Reprinted from PROCEEDINGS OF THE ANNUAL RELIABILITY AND

MAINTAINABILITY SYMPOSIUM, Philadelphia, PA, January 27-29, 1987

Knowledge Based Modeling of Circuit Boards?

Mingruey R. Taie; SUNY at Buffalo;

James Geller; SUNY at Buffalo;
Sargur N. Srihari; SUNY at Buffalo;

Stuart C. Shapiro; SUNY at Buffalo;

Buffalo

Buffalo

Buffalo

Buffalo

Key Words: Maintenance, Fault Diagnosis, Expert System, Device Modeling, Device Represen-
tation, Graphical Knowledge, Circuit Board Analysis, User Interface, Knowledge Based Graph-

ics, Knowledge Representation.

Abstract

This paper describes a maintenance expert system that has been designed
‘with a focus on applied knowledge representation. Two main points of
interest are described, the representation and reasoning mechanisms
necessary for diagnosis based on a deep model of a device, and the
representation for an integrated graphical user interface with limited
natural language capabilities. Device structure is represented in a
hierarchy of device types. Structural templates and instantiation rules
permit focused diagnostic reasoning using lazy instaptiation. Func-
tional description is procedurally attached to the declarative network
representation. Similarly, pieces of graphics code are attached to a
declarative representation of the graphical appearance of the device.

Introduction

The VMES research project is ainfed at the development of a ver-
satile maintenance expert svstem for digital circuit troubleshooting.
Theoretical and practical aspects of fault diagnosis, knowledge represen-
tation for system versatilitv. and knowledge-based graphical representa-
tion of target devices are being investigated.

VMES is designed to be versatile across a range of target devices in
the chosen domain (a class of digital circuits); across most of the possi-
ble faults; across different maintenance levels; and across a variety of
user interfaces. To achieve these wversatilities, the device-model-based
approach is followed. The device-model-based approach, as opposed to
the empirical-rule-based approach used by MYCIN [Shortliffe76a] for
medical diagnosis and by CRIB [Hartley84a] for computer hardware
fault diagnosis, is suggested to have advantages in knowledge awquis:
tion, diagnosis capability, and system generalization
[Davis83a, Davis84a, Geneseretha).

VMES is implemented in SNePS [Shapiro79a), the Semantic Net-
work Processing System, and has several modules: an expandable com-
ponent library as its knowledge base; an inference package (part of
SNePS) with diagnostic rules; an active database for diagnosis; a user
interface for intermediate users (engineers) to adapt VMES to new dev-
ices by incrementally updating the component library; and a multi-
media user interface for end users (technicians) to interact with VMES
for fault diagnosis. The architecture of VMES is shown in Figure 1.

Since a device-modei-based fault diagnosis system reasons directly
on the structure and function of a device and usually uses a simple
inference engine, the representation of the device is vital to system per-
formance. We use a hierarchical representation of knowledge to pro-
vide abstraction levels of devices. This allows a fault diagnosis system
to focus on either individual objects or on several objects at a time.

The knowledge base stores descriptions of all component types
used by the target devices. Objects which are parts of a device are
instantiated only when needed. A formalism for device representation
using instantiation rules and structural templates has been designed to
describe the structure, the function, the intended maintenance level, and
the test instruction of each component type to the knowledge base. The
basis of the inference engine is SNIP, the SNePS Inference Package. It
also includes an algorithm and diagnostic rules for carrying out the

diagnosis. The active database is created for each diagnosis to store
instantiated objects and their associated port values and states.

The multi-media user interface has menu, graphical, and limited

natural language capabilities. Most human dialogues about a technical
subject profit from the use of diagrams in addition to natural language
communication. For circuits, technicians typically use wire plans
which represent the function of a board, and structural diagrams which
show the physical layout of the components of the circuit. The most
natural way for a maintenance system to ask a user about the voltage
value at a specific location is to display the structural diagram of the
board and mark the position which is currently under focus, for
instance by highlighting it. While CAD systems with similar inter-
faces exist, they are typically based on data objects like points, lines, etc.
and do not store knowledge about visual properties of the domain
objects that they are dealing with. In our approach all information
necessary to display an object is stored as knowledge in a common
framework with the knowledge necessary for doing diagnosis.

In this way we have combined our work on the graphical inter-
face with more basic research in the representation of graphical
knowledge. Systems of knowledge-based graphics have been reported
in the literature by Zydbel et al [Zydbel8lal and by Friedell
{Friedell84a] By incorporating more and more knowledge into the
graphical interface we have attained a new level of graphics that we
want to refer to as Intelligent Machine Drafting.

