CSE 431/531: Analysis of Algorithms
Approximation and Randomized Algorithms

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
Outline

1. Approximation Algorithms
 2. Approximation Algorithms for Traveling Salesman Problem
 3. 2-Approximation Algorithm for Vertex Cover
 4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
 5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
 6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
An algorithm for an optimization problem is an α-approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α-factor of the cost (or value) of the optimum solution.
An algorithm for an optimization problem is an \(\alpha \)-approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an \(\alpha \)-factor of the cost (or value) of the optimum solution.

- \(\text{opt} \): cost (or value) of the optimum solution
An algorithm for an optimization problem is an \(\alpha \)-approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an \(\alpha \)-factor of the cost (or value) of the optimum solution.

- \(\text{opt} \): cost (or value) of the optimum solution
- \(\text{sol} \): cost (or value) of the solution produced by the algorithm
An algorithm for an optimization problem is an α-approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α-factor of the cost (or value) of the optimum solution.

- **opt**: cost (or value) of the optimum solution
- **sol**: cost (or value) of the solution produced by the algorithm
- **α**: approximation ratio
An algorithm for an optimization problem is an α-approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α-factor of the cost (or value) of the optimum solution.

- opt: cost (or value) of the optimum solution
- sol: cost (or value) of the solution produced by the algorithm
- α: approximation ratio
- For minimization problems:
 - $\alpha \geq 1$ and we require $\text{sol} \leq \alpha \cdot \text{opt}$
Approximation Algorithms

An algorithm for an optimization problem is an \(\alpha \)-approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an \(\alpha \)-factor of the cost (or value) of the optimum solution.

- \(\text{opt} \): cost (or value) of the optimum solution
- \(\text{sol} \): cost (or value) of the solution produced by the algorithm
- \(\alpha \): approximation ratio

For minimization problems:
- \(\alpha \geq 1 \) and we require \(\text{sol} \leq \alpha \cdot \text{opt} \)

For maximization problems, there are two conventions:
- \(\alpha \leq 1 \) and we require \(\text{sol} \geq \alpha \cdot \text{opt} \)
- \(\alpha \geq 1 \) and we require \(\text{sol} \geq \text{opt} / \alpha \)
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Recall: Traveling Salesman Problem

- A salesman needs to visit \(n \) cities \(1, 2, 3, \ldots, n \)
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit \(n \) cities \(1, 2, 3, \ldots, n \)
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit \(n \) cities 1, 2, 3, \ldots, \(n \)
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit \(n \) cities \(1, 2, 3, \ldots, n \)
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit \(n \) cities 1, 2, 3, \ldots, \(n \)
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \ldots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit \(n \) cities 1, 2, 3, \ldots, \(n \)
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost
Recall: Traveling Salesman Problem

- A salesman needs to visit n cities $1, 2, 3, \ldots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost

Travelling Salesman Problem (TSP)

Input: a graph $G = (V, E)$, weights $w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: a traveling-salesman tour with the minimum cost
2-Approximation Algorithm for TSP

TSP1\((G, w)\)

1. \(MST \leftarrow\) the minimum spanning tree of \(G\) w.r.t weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

\textbf{TSP1}(G, w)

1. \(MST \leftarrow \) the minimum spanning tree of \(G\) w.r.t weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.

![Diagram of the minimum spanning tree](image)
2-Approximation Algorithm for TSP

TSP1(G, w)

1. \(MST \leftarrow \) the minimum spanning tree of \(G\) w.r.t weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. \(MST \leftarrow\) the minimum spanning tree of \(G\) w.r.t. weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

\[\text{TSP1}(G, w) \]

1. \(\text{MST} \leftarrow \text{the minimum spanning tree of } G \text{ w.r.t weights } w, \text{ returned by either Kruskal’s algorithm or Prim’s algorithm.} \)

2. Output tour formed by making two copies of each edge in \(\text{MST} \).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.
2-Approximation Algorithm for TSP

$TSP_1(G, w)$

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.
TSP1(G, w)

1. \(MST \leftarrow \) the minimum spanning tree of \(G \) w.r.t weights \(w \), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST \).
TSP1(G, w)

