as agent’s beliefs.

The system is currently being advanced in several directions. See [13, 15] for further information.

5.2 Combining Linguistic and Pictorial Information.

There are many situations where words and pictures are combined to form a communicative unit; examples
in the print media include pictures with captions, annotated diagrams, and weather charts. In order for a
computer system to synthesize the information from these two diverse sources of information, it 1s necessary
to perform the preliminary operations of natural-language processing of the text and image interpretation
of the associated picture. This would result in an initial interpretation of the text and image, following
which an attempt at consolidation of the information could be made. Although vision and natural-language
processing are challenging tasks, since they are severely under-constrained, natural-language processing
can more easily exploit constraints posed by the syntax of the language than vision systems can exploit
constraints about the physical world. This fact, combined with the observation that the text often describes
salient features of the accompanying picture in joint communicative units, leads to the idea of using the
information contained in the text as a guide to interpreting the picture. This research focuses on a method
of extracting visual information from text, which results in a relational graph describing the hypothesized
structure of the accompanying picture (in terms of the objects present and their spatial relationships). The
relational graph is subsequently used by a vision system to guide the interpretation of the picture. A system
has been implemented that labels human faces in a newspaper photograph, based on information obtained
from parsing the caption. A common representation in SNePS is used for the knowledge contained in both
the picture and the caption. The theory is general enough to permit construction of a picture when given

arbitrary descriptive text (without an accompanying picture).

Newspaper photographs have all the elements required for a true integration of linguistic and visual
information. Accompanying captions usually identify objects and provide background information which
the photograph alone cannot. Photographs, on the other hand, provide visual detail which the captions
do not. Newspaper captions often identify people in a picture through visual detail such as “Tom Jones,

”

wearing sunglasses ...”. In order for a computer system to be able to identify Tom Jones, it is necessary
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to understand the visual implication of the phrase “wearing sunglasses”. The face satisfying all the implied

visual constraints could then be labeled accordingly.

The system uses a three-stage process to identify human faces in newspaper photographs. Only those
photographs whose captions are factual but sometimes incomplete in their description of the photograph
are considered. In the first stage, information pertaining to the story is extracted from the caption, and a
structure of the picture in terms of the objects present and spatial relationships between them is predicted.
The information contained in this structure would be sufficient for generating a picture representing the
meaning of the caption. Using this information to label faces in an existing picture, however, entails further
processing. The second stage, which constitutes the vision component, calls on a procedure to locate human
faces in photographs when the number of faces and their approximate sizes are known. Although the second
stage locates faces, it does not know whose they are. The last stage establishes a unique correlation between
names mentioned in the caption and their corresponding areas in the image. These associations are recorded
in a SNePS network and enable us to selectively view human faces as well as obtain information about them.

Input to the system 1s a digitized image of a newspaper photograph with a caption, as in Figure 14.

Figure 13 illustrates the partial output of the parser on the caption of Figure 14. It postulates that
four humans, namely Joseph Crowley, Paul Cotter, John Webb, and David Buck, are present in the picture
(nodes m38, m42, m46, and m50). Furthermore, it postulates that Joseph Crowley appears above the
other three in the picture (since he is “standing”), as represented by nodes m51, m52, and m53. The left to
right ordering of the remaining three members is represented by the “left-of” relationship in nodes m54 and
mb55. Factual information obtained from the caption (m31) is separated from derived visual information
(b12). The hypothesized presence of an object in the picture is represented by a node (e.g., m38) with
three arcs: COLLECTION, referring to the visual model it is part of; TYPE, indicating whether the object
is explicitly mentioned in the caption or inferred to be present; and MEMBER, pointing to a detailed model
of this object (e.g., b10). A node such as m37 provides the link between the visual model of an object and
the proper name it is associated with (in this case, ‘Paul Cotter’). Hypothesized spatial relations between
objects are represented by a node (e.g., m52) with 3 arcs pointing to (a) the type of spatial relation and (b)
the nodes representing the two arguments to this binary relation. The system returns a labeling of parts of
the image corresponding to the faces of the people mentioned in the caption, as in Figures 15a and b. See

[62] and [63] for further details.
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Figure 13: Partial output of the parser on caption of Figure 1j.
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Figure 14: A newspaper photograph with caption “Wearing their new Celtics sunglasses are Joseph Crowley,
standing with pennant, and seated from left, Paul Cotter, John Webb and David Buck.”