Device Modeling

Compact representation is desirable for memory economy, diagnos-
tic efficiency, and system versatility. In observing that many parts of
an electronic device may have the same component type and thus show
the same function, we find that representing every detail of a device
will create unnecessary redundancy, which impairs system perfor-
mance and versatility. Instead of representing all objects explicitly,
VMES maintains an expandable component library, and objects are
instantiated as needed. Devices are modeled hierarchically, and objects,
which may be the device itself or its sub-parts at any hierarchical level,
are represented as modules. Several implementations have been experi-
mented with [Shapiro86a, Taie86a), and a formalism which represents
devices by instantiation rules and structural templates is described here.

Structural Knowledge

The component library consists of descriptions of all component
types used to construct the devices at all hierarchical levels. Each com
ponent type is in turn abstracted at two levels, and represented by a
SNePS rule and a SNePS assertion. The former is categorized as an
“instantiation rule”, and the latter a “structural template”.

At level-1 abstraction, knowledge about a component type is
represented as an instantiation rule. The rule is used to instantiate an
object of the component type as a module with 1/0 ports and associated
functional description. The functional description is implemented as a
LISP function that calculates the desired port value in terms of the
values of other ports; this allows the simulation of the device.

At level-2 abstraction, a structural template is used to describe the
sub-parts and wire connections of the object at the next hierarchical
level. Component types and intended maintenance levels of sub-parts
are also indicated. A structural template provides the necessary
knowledge about the sub-structure of all objects of the same component
type without representation overhead. Unlike instantiation rules, struc-
tural templates are never executed (fired) to produce a representation

$ This work was supported in part by the Air Force Systems Command, Rome Air Development Center, Griffiss
Air Force Base, New York 13441-5700, and the Air Force Office of Scientific Research, Bolling AFB DC 20332 under

Contract No. F30602-85-C-0008.

0149-144X/87 /0000-0422 $1.00 @ 1987 IEEE

422 1987 PROCEEDINGS Annual

RELIABILITY AND MAINTAINABILITY Symposium

for any specific object.

nation.

User interfaces

Graphlcs
Natural Language
Menu

Knowiledge Base Interence Engine
i St func
Instantiation Rules Taanostic Hules
(incl. Functional Diagnostic Rules
Deacription)
Structural
Templates

j)

Active Database

Instantiated
Objects
Assoclated
States
Port values

Figure 1. Architecture of VMES
All annotations are shown in italics.

(build avb $x

ant (build object *x type PCM6 abs-1v IRfL1)
The antecedent part states that for every object x if
it is of type PCM6 and 1o be instantiated at level-1 by
this rule then do the consequents. The first part of
consequents builds the i/o ports of the object. The
second part of consequents assigns the functional

. description to the output ports. The listing here is
incomplete due to limited space. Below are some input
ports for timing control.

cq (build inport-of *x id tshift) = vTS

cq (build inport-of *x id r-shift) = VRS
Below are some input ports for voice signal.

cq (build inport-of *x id sigin1) = vSI1

cq (build inport-of *x id sigin2) = vSI2
Below are some output ports for voice signal.

¢q (build outport-of *x id sigout1) = vSO1

cq (build outport-of *x id sigout2) = vSO2
Below are some function assignments of voice signal
output. It states that to calculate the port value of
sigout] (*vSO1), the function PCM6sigout with five
arguments (pn 5) which are siginl (pl*vS11) and
other four timing signals (p2-p5) is to be used, and
the calculated result may have 5% of error tolerance
(tolrnc 5).

¢cq (build object *vSO1 func PCMésigout tolrnc §

pn 5 pl *vSI1 p2 *vTS p3 *VRS p4 *vTO p5 *vR0)
cq (build object *vSO6 func PCMésigout tolrac 5
pn § p1 *vSI6 p2 *vTS p3 *VRS p4 *vT8 pS *vR8]

Figure 2. Instantiation Rule for Level-1 Abstraction of
Component type PCMB. (For testing purpose, the digital
i/o pcmin & pcmout are connected for each channel to
form a loop so that input at sigin is echoed to the
output sigout)

When reasoning on the sub-structure of an
object is required, instead of instantiating the sub-structure (all the
sub-parts and wire connections) and then reasoning on the resulting
representation, we do it directly on the structural template of the
object, and only suspicious sub-parts are instantiated for further exami-

Builder Interface
(Spcchl Language

SNePS

This model is illustrated in Figures 2 to 5, where Figures 2 and 3
are annotated SNePS codes which build the SNePS representation for the
two level abstractions of a component type PCM6, and Figure 4 and §
are their pictorial equivalents. PCM6 stands for the six channel pulse
coded modulation boards which are used for telecommunication.