1. \(MST \leftarrow \) the minimum spanning tree of \(G \) w.r.t weights \(w \), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST \).
2-Approximation Algorithm for TSP

\textbf{TSP1}(G, w)

1. \(MST \leftarrow \text{the minimum spanning tree of } G \text{ w.r.t weights } w, \text{ returned by either Kruskal's algorithm or Prim's algorithm.}\)

2. \text{Output tour formed by making two copies of each edge in } MST.
TSP1 \((G, w) \)

1. \(MST \leftarrow \) the minimum spanning tree of \(G \) w.r.t weights \(w \), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST \).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.
TSP1\((G, w)\)

1. \(MST \leftarrow \) the minimum spanning tree of \(G\) w.r.t weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. \(MST \leftarrow\) the minimum spanning tree of \(G\) w.r.t weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.
2-Approximation Algorithm for TSP

TSP1(G, w)

1. \(MST \leftarrow\) the minimum spanning tree of \(G\) w.r.t weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.

![Graph](image-url)
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t. weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.

![Graph representation of TSP1 algorithm](image)
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.

![Diagram of the minimum spanning tree](image-url)
2-Approximation Algorithm for TSP

TSP1\((G, w)\)

1. \(MST \leftarrow\) the minimum spanning tree of \(G\) w.r.t. weights \(w\), returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in \(MST\).
2-Approximation Algorithm for TSP

TSP1(G, w)

1. $MST \leftarrow$ the minimum spanning tree of G w.r.t weights w, returned by either Kruskal’s algorithm or Prim’s algorithm.

2. Output tour formed by making two copies of each edge in MST.

![Graph Example](image.png)
Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof

mst = cost of the minimum spanning tree

\[mst \leq tsp, \] since removing one edge from the optimum travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

\[sol = 2 \cdot mst \leq 2 \cdot tsp. \]
Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof
- $\text{mst} = \text{cost of the minimum spanning tree}$
Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof

- mst = cost of the minimum spanning tree
- tsp = cost of the optimum travelling salesman tour
Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof
- \(\text{mst} = \text{cost of the minimum spanning tree} \)
- \(\text{tsp} = \text{cost of the optimum travelling salesman tour} \)
- then \(\text{mst} \leq \text{tsp} \), since removing one edge from the optimum travelling salesman tour results in a spanning tree.
Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof

- mst = cost of the minimum spanning tree
- tsp = cost of the optimum travelling salesman tour
- then mst \(\leq \) tsp, since removing one edge from the optimum travelling salesman tour results in a spanning tree
- sol = cost of tour given by algorithm TSP1
Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof

- \(mst = \) cost of the minimum spanning tree
- \(tsp = \) cost of the optimum travelling salesman tour
- then \(mst \leq tsp \), since removing one edge from the optimum travelling salesman tour results in a spanning tree
- \(sol = \) cost of tour given by algorithm TSP1
- \(sol = 2 \cdot mst \leq 2 \cdot tsp \).
1.5-Approximation for TSP

Def. Given \(G = (V, E) \), a set \(U \subseteq V \) of even number of vertices in \(V \), a matching \(M \) over \(U \) in \(G \) is a set of \(|U|/2 \) paths in \(G \), such that every vertex in \(U \) is one end point of some path.

Def. The cost of the matching \(M \), denoted as \(\text{cost}(M) \) is the total cost of all edges in the \(|U|/2 \) paths (counting multiplicities).

Theorem Given \(G = (V, E) \), a set \(U \subseteq V \) of even number of vertices, the minimum cost matching over \(U \) in \(G \) can be found in polynomial time.
Lemma Let T be a spanning tree of $G = (V, E)$; let U be the set of odd-degree vertices in MST ($|U|$ must be even, why?). Let M be a matching over U, then, $T \cup M$ gives a traveling salesman's tour.

Proof.

Every vertex in $T \cup M$ has even degree and $T \cup M$ is connected (since it contains the spanning tree). Thus $T \cup M$ is an Eulerian graph and we can find a tour that visits every edge in $T \cup M$ exactly once.
Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2} \cdot \text{tsp.}

\begin{proof}

- Take the optimum TSP

\end{proof}
Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2} \text{tsp}$.

Proof.

- Take the optimum TSP
- Breaking into read matching and blue matching over U
Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}\text{tsp}$.