5.3 Graphical Deep Knowledge.

During work on the interface of the Versatile Maintenance Expert System (VMES; cf. [56, 57]), a theory of
Graphical Deep Knowledge was developed. This representation is not pixel-oriented but combines iconic,
meaningful, graphical primitives with propositional information about classes, attributes, positions, inheri-
tability, reference frames, etc. Of special interest in this research is the use of part hierarchies. In [9, 11], a

system of three different part hierarchies was developed, namely real parts, subassemblies, and subclusters.

This system of part hierarchies was extended in [10]. In this latest version, parts may either be additive,
constituting, or replacing. These different part hierarchies differ in their behavior when a graphical represen-
tation containing a small amount of detail is extended to contain a large amount of detail. An additive part
is simply added to the previous picture. A set of replacing parts forces the removal of the original picture
and replaces it with a diagram of all its parts. Finally, constituting parts describe an object that has no
form icon of its own. In this case, there is no distinction between the two pictures. For more details of this
analysis and for details of the SNePS representation of these different part hierarchies, the reader is referred

to [10].
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Figure 15: (a) output of system when asked to display Joseph Crowley (b) output of system when asked to
display Paul Cotter
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Figure 16: The ship.

The power of Graphical Deep Knowledge is derived from the fact that most of the graphical information
is integrated in the normal propositional representation mode of SNeP§S, so that it is possible to perform
reasoning tasks about the graphical appearance of the represented objects. On the other hand, because
the system generates diagrams from the propositional representation (and the icons), most changes to the
knowledge state of the system can be immediately reflected in changes of the graphical appearance of the
described objects on the screen. Graphical Deep Knowledge therefore permits the easy integration of natural

language processing and graphics, because a common knowledge representation is used.

Figure 16 shows an example from [9]. This figure was generated from a knowledge base containing the
SNePS network shown in Figure 17. This picture of the network, in turn, was generated according to natural

language commands (minimally edited for better understanding).

The structure under m1 asserts that ship-1 is a ship in the functional display modality. (Objects can be
displayed in different modalities, e.g., functional or structural. For details, see [9].) The structure under m2
asserts that a ship has (in the functional modality) the form ship-form. The node ship-form has a link to a

LISP function that, if executed, draws an icon that looks like a ship.

The node m12 defines a coordinate system that is Cartesian, is on the screen, 1s called system-1, and
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Figure 17: Knowledge base required to generate Figure 16
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has two axes called s-x and s-y. Node m7 and all the nodes that are logically under it (even if they are
drawn above it!) define the position of ship-1 in the coordinate system system-1 as (200 pixels, 300 pixels)
in the directions defined by s-x and s-y. The system makes the simplifying assumption that any “first axis”

specified by the user i1s parallel to the screen x axis.

Node m3 and the nodes (logically) under it assert that ship-1 is faulty. Node m5 and the nodes (logically)
under it assert that faultiness is expressed by a rotation of 180 degrees. This is the reason why the ship is
displayed upside down. The node rotate-jg, similar to the node ship-form, has a functional attachment

that rotates an icon by the specified angle.

It should be pointed out that except for the special meaning of the node SCREEN and for the predefined
rotation function, all information in this network has been created on the fly, either by natural language
or by a simple, built-in, icon editor. Display requests addressed to this system in natural language are not

parsed into a network representation, but immediately executed, resulting in a figure like Figure 16.

5.4 Knowledge Based Lexicons.

Al systems that involve natural language usually have at least three different knowledge bases: one for
domain information, one for language rules, and one for information about words. Especially in comparison
with domain information, knowledge about words tends to be isolated, fragmented, and impoverished. It
is isolated, in that much of the information lies in specialized structures to which the system’s reasoning
mechanisms have little or no access, and which must be manipulated by specialized (and usually very
limited) algorithms. Tt is fragmented, in that most on-line lexicons represent primarily syntactic information.
Semantic information, when it 1s present at all, is usually in a separate representation scheme, accessible by
different techniques. Information which requires both syntax and semantics for its representation usually
falls through the cracks, as does information which is at least in part semantic, but which is less about the
world than about the words. It is impoverished, in that all kinds of information tend to be represented
sketchily, with little apparent concern for giving systems the kinds of information about words to which

humans have routine access.