There are three sections of a structural templates: the first
one identifies that the template is for a particular type such
as PCM6; the second section described the subparts; and the
last section envisions the wire connections.

(build
Section 1: Structural Template Identi fication.
type PCM6 abs-1v STfL2
Section 2: Subparts Description (incomplete). The id
part gives the unique id of a subpart within the template.
The ext-name part is used to extend the name of the
subpart when it is instantiated. The type part gives
the type of the subpart, and the mntn-lv part indicates
its intended maintenance level.
sub-parts
((build id PCM6-pc1 ext-name PC1 type PCC
mntn-lv DEPOT)
(build id PCM6-pc2 ext-name PC2 type PCC
mntn-lv DEPOT)
(build id PCM6-nt0 ext-name NOTG.t0 type NOTG
mntn-lv DEPOT)
(build id PCM6-nt1 ext-name NOTG.t1 type NOTG
mntn-lv DEPOT)
(build id PCM6-ix1 ext-name 1X1.type XFORM
mntn-lv DEPOT)
(build id PCM6-ix2 ext-name IX2 type XFORM
mntn-lv DEPOT))
Section 3: Wire Connections. (incomplete)
connections (
voice signal side . . .
(build from (build inport-of PCM6é id siginl)
to (build inport-of PCM6-ix1 id in))
(build from (build outport-of PCM6-ix1 id out)
to (build inport-of PCM6-pcl id sigin))
pem i/o side . . .
(build from (build inport-of PCM6 id pcmin-A)
to ((build inport-of PCMé-pcl id pcmin)
(build inport-of PCM6-pc2 id pcmin)
(build inport-of PCM6-pcS id pcmin)))
timing control ...
(build from (build inport-of PCMé id t0)
to (build inport-of PCM6-nt0 id in))
(build from (build outport-of PCM6-nt0 id out)
to ((build inport-of PCM6-pcl id t-strobe)
(build inport-of PCM6-pc3 id t-strobe]

Figure 3. Structural Templates for Level-2 Abstraction
for Component type PCM6.

Functional Knowledge

Functional knowledge of a component type is represented as a
procedural attachment to the semantic network. The functional descrip-
tion is usable to simulate the component behavior, i.., to calculate the

E

PCMé6

i il
1

F

Figure 4. Level-1 abstraction of component type PCMS.

1987 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 423

values of output ports if the values of the input ports are given. It
should also be usable to infer the values of the input ports in terms of
the values of other 170 ports. This is important if hypothetical reason-
ing is used for fault diagnosis. Though we have only used the func-
tional description to calculate the value at the output port, our
representation scheme can be used both ways.

The functional description is implemented as a LISP function,
which calculates the desired port value in terms of the values of other
ports. Every port of a component type has such a function associated
with it, the link between the port and the function is described in the
instantiation rule of the component type. Since different ports of
different component types might display the same behavior, some func-
tions can be shared. Figure 6 shows some examples of functional
description.

Below is the function for the output port of ADDER-type
objects

(defun ADDERout (inp1 inp2)
(+ inp1 inp2))

Below is an example to show a function shared by several
different component types namely by the type "PCM6", the
type "wire and the type "1-to-1 transformer’. All these
component types show the same behavior at our level of
component abstraction: they echo the input to the out put.

(defun ECHO (inp1)
inp1)

Below is the function for the output port of ANDGate-type
objects. (Other coding is possible, but since we use 1/0 for
high/low, the following way is a convenient one.)

(defun ANDGout (inp1 inp2)
(/ (+inp1 inp2) 2))

Figure 6. Examples of Functional Description.

Graphical Knowledge

While the process of diagnosis is running, the user is informed
about the activities of the system via a graphical trace of its reasoning.

The device is displayed on a graphics terminal, and parts currently
under consideration are highlighted, for instance, by changing their
color. Some more details about this will follow in a later section, here
only representational questions will be raised.

In the chapters above we have introduced a notation for the
knowledge used for diagnosis, which is based on the SNePS user
language. All the information necessary to create a graphical represen-
tation of the diagnostic object is stored in the very same knowledge
representation environment. This not only means that we are using the
same SNePSUL syntax to describe objects in a way that pictures can be
created, but we are using a common knowledge base, and in fact to a
certain degree the same knowledge for the diagnosis and the drawing
programs.