Proof.
- Take the optimum TSP
- Breaking into read matching and blue matching over U
- $\text{cost(}\text{blue matching}\text{)} + \text{cost(}\text{red matching}\text{)} = \text{tsp}$
1.5-Approximation for TSP

Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.

Proof.
- Take the optimum TSP
- Breaking into read matching and blue matching over U
- $\text{cost(blue matching)} + \text{cost(red matching)} = \text{tsp}$
- Thus, $\text{cost(blue matching)} \leq \frac{1}{2} \text{tsp}$ or $\text{cost(red matching)} \leq \frac{1}{2} \text{tsp}$
Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.

Proof.
- Take the optimum TSP
- Breaking into read matching and blue matching over U
- $\text{cost(\text{blue matching})} + \text{cost(\text{red matching})} = \text{tsp}$
- Thus, $\text{cost(\text{blue matching})} \leq \frac{1}{2}\text{tsp}$ or $\text{cost(\text{red matching})} \leq \frac{1}{2}\text{tsp}$
- $\text{cost(cheapest matching)} \leq \frac{1}{2}\text{tsp}$
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Def. Given a graph $G = (V, E)$, a **vertex cover** of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.
Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G = (V, E)$

Output: a vertex cover S with minimum $|S|$
First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1. $E' \leftarrow E, S \leftarrow \emptyset$
2. while $E' \neq \emptyset$
3. let v be the vertex of the maximum degree in (V, E')
4. $S \leftarrow S \cup \{v\}$,
5. remove all edges incident to v from E'
6. output S

Theorem
Greedy algorithm is an $O(lg n)$-approximation for vertex-cover.

We are not going to prove the theorem, instead, we show that the $O(lg n)$-approximation ratio is tight for the algorithm.
First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1. $E' \leftarrow E$, $S \leftarrow \emptyset$
2. while $E' \neq \emptyset$
3. let v be the vertex of the maximum degree in (V, E')
4. $S \leftarrow S \cup \{v\}$,
5. remove all edges incident to v from E'
6. output S

Theorem Greedy algorithm is an $O(\lg n)$-approximation for vertex-cover.
First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1. $E' \leftarrow E, S \leftarrow \emptyset$
2. while $E' \neq \emptyset$
3. let v be the vertex of the maximum degree in (V, E')
4. $S \leftarrow S \cup \{v\}$
5. remove all edges incident to v from E'
6. output S

Theorem Greedy algorithm is an $O(\lg n)$-approximation for vertex-cover.

- We are not going to prove the theorem
Greedy Algorithm for Vertex-Cover

1. \(E' \leftarrow E, S \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \)
3. let \(v \) be the vertex of the maximum degree in \((V, E')\)
4. \(S \leftarrow S \cup \{v\} \),
5. remove all edges incident to \(v \) from \(E' \)
6. output \(S \)

Theorem Greedy algorithm is an \(O(\lg n) \)-approximation for vertex-cover.

- We are not going to prove the theorem
- Instead, we show that the \(O(\lg n) \)-approximation ratio is tight for the algorithm
Bad Example for Greedy Algorithm

|L| = n'

L: n' vertices
Bad Example for Greedy Algorithm

\[|L| = n' \]

- **L**: \(n' \) vertices
- **\(R_2 \)**: \(\lfloor n'/2 \rfloor \) vertices, each connected to 2 vertices in \(L \)
Bad Example for Greedy Algorithm

\[|L| = n' \]

- **L**: \(n' \) vertices
- **\(R_2 \)**: \(\lfloor n'/2 \rfloor \) vertices, each connected to 2 vertices in \(L \)
- **\(R_3 \)**: \(\lfloor n'/3 \rfloor \) vertices, each connected to 3 vertices in \(L \)
Bad Example for Greedy Algorithm

\[|L| = n' \]

- **L**: \(n' \) vertices
- **\(R_2 \)**: \(\lfloor n'/2 \rfloor \) vertices, each connected to 2 vertices in \(L \)
- **\(R_3 \)**: \(\lfloor n'/3 \rfloor \) vertices, each connected to 3 vertices in \(L \)
- **\(R_4 \)**: \(\lfloor n'/4 \rfloor \) vertices, each connected to 4 vertices in \(L \)
Bad Example for Greedy Algorithm

\[|L| = n' \]

