Problem 1 (8 points). Prove the following statements:

(a) Show that \(\lfloor \sqrt{n} \rfloor = \Theta(\sqrt{n}) \).

(b) Let \(f : \mathbb{N} \to \mathbb{R} \) be an asymptotically positive function. Prove that \(o(f(n)) \subseteq O(f(n)) \).

(c) Prove that \(\log(n!) = \Theta(n \log n) \).

Problem 2 (10 points). Given a sorted array \(A \) of size \(n \), design an algorithm to check if there are two numbers in the array whose sum is 0. That is, decide whether there are two indices \(i, j \in \{1, 2, 3, \ldots, n\} \) such that \(A[i] + A[j] = 0 \). (The two indices can be the same; thus if the array contains the number 0, we should output “yes”.)

Example: if the input is \((-8, -5, -2, 1, 4, 6, 8, 9)\), then the output is “yes” since \((-8) + 8 = 0\). If the input is \((-8, -5, -2, 1, 4, 6, 7, 9)\), then the output is “no”.

(a) (2 points) How can we use the binary search algorithm as a black-box to design an \(O(n \log n) \)-time algorithm?

(b) (8 points) Design an \(O(n) \)-time algorithm for the problem.

Problem 3 (12 points).

Figure 1: Cycles in undirected and directed graphs. \((1, 2, 5, 3)\) is a cycle in the undirected graph. \((1, 2, 5, 6, 7, 3)\) is a cycle in the directed graph. However, \((1, 2, 5, 8, 3)\) is not a cycle in the directed graph.

(a) (6 points) A cycle in an undirected graph \(G = (V, E) \) is a sequence of \(t \geq 3 \) different vertices \(v_1, v_2, \ldots, v_t \) such that \((v_i, v_{i+1}) \in E\) for every \(i = 1, 2, \ldots, t - 1 \) and \((v_t, v_1) \in E\). Given the linked-list representation of an undirected graph \(G = (V, E) \), design an \(O(n + m) \)-time algorithm to decide if \(G \) contains a cycle or not; if it contains a cycle, output one (you only need to output one cycle).
(b) (6 points) A cycle in a directed graph $G = (V, E)$ is a sequence of $t \geq 2$ different vertices v_1, v_2, \cdots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \cdots, t - 1$ and $(v_t, v_1) \in E$. Given the linked-list representation of a directed graph $G = (V, E)$, design an $O(n + m)$-time algorithm to decide if G contains a cycle or not; if it contains a cycle, output one (you only need to output one cycle).

Remark In a cycle of a directed graph, the directions of the edges have to be consistent. So, converting a directed graph to an undirected graph and then using algorithm for (a) does not give you a correct algorithm for (b).

Problem 4 (10 points). Give an $O(n + m)$-time algorithm to check if a given graph is bipartite or not, using depth-first-search as the graph traversal algorithm. You can use either the implementation of DFS using stack, or the implementation using recursion.