The work discussed in this section involves developing representation schemes for lexical information, in
which all lexical information is represented in a single, unified SNePS network, accessible to the same retrieval
and inference mechanisms as domain information. The lexicons under discussion are being built using semi-

automated techniques from machine readable dictionaries; the representation is intended to support medium
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scale (semi-realistic) lexicons for a wide range of purposes. (Full, realistic sized lexicons require substantial

back-end support because of problems of scale.)

This research is based on the linguistic theory of the relational lexicon [1]. Lexical relations provide
a formal mechanism for expressing relations among concepts. Traditionally, lexical relations have been
approached as a means for representing semantic information about words. Our approach extends the
theory of lexical relations to embrace syntactic and morphological as well as semantic relations. The resulting
hierarchy of lexical relations may be thought of as a kind of structural primitives, which represent cognitive
relations among lexical items. Information about the lexical relation hierarchy is represented in a SNePS
network. Information about specific words is integrated into the hierarchy network, resulting in a large
network containing a (potentially dynamic) lexicon, with syntactic, semantic, and morphological information
all readily available. The resulting representation distinguishes among homonym labels, words, strings
representing word spellings, and word senses, allowing the kinds of reasoning about words that people
routinely make. The representation used has several unusual features, among them the clear importance of

path-based inference.

The relational hierarchy 1s a fairly straightforward instance of a hierarchical knowledge structure. At the
present level of development, the most common hierarchical relationships involved are most obviously viewed
as set membership and subset/superset relations. The one trap to avoid lies in representing the hierarchical
information in the same way as one would represent, for instance, the information (derived from whatever

source, but construed as part of the lexicon) that dogs are mammals.

There 18, however, a relatively simple problem of recursion in representation. Since lexical relations are
themselves objects of knowledge, within the SNePS formalism, they should be represented by nodes, not
arcs. Now say that we represent the relation between ‘Mt. Rushmore’ and ‘mountain’ by something like
an argl-arg2-rel frame, with a rel arc to a node called something like ‘member’; which represents the lexical
relation which holds between ‘Mt. Rushmore’ and ‘mountain’. Now how do we say that the lexical relation
‘member’ belongs to the class of taxonomic lexical relations? If we try to use the same ‘member’ node as

the first argument and also as the relation, we wind up with a pathological proposition node.

The reason this is a problem, and not a blunder, is that the lexical relation is not really the same thing
that holds between itself and its parent class. The problem here is one of distinguishing metalevel information
about the lexical relation hierarchy from object level information which we use it to represent. We can see
the importance of distinguishing them if we look at the consequences of trying to use path-based inference to

implement inheritance down hierarchical subtrees. When we construct a path-based rule to make all object
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Figure 18: Representation of Hierarchical Facts.

property markers behave alike in some respect, we don’t want to have to filter for instances of membership

like ‘Mt. Rushmore’ to ‘mountain’; or of subset like ‘dog’ to ‘mammal’.

Figure 5.4 shows the SNePS representation for a fragment of the lexical relation hierarchy. Throughout
the examples, we adopt several node naming conventions for simplicity. Node names in all capitals represent
members of the lexical relations hierarchy. Proposition nodes are numbered beginning with m1 as in other

SNePS networks. Other node names in lower case represent word sense nodes.

Information about words takes several forms. The first, and simplest, is lexical relation instances. This
information encodes everything from taxonomic classification relations (including relations like TAXON,
which closely corresponds to the traditional IS-A link, but also synonymy relations, antonymy relations, and
others) to generic role relations (for instance the Act/Actor relation, which holds, e.g., between “bake” and
“baker”) to morphological and syntactic relations such as the State/Verb relation which holds between a
nominalized verb and its verb. The second kind of information could be viewed as collapsed lexical relations,
and covers such relatively simple markers as part of speech (associated with sense nodes), alternate spellings
(relation between a headword node and a string node), and the like. The third reflects information about
the sense-subsense hierarchy. This is the familiar dictionary definition hierarchy, under which a word may

have more specific senses which represent refinements on more general ones.