- **L**: \(n' \) vertices
- **R_2**: \(\lfloor n'/2 \rfloor \) vertices, each connected to 2 vertices in \(L \)
- **R_3**: \(\lfloor n'/3 \rfloor \) vertices, each connected to 3 vertices in \(L \)
- **R_4**: \(\lfloor n'/4 \rfloor \) vertices, each connected to 4 vertices in \(L \)
- \(\ldots \)
- **R_{n'}**: 1 vertex, connected to \(n' \) vertices in \(L \)
$|L| = n'$

- L: n' vertices
- R_2: $\lfloor n'/2 \rfloor$ vertices, each connected to 2 vertices in L
- R_3: $\lfloor n'/3 \rfloor$ vertices, each connected to 3 vertices in L
- R_4: $\lfloor n'/4 \rfloor$ vertices, each connected to 4 vertices in L
- \ldots
- $R_{n'}$: 1 vertex, connected to n' vertices in L
- $R = R_2 \cup R_3 \cup \cdots \cup R_{n'}$
Bad Example for Greedy Algorithm

\[|L| = n' \]

Greedy algorithm picks \(R_1, R_2, \ldots, R_{n'} \) in this order. Thus, greedy algorithm outputs

\[
|L| = n' \sum_{i=2}^{n'} \left\lfloor \frac{n'}{i} \right\rfloor \geq n' \sum_{i=1}^{n'} n' - n' - (n' - 1) = n'H(n') - (2n' - 1) = \Omega(n' \log n')
\]

where \(H(n') = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n'} = \Theta(\log n') \) is the \(n' \)-th number in the harmonic sequence.
Bad Example for Greedy Algorithm

Optimum solution is L, where $|L| = n'$
Bad Example for Greedy Algorithm

Optimum solution is L, where $|L| = n'$

Greedy algorithm picks $R_{n'}, R_{n' - 1}, \cdots, R_2$ in this order
Optimum solution is L, where $|L| = n'$

Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order

Thus, greedy algorithm outputs R
Bad Example for Greedy Algorithm

- Optimum solution is L, where $|L| = n'$
- Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order
- Thus, greedy algorithm outputs R

$$|R| = \sum_{i=2}^{n} \left\lfloor \frac{n'}{i} \right\rfloor \geq \sum_{i=1}^{n} \frac{n'}{i} - n' - (n' - 1)$$
$$= n' H(n') - (2n' - 1) = \Omega(n' \lg n')$$
Bad Example for Greedy Algorithm

- Optimum solution is L, where $|L| = n'$
- Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order
- Thus, greedy algorithm outputs R

$$|R| = \sum_{i=2}^{n} \left\lfloor \frac{n'}{i} \right\rfloor \geq \sum_{i=1}^{n} \frac{n'}{i} - n' - (n' - 1)$$

$$= n' H(n') - (2n' - 1) = \Omega(n' \lg n')$$

- where $H(n') = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n'} = \Theta(\lg n')$ is the n'-th number in the harmonic sequence.
Bad Example for Greedy Algorithm

\[|L| = n' \]

\[R \]

Let \(n = |L \cup R| \) = \(\Theta(n' \lg n') \).

Then \(\lg n = \Theta(\lg n') \).

\[|L| = n' \]

\[R \]

\[R_2 \]

\[R_3 \]

\[R_4 \]

\[R_5 \]

\[R_{n'} \]

Thus, greedy algorithm does not do better than \(O(lg n) \).
Let $n = |L \cup R| = \Theta(n' \log n')$
Bad Example for Greedy Algorithm

Let \(n = |L \cup R| = \Theta(n' \lg n') \)

Then \(\lg n = \Theta(\lg n') \)
Let $n = |L \cup R| = \Theta(n' \lg n')$

Then $\lg n = \Theta(\lg n')$

$\frac{|R|}{|L|} = \frac{\Omega(n' \lg n')}{n'} = \Omega(\lg n') = \Omega(\lg n)$.
Let $n = |L \cup R| = \Theta(n' \lg n')$

Then $\lg n = \Theta(\lg n')$

$\frac{|R|}{|L|} = \Omega(n' \lg n') = \Omega(\lg n') = \Omega(\lg n)$.