In this representation only primitive shapes are stored in a form
comparable to “classical” graphics programs. For instance, the form of a
multiplier is stored as a piece of code that, if executed, draws a multi-
plier. However any more complicated entity is stored declaratively in
the network representations.

It is necessary to distinguish between two different types of
graphical representations which pose different requirements. In a struc-
tural or physical representation a device is shown in a geometrically
analog way. If a resistor is below a chip on a board, then one can
expect the picture of a resistor below the picture of a chip on the
corresponding plan. In order to construct such a plan a human as well
as a system must have positional knowledge. This knowledge is usu-
ally expressed by coordinate pairs.

Functiona! or logical representations, on the other hand, do not

424 1987 PROCEEDINGS Annual

need positional knowledge. 1t one draws a wire plan, it is not neces-
sary to know exactly where to put a component. Certain connectivity
conditions have to be satisfied in order to create a picture true to the
object, and certain conventions of the draftsman's trade have to be
observed, but there are no a priori rules that specify that a certain resis-
tor must be under a certain chip. In fact not even neighborhood rela-
tions have to be preserved.

"We will first describe the representation used for structural
descriptions, and then talk about logical descriptions (wire plans). All
the routines for structural display have been implemented, and the
implementation for functional display is currently well on its way.

Graphics Structural Descriptions

It is necessary to know about the form of every object involved
in the production of a drawing. In our system, forms are either linked
directly to the corresponding object or an object inherits a form from a
class of objects. This requires two case frames, one linking the object to
a class and a second one linking the class to a form. Forms represent
the link between the declarative and the procedural plane of the
Tepresentation system. A form is at the same time two different things:
it is a (base) node in the semantic network, and in this way accessible
by the knowledge base handler, but it is also the name of a LISP func-
tion that contains calls to routines of a LISP graphics package. SNePSUL
expressions for some of the caseframes described in this and the next
section are given in Figure 7.

Positions are represented in a variety of different ways, the main
ones being absolute positions, relative positions and relative sub-part
positions. The caseframe for an object which is located at an absolute
position contains an arc (a slot) to the object, and arcs to nodes denoting
coordinate numbers. In the case of a relative position an additional arc
identifies a “reference object”. In order to draw a relatively placed
object, the drawing program has to retrieve the position of the reference
object first.

Relatively placed sub-parts do not have an arc to a reference
object. In this case, the assumption made by the drawing system is that
this part must be placed relative to its “super-object”. In general the
position of any part is assumed to be the position of its reference point.
By convention the upper left corner is made the reference point when-
ever possible. So the caseframes described above relate to the reference
points of the involved objects.

T x| R
X — =t <
2=
T = <
g
e il

Flgure 5. Level-2 abstraction of component type PCME.

RELIABILITY AND MAINTAINABILITY Symposium

(build object D1-M1
form xmult
modality function)
This describes an ob ject with Individual Form

(build object D1-M2
type multiplier
modality function)
This asserts that D1-M?2 is a multiplier

(build class multiplier
form xmult
modality function)
This expression links the class multiplier to the form xmult

(build object D1
sub-parts (D1-M1 D1-M2)
sub-assems (build inport-of D1
id inpl)
abspos (build x 100 y 200)
modality function)
This is a partial description of D1. It has 2 parts
D1-M1 and DI1-M2, one sub-assembly which is an input port
with the id inpl and an absolute position at 100/200

Figure 7. Example Caseframes for Graphical Knowledge.

Our system also permits us to assign attributes to objects. We are
discriminating between iconic and symbolic attributes. lconic attributes
are directly displayable, for instance “color” is such an attribute. Sym-
bolic attributes require a mapping function that assigns a displayable
attribute to a symbolic attribute. The diagnosis program makes heavy
use of this possibility. For instance, the state (symbolic) attribute is
displayed by mapping it to the color (iconic) attribute.

We are viewing attributes as functionals that take a form func-
tion and an attribute-value as arguments and return a modified form
function. The mapping between symbolic attribute values and iconic
attribute values is therefore done procedurally. For the example above
the state “faulty” would be mapped to the color “red”, and the state
“suspect” would be mapped to “green”.

Besides the class hierarchy, a part hierarchy is also employed
using a caseframe with an object arc and one or more sub-parts arcs. It
is possible for the user to specify how many levels of the part hierar-
chy he wants to see displayed.