We now integrate all three kinds of information about words into the hierarchy network in the obvious
way. Figure 5.4 represents a digested form of the information about some words related to the most common
sense of “sheep” as derived from definitions in Webster’s Seventh Collegiate Dictionary. Note that this sense

of “sheep” has a subsense, which covers only a single species. We have omitted all nodes and arcs above the
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Figure 19: Representation of Lexical Information.

sense level (i.e., headword and string nodes and their associated frames) for simplicity, and collapsed parts

of the lexical relation hierarchy (especially in nodes m4 and m5) to make the figure more readable.

The resulting lexicon can be used either as stand-alone support for some external activity (such as
automated query expansion for information retrieval) or as an integral part of the knowledge base for a

natural language system. For the second option, which is the more interesting, the remaining information in
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the knowledge base is integrated into the lexicon representation, with semantic information relating to senses
hanging off the appropriate nodes. The result is a knowledge base which not only has ideas and knows what
words are typically used to represent them (the effect of using something like lex arcs in a more traditional
SNePS-ish representation), but knows about those words and can reason on the basis of its knowledge. (More

detailed descriptions of this research are [7, 25, 24, 27], and [26].

5.5 Kinds of Opacity and Their Representations.

Examinations of referential opacity (the failure of certain linguistic contexts to be “transparent” to sub-
stitution of equivalents) have almost invariably focused on propositional attitudes, and even more specifically,
on belief sentences. This focus has obscured the fact that there are a number of other kinds of sentences
in which the logical-linguistic phenomenon of referential opacity occurs. In addition to the propositional

attitudes, which express an agent’s attitude towards some proposition or another, such as
(1) John believes that the Morning Star is blue,

there are other kinds of referentially opaque sentences. One of these is attributive adverbs, like quickly in
(2) John swam the river quickly.

We have proposed a new treatment of attributive adverbs as generating opacity resting on the general theory
of action proposed by the philosopher Donald Davidson [5], though he himself holds that such adverbs must

be excluded from his theory.

According to Davidson, a verb of action refers to an event, an act. In (2), John performed a certain act,
a swimming of the river. As far as swimmings of the river go, his swimming of it was quick. If the time it
took John to swim the river is compared to the times 1t has taken others to swim the river, John’s time was
among the fastest. John’s act of swimming the river may, however, also be described as a crossing of the

river. Thus, we may add the identity statement

(3) John’s swimming of the river is a crossing of the river.
But though his swimming is a crossing, it does not follow that

(4) John crossed the river quickly.

On the contrary, it is very likely that he crossed the river slowly. If the time it took John to cross the river

is compared to the times it has taken others to cross the river, which will perhaps include such modes of
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crossing as rowing, swinging (on a rope), and driving (on a bridge), John’s time would no doubt be among
the slowest. In other words, when we describe John’s act as a swimming, it is quick, but when we describe
it as a crossing, it is slow. If we accept that the one act cannot be both quick and slow, then the swimming
and the crossing cannot be identified with the act. In an intensional system, a natural approach to explore

is to treat the swimming and the crossing as different iniensional objects.

The intensional objects to be used in our representations are called aspects, which are reminiscent of
Frege’s senses [8]. Given a description, d, the Fregean sense associated with it is the meaning of d. The
aspect associated with d, however, is the result of conceiving of the thing d refers to as, or qua, a thing to
which the description d applies. Aspects are objects, albeit intensional, abstract objects. The general form
of an aspect is:

aspect := object, qua description true of the object

In [67] this intuitive notion of “qua” is replaced formally using Church’s A-abstraction [4].
The sentence containing an attributive adverb
(2) John swam the river quickly,
is understood as having the logical form

(5) There is someone bl named John, there is an action b2 that is a swimming,
and there 1s an object b3 that is a member of the class of rivers, such that
b1 is the agent of b2, and b2 has b3 as its direct object, and there is an

aspect al — b2, qua m1 — which is quick.
Assuming that John’s swimming of the river is the same event as his crossing of the river, and that
(6) John crossed the river slowly,
the representations of (2) and (6) are as in Figure 20

No inferences from the properties of an aspect to properties of the object the aspect is an aspect of, are
permitted. Thus, nothing is said to be both quick and slow, since a1 (i.e., b2, qua being a swimming) is a

different aspect from a2 (i.e., b2, qua being a crossing). (Details are in [67]; cf. also [68].)
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Figure 20: Representation of (2) and (6).

