Problem 1 (8 points). Using the heap data structure to design a data structure that maintains a (multi-)set S of numbers, and supports the following two operations:

- median: return the $\lceil (n + 1)/2 \rceil$-th smallest number in S, where $n = |S|$;
- add(e): add the number e to S.

The running time for each operation should be $O(\lg n)$, where n is the current size of S. The following is an example for a sequence of operations: add(5), median returns 5, add(10), median returns 5, add(7), median returns 7, add(1), median returns 5, add(6), median returns 6.

Problem 2 (8 points). An independent set of a graph $G = (V, E)$ is a set $U \subseteq V$ of vertices such that there are no edges between any two vertices in U. The maximum independent set problem asks for the independent set of G with the maximum size. The problem is very hard on general graphs. Here we want to solve the problem on trees: given a tree $T = (V, E)$, find the maximum independent set of the tree. For example, the maximum independent set of the tree in Figure 1 has size 7.

![Figure 1: The green vertices shows that the maximum independent set of the tree has size 7.](image)

Design an $O(n)$-time greedy algorithm for the problem, where n is the number of vertices in the tree. We assume that the vertices of the tree are $\{1, 2, 3, \ldots, n\}$. For simplicity, we assume the tree is already rooted at vertex 1 and the parent of each vertex $i \in \{2, 3, \ldots, n\}$ is a vertex $j < i$. In the input, we give the parent of i for each $i \in \{2, 3, \ldots, n\}$. The instance in Figure 1 is the parent array $(0, 1, 1, 1, 2, 5, 5, 5, 4, 4)$. (The parent of 1 is not defined; so we use 0.) We algorithm should return the set $\{2, 3, 6, 7, 8, 9, 10\}$.
Problem 3 (8 points). Given a set of \(n \) points \(X = \{x_1, x_2, \cdots, x_n\} \) on the real line, we want to use the smallest number of unit-length closed intervals to cover all the points in \(X \). For example, the points \(X \) in Figure 2 can be covered by 3 unit-length intervals. Design a greedy algorithm to solve the problem.

![Figure 2: Using 3 unit-length intervals (denoted by thick lines) to cover points in \(X \) (denoted by the solid circles).](image)

Problem 4 (8 points). Consider a \(2^n \times 2^n \) chessboard with one arbitrary chosen square removed. Prove that any such chessboard can be tiled without gaps by L-shaped pieces, each composed of 3 squares. Figure 3 shows how to tile a \(4 \times 4 \) chessboard with the square on the left-top corner removed, using 5 L-shaped pieces.

![Figure 3: Using 5 tiles to cover a chessboard of size \(4 \times 4 \), with the left-corner missing.](image)

Problem 5 (8 points). Suppose there has \(n \) balls (indexed by \(1, 2, \cdots, n \)) with different weights and let \(b \) be an integer between 2 and \(n \). There is a magic machine which, given a set \(S \subseteq \{1, 2, 3, \cdots, n\} \) of size at most \(b \), can tell you the lightest ball in \(S \). Your goal is to sort the \(n \) balls according to their weights, using only a few queries to the machine.

1. Give an algorithm that sorts the \(n \) balls using \(c \lg_b(n!) \) queries, where \(c \) is an absolute constant independent of \(b \) and \(n \).

2. Prove that any correct algorithm to sort the \(n \) balls needs at least \(\lceil \log_b(n!) \rceil \) queries to the machine.