Graphics Functional Representatjons

If one tries to create logical {functional) representations from a
knowledge base, then the following interesting points become notable:

- All the positional information can be eliminated. It should not be
necessary to specify any location.

- In order to create a reasonable picture, more knowledge of other
types is necessary. For example, it is necessary to know which
objects are inports and which objects are outports, because people
usually expect the signal flow on a diagram to go from left to
right, or from top to bottom. Incidentally, this information is also
necessary for diagnosis, and therefore does not create any addi-
tional requirements.

-~ Forms loose their absolute meaning. Objects like wires and boards
especially don't need to be specified by graphics code. In fact the
forms of all wires will be the result of a routing algorithm. It is
a2 well known discriminating factor between declarative and pro-
cedural representations that the latter do not permit incomplete
specifications, while the former ones do. But this is exactly what
one would like to have. All wires consist of vertical and horizon-
tal lines, but nothing about the specific form of a wire is known
before the positions of the impinging components have been fixed.

We also have found that, in general, for either type of representa-
tion:

-- the classical part hierarchies are not sufficient even for most prim-
itive applications. We have so far discriminated between real
parts and sub-assemblies, and one more type of whole-part hierar-
chy for clusters might become necessary. Sub-assemblies are

1987 PROCEEDINGS Annual

RELIABILITY AND MAINTAINABILITY Symposium

represented very similarly to sub-parts, only the arc sub-parts 1s
replaced by the arc sub-assems.

The AI literature has so far discussed inheritance along the lines
of a class hierarchy. We have found it necessary to do inheritance

along our part hierarchy, and to control this inheritance with a
meta-attribute. In this way a user can state declaratively
whether he wants an attribute inherited or not. While we do
want to inherit that a big chip has big ports we do not want to
inherit that if a board is faulty, then so are all its parts!

Using no spatial information about the location of objects forces
us to deal with placing and routing algorithms, however our objectives
are far from a VLSI designer, and more comparable to the TYGES pro-
ject {Eades86a] in that we are trying to create a graphically pleasing
representation. We refer to this type of drawing activity as Intelligent
Machine Drafting, a term that we have not yet seen in the literature.

We have defined a very limited class of circuits and are working
on automatic placing of members of this class. The class has been
defined formally, but in this paper we will limit ourselves to an intui-
tive summary description. Devices in the class consist of O or 1 main
object and of parts of this main objcts. Every part, as well as the
main object, has “ports”, and ports are connected by wires. The number
of signal paths and the length of signal paths is expected to be small
enough to permit placing them with our column-equal-spacing algo-
rithm (which will be reviewed later). All components have to be con-
nected “straight forwardly”, ie. no feedback loops are permitted. Icons
(= parts) are all about the same size.

The column-equal-placing algorithm classifies elements according
to their signal distance from the system input ports and assigns every
part to a column. It then equally distributes all columns over the
screen, and equally distributes all parts inside their respective columns.
We are currently reviewing the literature on VL.SI routing, in order to
decide upon an appropriate routing algorithm.

The advantage of a system that does its own placing based on
information about the structure of the device is obvious - to a large
extent, creating a knowledge base for maintenance purposes takes care
of creation of the necessary graphics. We have also found knowledge
based programming to be far more robust than all other common pro-
gramming paradigms. The reasoning system and the graphical interface
of VMES were designed by different people with a minimum amount
of personal interaction, nevertheless system integration did not pose any
difficulties.

Another significant advantage of our representation system for
graphical knowledge is the large amount of SNePS natural language
processing software that can immediately be used. We have used the
SNePS ATN package [Shapiro82a] to create a natural language interface
to the graphics routines. This permits us to do Natural Language
Graphics [Brown81a, Hussman84a] almost as a byproduct, the only step
necessary was the creation of an ATN grammar for the
graphics/circuitboard domain.

The user can for instance request from the system:

show me all multipliers
show me D1M1

show me all faulty adders
please display D1

and many others, where D1 is the name of a device, and DIM1 the
name of its first multiplier.

Diagnostic Reasoning

The diagnostic reasoning of VMES follows a simple control struc-
ture. It starts from the top level of the structural hierarchy of the dev-
ice and tries to find output ports that violate an expectation. “Violated
expectation” is defined as a mismatch between the expected (calculated)
value and the observed (measured) value at some output. Though the
target domain of VMES is digital circuit boards, we observed that in
real life most of the electronic boards contain some simple analog com-
ponents such as resistors and transformers. Therefore, for practical con-
sideration, some components are allowed to have a tolerance when their
outputs are being checked for violated expectations. The tolerance
information is associated with the instantiation rule as depicted before.