5.6 Representing Fiction in SNePS.

As part of the SUNY Buffalo Center for Cognitive Science’s project on Cognitive and Computer Systems for
Understanding Narrative Text, we are constructing a computational cognitive agent, Cassie, implemented
in SNePS, who will be able to read a narrative and comprehend the indexical information in 1t, specifically,
where the events in the narrative are taking place (in the world of the narrative), when they take place (in
the time-line of the narrative), who the participants in these events are (the characters in the world of the

narrative), and from whose point of view the events and characters are described [3, 38, 39].

In order to do this, Cassie has to be able to (1) read a narrative (in particular, a fictional narrative),
(2) build a mental-model representation of the story and the story-world, and (3) use that mental model
to understand and to answer questions about the narrative. To build the mental model, she will need
to contribute something to her understanding of the story. One contribution is in the form of a “deictic

center” —a data structure that contains the indexical information needed to track the who, when, and where.

Another contribution is background knowledge about the real world. For instance, if Cassie is reading
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a novel about the Civil War, she would presumably bring to her understanding of it some knowledge of
the Civil War, such as that Abraham Lincoln was the 16th president and was assassinated in 1865, even if
that information is not explicitly stated in the novel. The novel might go on to make other claims about
Lincoln, such as that he had a particular conversation with General Grant on a particular day in 1860 (even
if, in fact, they never talked on that day—this is a novel, after all). Such a claim would probably not be
inconsistent with anything Cassie antecedently believed about Lincoln. But some claims in the novel might
be thus inconsistent, e.g., if she read that Lincoln was re-elected to a third term in 1868. So Cassie has to be
able to represent the information presented in the narrative, keep it suitably segregated from her background
knowledge, yet be able to have information from her antecedent beliefs “migrate” into her model of the story
world as well as have information from the story world “migrate” back into her store of beliefs about the

real world.

There have been a number of theories in philosophy about the nature of fictional objects. All of these
are ontological theories concerned with such questions as: What are fictional objects? How can they have
properties? How are they related to non-fictional entities? However, for the purposes of our project, we
need to be more concerned with “epistemological” or processing/computational/interpretive issues: How
does a reader understand a (fictional) narrative? How does a reader decide whether and to what extent it
1s fictional? How does a reader construct a mental model of the story world? How does a reader represent
fictional entities and their properties? How does a reader integrate his or her knowledge of the real world
with what s/he reads in the narrative? And so on. Some of these are, indeed, ontological issues, but
they are what we have elsewhere termed issues in “epistemological ontology” [34]: Corresponding to the
purely or metaphysically ontological question, “What are fictional objects?”, we ask the epistemologically
ontological question, “How does a cognitive agent represent fictional objects?”. And corresponding to the
purely ontological question, “How are properties predicated of fictional objects?”, we ask the epistemologically

ontological question, “How does a cognitive agent represent the properties of fictional objects?”

In order for Cassie to read a narrative, the knowledge representations she should construct will include a
story operator (like [16] or [64]), only one mode of predication of properties to (fictional) objects (like [28]),
and only one kind of property (like [22, 23]). Tt must be kept in mind that all entities represented in Cassie’s

mind are just that—entities in her mind—not entities some of which are real and some of which are fictional.

The story operator will set up a “story space” that is formally equivalent to a belief space (cf. [35, 55,
65]). Tt will allow Cassie to distinguish her own beliefs about London from (her beliefs about) claims made

about London in a story in precisely the same way that belief spaces allow Cassie to distinguish her own
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beliefs about Lucy from her beliefs about John’s beliefs about Lucy (cf. [35, 54]).

But how should this be handled? Consider Figure 21. Suppose that one of Cassie’s background beliefs is
that Lincoln died in 1865 and that she reads in a narrative that Lincoln was re-elected in 1868. There is a
processing problem: Cassie is faced with an inconsistency. There are two solutions. First, the SNePS Belief
Revision system (SNeBR; [19]) can be invoked. The detection of the inconsistency will cause a split to be
made into two (consistent) contexts. But note that the net effect of this is to embed the second statement
(the re-election in 1868) in a story operator. So why not start with a story operator in the first place? This

is the second solution, as shown in Figure 22.

But now let’s complicate the data a bit. Consider Figure 23. Suppose that Cassie’s background beliefs
include both that Lincoln was the 16th president and that Lincoln died in 1865, and suppose once again
that Cassie reads in a narrative that Lincoln was re-elected in 1868. The processing “problem” here (it is
not really a problem) is that we want the first of Cassie’s two background beliefs to “migrate into” the story
world. The reason that this is not a problem is that those first two background beliefs are Cassie’s beliefs
and the third is not. The first one (that Lincoln was 16th president) is both believed by Cassie and is in the

story world.

Consider Figure 24. If Cassie knows that she is reading a narrative, we want it to be the case that she
believes (1) (that Washington was the first president), and we want both (1) and (2) (that he chopped down
the cherry tree) to be in the story world. How do we accomplish this? By starting with a story operator on

(2). In general, we will put a story operator on all narrative predications.

But then we face two problems: Background beliefs of the reader are normally brought to bear on
understanding the story, as we saw in Figure 21 and Figure 22 (cf. [38]). And we often come to learn (or,
at least, come to have beliefs) about the real world from reading fictional narratives. Thus, we need to have

two rules:

(R1) Propositions outside the story space established by the story operator (i.e., antecedently believed by

the reader) are assumed, when necessary, to hold within that story space by default and defeasibly.

(R2) Propositions inside the story space are assumed, when necessary, to hold outside the that story space

by default and defeasibly.

Some comments: The “when necessary” clause i1s there to prevent an explosion in the size of belief and

story spaces; the migrations permitted by these two rules would only take place on an as-needed basis for

39



Figure 21: Example la
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Figure 22: Example 1b
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Figure 23: Example 2
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Figure 24: Example 3
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understanding the story or for understanding the world around us. The “by default” clause is there for
obvious reasons: we wouldn’t want to have Lincoln’s dying in 1865 migrate into a narrative in which he is
re-elected in 1868. The “defeasibly” clause is there to undo any damage that might be done at a later point
in the narrative if such a migration had taken place, innocently, at an earlier point. Rule (R1) aids in our
understanding of the story. Rule (R2) allows us to enlarge our views of the world from reading literature,

while also allowing us to segregate our real-world beliefs from our story-world beliefs.

In the Examples, we have used the linguist’s triangle to hide irrelevant details, but it is worth showing

how the story operator looks in detail. This is shown in Figure 25.

For more details, see [36] and [37].

5.7 Natural Category Systems.

We have developed representations for natural category systems based on a Roschian model of categories
that has been extended to accommodate the recent categorization research of Barsalou (1982, 1987, 1988),
Keil (1987), Medin (1986, 1987), Murphy (1986, 1988), Neisser (1987), and Lakoff (1987). We take issue
with the assumption, implicit in most artificial intelligence (AT), natural language processing (NLP) systems
that generic concepts can be viewed simply as collections of attributes. Rather, richer representations are
needed to explain conceptual coherence and the richness of conceptual structure (Barsalou 1988; Lakoff 1987;
Keil 1987; Medin 1987; Murphy 1987, 1988). I.e., categories are further structured by deeper conceptual
relations and organized by core principles; lists of attributes fail to capture interproperty (intraconcept) and
interconcept relations. We believe that these deeper conceptual relations encode commonsense knowledge

about the world necessary to support natural language understanding.

Our system uses default generalizations to represent facts about the typical exemplars or members of
a category. Thus, a basic level category in our semantic network is; in part, a collection of default gener-
alizations about part/whole structure, image schematic structure, additional percepts, and functional and
interactional properties. Figure 26 shows the default rule that can be paraphrased as For all z, «f = s a car,

then typically © has an engine or more simply as Typically, cars have engines.