After violated expectations are detected, the system uses the struc-
tural template to find a subset of components at the next lower

425

hierarchical level which might be responsible for the bad outputs. Then
instantiation rules are activated to instantiate the suspects, and the
suspects are ordered by some criteria for further investigation. Suspect
ordering criteria will be discussed later. The diagnostic process is then
continued on the instantiated suspicious parts. A part is declared faulty
if it shows some violated expectation at its putput port and it is at its
intended maintenance level as described in the structural template or it
is at the bottom level of the structural hierarchy and no further diag-
nosis is possible.

A small set of SNePS rules is activated at every stage of the diag-
nosis. For example, three rules are activated when reasoning about a
possible violated expectation of a specific port of a device. One rule is to
ceduce the measured value of the port. A measured port value can
either be deduced from wire connections or requested from the user. A
similar rule is activated for the calculated value, and the last rule is
used to compare the two values to decide if there is a violated expecta-
tion. The last rule is shown in Figure. 8 in both SNePS code and in
English.

Suspects are first sorted into sublists by global criteria called
fault possibilities. Fault possibility is determined by evaluating the
suspects against the wholistic current situation, which is the current
test results. For the current implementation, there is only one global
Criterion: a suspect has higher fault possibility if it contributes to more
Vvio-expct output ports. Suspects within each sublist are then sorted by
some local criteria called fault potentialities. Fault potentiality isa
measure of the rate a particular type of component may fail. It is
independent of the environment, only depending on the component
type. (It may also depend on the lot number of the component, but so
far we do not treat such details.) The ideal fault potentiality data for
our domain is the thermal analysis data of the components. Due to the
unavailability of the thermal analysis data, it is now implemented as
an index ranging form 1 to 3. Component types with no stored fault
potentiality data default to 2.

VMES does not make the single fault assumption. The system
incorporates the user’s judgement by offering him an opportunity to ter-
minate the diagnosis session Whenever a faulty part is located. The
user can choose to continue the investigation of the remaining suspects
if he feels that more faults are possible or if he would merely like to
make sure other suspects have no problems.

Graphical Infertrace

As mentioned in an earlier section, there is a part of the VMES
system that permits the user to graphically trace the whole reasoning
process. This is done by a function called display, that retrieves
knowledge about how objects look and how they are located from the
network, and computes and creates a graphical representation from this
knowledge. This method is analogous to the generation of natural
language from a knowledge base, a widely accepted Al technique.

The reasoning part calls display with the name of the object that
should be displayed, possibly with one or more of a number of options.
We will give a quick review of the possible options; more details can be
found in [Shapiro86a).

It is possible to select how may levels in the part hierarchy
should be displayed. Objects can be shown blinking, and they can be
blown up or shrunk to fill the screen or a predefined window
optimally. 1t is possible to create two pictures, a detajled picture of an
object and a picture of the “environment” of that object. The user has
only to specify the object itself; the environment is retrieved from the
part hierarchy by searching upwards.

A sub-option of the environment option permits the user to limit
how may levels up in the part hierarchy is searched. The selection of
what to show can be limited not only by the number of levels, but also
by the number of parts or according to an approximate cognitive com-
plexity which we are simulating by counting the number of graphics
primitives visible on the screen.

Conclusions

The representation scheme described in this paper has been used to
represent several devices, including several multiplier/adder boards and
a six-channel PCM (Pulse Code Modulation) board for telephone com-
munication. VMES has been successful in isolating the faults on these
boards. A typical example is that VMES identifies an inverter on a
PCM6 board as a faulty part, which actually accounts for the simul-

426 1987 PROCEEDINGS Annual

(build
avb ($p $vc $vm $tr) :
&ant ((build port *p value *vc source calculated tolrnc *tr)
(build port *p value *vm source measured))
cq (build
min 1 max 1
arg (build name: THEY-MATCH p1 *v¢ p2 *vm
tolrne *tr)
arg (build port *p state vio-expet}

In English:

If the calculated and measured values of port p are known as
ve & vm, one and only one of the following statements is true:
(1) vc and vm agree;
(2) port p displays a violated expectation.

Figure 8. A diagnostic rule.

taneous malfunctioning of the two channels it affects, in the early stage
of diagnosis. Though VMES has no capability to conclude that it is the
only fault on the board, the suspect ordering criteria help the system to
decide which suspect is to be checked first. The result shows that the
representation scheme, along with an expandable component library
leads to several important advantages: compact representation and sys-
tem efficiencies in both system development and operating phases.

We first claim that a clear distinction between the two abstraction
levels of an object is desirable. The separation leads to system efficiency
since the knowledge at the two abstraction levels are used at different
stages of diagnosis. Level-1 information is used for detecting violated
expectations, and level-2 information is used for suspect generation. To
mix these two levels together will cause representation overhead and
hamper system performance.

The use of the passive structural templates, which are never exe-
cuted, to represent the substructure of objects of a component type has
advantages over a procedural representation which uses a procedure or
an instantiation rule for it {Davis83a,Shapiro86a]l Whenever it is

necessary to reason about the substructure of an object, it is carried out
on the unique structural template for the component type of the object.
Only the sub-parts that require further examination will be instan-
tiated (by the proper instantiation rules for them). Unlike the struc-
tural template representation, a procedural representation is used to
instantiate “all” sub-parts of an object, and then the reasoning is carried
out over the resulting substructures. This leads to serious system
inefficiency due to representation explosion and resource waste caused
by unnecessary object instantiation.

The most important feature of VMES is its versatility. VMES can
easily be adapted to new devices by merely adding the structural and
functional information of the “new” component types to the component
library. A new component {ype is defined as a component type which
has not previously been described to the component library. The new
device itself is a new component type by our definition. The effort
required to adapt the system to new devices should be minimal since
digital circuit devices have a lot of common components, and the struc-
tural and functional description are readily available at the time a dev-
ice is designed.

We have found at presentations that the graphics interface consid-
erably improves the understandability of the reasoning process of the
system. The use of a knowledge based graphics system promises to sim-
plify the creation of graphics for new devices, in this way aiding the
versatility of the system. The common representation for diagnosis,
graphics and a number of natural language tools has aided us in adding
a natural language component to the system, and in this way
strengthened our belief in the usefulness of a knowledge based graphics
system as a natural interface for a user friendly maintenance expert
system.

As a spin off, we have found limitations in the classical part
hierarchy and inheritance mechanisms, and we have started to work on
a module for Intelligent Machire Drafting as a part of our system.

RELIABILITY AND MAINTAINABILITY Symposium

References

Brown81la.
D. C. Brown and B. Chandrasekaran, “Design Consideration for
Picture Production in a Natural Language Graphics System,” Com-
puter Graphics 15(2) pp. 174-207 (July 1981).

Davis83a.
R. Davis and H. Shrobe, “Representing Structure and Behavior of
Digital Hardware,” Computer, pp. 75-82 (Oct. 1983).

Davis84a.
R. Davis, “Diagnostic Reasoning Based on Structure and Behavior,”
Artificial Intelligence 24 pp. 347-410 (1984).

Eades86a.
P. Eades and A. J. Lee, “Perception of Symmetry,” 67, University
of Queensland, St.Lucia (March 1986).

Friedell84a.
M. Friedell, “Automatic Synthesis of Graphical Object
Descriptions,” Computer Graphics 18/ N.3(1984).

Geneseretha.

M. R. Genesereth, “The Use of Design Descriptions in Automated
Diagnosis,” Artificial Intelligence 24 pp. 411-436 (1984).

Hartley 84a.
R. T. Hartley, “CRIB: Computer Fault-finding Through Knowledge
Engineering,” Computer, pp. 76-83 (March 1984).

Hussman384a.
M. Hussman and P. Schefe, “The Design of SWYSS, a Dialgue Sys-
tem for Scene Analysis” in Natural Language Communication
with Pictorial In formation Systems, ed. Leonard Bolc, (1984).

Shapiro79a.
S. C. Shapiro, “The SNePS Semantic Network Processing System,”
pp- 179-203 in Associative Networks: The Representation and
Use of Knowledge by Computers, ed. Nicholas V.
Findler,Academic Press, New York (1979).

Shapiro82a.
S. C. Shapiro, “Generalized augmented transition network gram-
mars for generation from semantic networks,” The American
Journal of Computational Linguistics 8(1) pp. 12-25 (1982).

Shapiro86a.
S. C. Shapiro, S. N. Srihari, M. R. Taie, and J. Geller, “VMES: A
Network-Based Versatile Maintenance Expert System,” pp. 925-
936 in Proc. of 1st International Con ference on Applications of
AI to Engineering Problems,, Southampton, UK. (April 1986).

Shortliffe76a.
E. H. Shortliffe, Computer-Based Medical Consultations: MYCIN,
American Elsevier/North Holland, New York (1976).