We build many such default generalizations about the basic level category car; i.e., generalizations about
typical parts and other attributes. It may seem cumbersome to build such a default rule to represent a generic
sentence such as: cars have engines; why not just build a prototypical car that has an engine? Although

we want to capture prototype effects in our representations, we agree with Rosch (1978) and Lakoff (1987)
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Figure 25: The story operator
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Figure 26: The following defines a path to find all the parts of basic-level objects:
(def-path parts (compose arg2- argl part- whole forall- ant class))
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Figure 27: Engines are interior parts of cars

that the existence of these effects merely indicates that prototypes must have some place in theories of

representation, processing, and learning of categories.

As people’s knowledge increases, they come to reject mere collections of surface attributes and other
typical features as being adequate to specify concepts (Barsalou 1988; Keil 1987; Medin & Wattenmaker
1987; Murphy & Medin 1985). Our current hypothesis is that basic level categories start out as percep-
tual categories; in this stage of development the knowledge associated with categories consists of default
generalizations about surface parts and other perceptual attributes. As learning and development proceed,
additional conceptual relations based on theories and causal mental models further structure these categories

and attributes. I.e., our knowledge becomes organized by core principles.

We build additional default rules for these “deeper” conceptual relations. Thus, in addition to part-whole
relations (m5 in Figure 26) and relations about other percepts, we structure basic level categories such as car
with enabling, functional, and spatial relations such as those shown in Figures 27-29. (We have not shown
the entire default rules, just the additional conceptual relations. I.e., m8, m9, and m11 would replace m5,
the part-whole relation, in the default rule of Figure 26, creating three additional, similar default rules.)
Figure 27 shows a spatial relation that further structures the parts of car, which can be paraphrased as
engines are inside (or interior parts) of cars. We structure the external parts of car similarly. Figure 28
is used to further structure or cluster mechanical parts of cars, such as the brakes and engine, and can
be paraphrased as engines are mechanical parts of cars (together with m7). Figure 29 shows an enabling
relation: engines enable cars to run/go. Thus, in our system, there will be many assertions linking car

and engine: the knowledge associated with a basic level category such as car is highly interconnected and
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Figure 28: Engines are mechanical parts of cars

Figure 29: Engines enable cars to run
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organized by spatial, temporal, causal, explanatory, and enabling relations.

In our system, concepts are not invariant structures retrieved intact from long-term memory (LTM), but
rather are constructed in working memory (WM), tailored to a particular linguistic context on a particular
occasion. l.e., different information associated with a category in LTM is incorporated in the temporary
concept constructed in WM in different contexts. Categorizing an entity provides access to a large amount
of information; however, only a small subset of the information associated with a category in LTM is
incorporated in a temporary concept constructed in WM. Category knowledge in our system is relatively
unorganized, interrelated knowledge that can be used to construct temporary concepts in WM, appropriate

to the current task and context.

When a new individual identified by its basic level name (e.g., a car) or a generic basic level category
(e.g., the type car) is encountered in input, the context-independent and context-dependent satellite entities
implicitly evoked by hearing/reading the category name are placed in WM. We believe that these reflex, or
subconscious, inferences are made at the time of reading/hearing the central basic level category name. The
SNePS path-based inference package provides the subconscious reasoning that is required for implicit focusing
of satellite entities. The definition of appropriate paths in the network enables the automatic retrieval of
the relevant satellite concepts of basic level concepts. Thus, we use the additional structure provided by
the intraconcept and interconcept relations, defining paths in the network that retrieve external parts after
processing input such as Lucy washed her car, interior, mechanical parts after processing input such as The
mechanic repaired the car, and enabling satellite entities (e.g., a mortgage) after processing Lucy bought a

new house.

For additional information on this topic, see [29, 30, 31, 32].

6 Current Availability and Requirements

SNePS 2.1 is implemented in Common Lisp, and has run on a variety of platforms, including Symbolics Lisp
Machines, Texas Instruments Explorer Lisp Machines, SUN workstations, an Aliant Multimax, and DEC
VAXes running VMS.

SNePS 2.1 is currently available via a license agreement with the Research Foundation of State University
of New York. There is a minimal handling fee for non-profit research labs and educational institutions. The

license fee for for-profit organizations in negotiable. For information and a copy of the license agreement,
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send name, address and phone number to the first author of this article.
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