Taie86a.
M. R. Taie, S. N. Srihari, J. Geller, and S. C. Shapiro, “Device
Representation Using Instantiation Rules and Structural Tem-
plates,” pp. 124-128 in Proc. of Canadian Al Conference - 86, ,
Montreal, Canada (May 21-23, 1986).

Zydbel81a.
F. Zydbel, N. R. Greenfeld, M. D. Yonke, and J. Gibbons, “An
Information Representation System,” IJCAI - 81, (1981).

Biographies

Stuart C. Shapiro
Department of Computer Science
226 Bell Hall, Amherst Campus
State University of New York at Buffalo
Buffalo, NY 14260, USA

Stuart C. Shapiro received the S.B. degree in mathematics from MIT in
1966, and the M.S. and Ph.D. degrees in computer sciences from the
University of Wisconsin, Madison in 1968 and 1971, respectively.

He currently holds the positions of Professor and Chairman of the
Department of Computer Science at the University at Buffalo, where he
has been since 1977. In 1971, he was a Lecturer in Computer Sciences

1987 PROCEEDINGS Annual

RELIABILITY AND MAINTAINABILITY Symposium

at the University of Wisconsin, Madison. Between then and going to
Buffalo, he was at the Computer Science Department of Indiana Univer-
sity, as Assistant and Associate Professor. In summer, 1974, he was a
Visiting Research Assistant Professor at the University of 1llinois at
Urbana-Champaign.

Dr. Shapiro’s research interests are in artificial intelligence, natural
language processing, knowledge representation, and reasoning. He is
editor of The Encyclopedia of Artificial Intelligence (John Wiley &
Sons, forthcoming), the author of Techniques of Artificial Intelligence
(D. Van Nostrand, 1979), LISP: An Interactive Approach (Computer
Science Press, 1986), and over 60 technical articles and reports. He has
served as a consultant on Artificial Intelligence for several companies,
as department editor of the journal, Cognition and Brain Theory for
Artificial Intelligence, and has served on the editorial board of the
American Journal of Computational Linguistics.

Dr. Shapiro is a member of the ACM, the IEEE, the ACL, the Cog-
nitive Science Society, and the AAAL He is listed in American Men
and Women of Science, and in Who's Who in Artificial Intelligence.

Sargur N. Srihari
Department of Computer Science
226 Bell Hall, Amherst Campus
State University of New York at Buffalo
Buffalo, NY 14260, USA

Sargur N. Srihari received his Bachelor’s degree in Electrical Communi-
cation Engineering from the Indian Institute of Science in 1970 and
Ph.D. degree in Computer and Information Science from the Ohio State
University in 1976. He is presently a tenured associate professor in the
Computer Science department at SUNY Buffalo. In summer 1979, he
was a visiting Research Assistant Professor at the University of Water-
loo in Canada. His current research interests are in artificial intelli-
gence, and in particular, knowledge-based systems for diagnosis and
computer vision.

Dr. Srihari has published over 60 journal articles and conference
papers. He is the author of Computer Text Recognition and Error
Correction (IEEE Computer Society Press, 1984). He is presently an
associate editor of the Pattern Recognition journal. He is on the
advisory board of the Second Al Applications to Engineering Problems
Conference to be held at MIT in 1987.

Dr. Srihari is a senior member of IEEE, and member of the Associ-
ation for Computing Machinery, American Association for Artificial
Intelligence and Pattern Recognition Society.

James Geller
Department of Computer Science
226 Bell Hall, Amherst Campus
State University of New York at Buffalo
Buffalo, NY 14260, USA

James Geller is a doctoral candidate in the department of Computer Sci-
ence at the State University of New York at Buffalo. He received a
“Dipl. Ing." in Electrical Engineering from the Technical University
Vienna, Austria in 1979 and the MS in Computer Science from the
State University of New York at Buffalo in 1984. His current research
interests are in artificial intelligence, and in particular, knowledge
representation for pictorial domains.

Mingruey R. Taie
Department of Computer Science
226 Bell Hall, Amherst Campus
State University of New York at Buffalo
Buffalo, NY 14260, USA

Mingruey R. Taie is a doctoral candidate in the department of Computer
Science at the State University of New York at Buffalo. He received a
BS in Mechanical Engineering from the National Taiwan University in
1978 and the MS in Computer Science from the State University of
New York at Buffalo in 1984. His current research interests are in
artificial intelligence, and in particular, knowledge representation and
fault diagnosis.

427