Thus, greedy algorithm does not do better than $O(\lg n)$.
Greedy algorithm is a very natural algorithm, which might be the first algorithm someone can come up with.
Greedy algorithm is a very natural algorithm, which might be the first algorithm someone can come up with. However, the approximation ratio is not so good.
Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with.

However, the approximation ratio is not so good.

We now give a somewhat “counter-intuitive” algorithm,
Greedy algorithm is a very natural algorithm, which might be the first algorithm someone can come up with.

However, the approximation ratio is not so good.

We now give a somewhat “counter-intuitive” algorithm, for which we can prove a 2-approximation ratio.
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, S \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \)
3. let \((u, v)\) be any edge in \(E' \)
4. \(S \leftarrow S \cup \{u, v\} \),
5. remove all edges incident to \(u \) and \(v \) from \(E' \)
6. output \(S \)
2-Approximation Algorithm for Vertex Cover

1. $E' \leftarrow E, S \leftarrow \emptyset$
2. while $E' \neq \emptyset$
3. let (u, v) be any edge in E'
4. $S \leftarrow S \cup \{u, v\}$
5. remove all edges incident to u and v from E'
6. output S

- The counter-intuitive part: adding both u and v to S seems to be wasteful

Intuition for the 2-approximation ratio: the optimum solution must cover the edge (u, v), using either u or v. If we select both, we are always ahead of the optimum solution. The approximation factor we lost is at most 2.
2-Approximation Algorithm for Vertex Cover

1. $E' \leftarrow E, S \leftarrow \emptyset$
2. while $E' \neq \emptyset$
3. let (u, v) be any edge in E'
4. $S \leftarrow S \cup \{u, v\}$
5. remove all edges incident to u and v from E'
6. output S

- The counter-intuitive part: adding both u and v to S seems to be wasteful
- Intuition for the 2-approximation ratio: the optimum solution must cover the edge (u, v), using either u or v. If we select both, we are always ahead of the optimum solution. The approximation factor we lost is at most 2.
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, S \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \)
3. let \((u, v)\) be any edge in \(E' \)
4. \(S \leftarrow S \cup \{u, v\} \),
5. remove all edges incident to \(u \) and \(v \) from \(E' \)
6. output \(S \)
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, S \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \)
3. let \((u, v)\) be any edge in \(E' \)
4. \(S \leftarrow S \cup \{u, v\} \),
5. remove all edges incident to \(u \) and \(v \) from \(E' \)
6. output \(S \)

- Let \(E^* \) be the set of edges \((u, v)\) considered in Statement \(3 \)
Let E' be the set of edges (u, v) considered in Statement 3.

Observation: E' is a matching and $|S| = 2|E'|$.
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, S \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \)
3. let \((u, v)\) be any edge in \(E' \)
4. \(S \leftarrow S \cup \{u, v\} \),
5. remove all edges incident to \(u \) and \(v \) from \(E' \)
6. output \(S \)

- Let \(E^* \) be the set of edges \((u, v)\) considered in Statement 3
- Observation: \(E^* \) is a matching and \(|S| = 2|E^*| \)
- To cover all edges in \(E^* \), the optimum solution needs \(|E^*| \) vertices
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, S \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \)
 3. let \((u, v)\) be any edge in \(E' \)
 4. \(S \leftarrow S \cup \{u, v\} \),
 5. remove all edges incident to \(u \) and \(v \) from \(E' \)
6. output \(S \)

- Let \(E^* \) be the set of edges \((u, v)\) considered in Statement 3
- Observation: \(E^* \) is a matching and \(|S| = 2|E^*| \)
- To cover all edges in \(E^* \), the optimum solution needs \(|E^*| \) vertices

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Max 3-SAT

Input: \(n \) boolean variables \(x_1, x_2, \ldots, x_n \)

\(m \) clauses, each clause is a disjunction of 3 literals from 3 distinct variables

Output: an assignment so as to satisfy as many clauses as possible

Example:

- clauses: \(x_2 \lor \neg x_3 \lor \neg x_4, \ x_2 \lor x_3 \lor \neg x_4, \neg x_1 \lor x_2 \lor x_4, \ x_1 \lor \neg x_2 \lor x_3, \neg x_1 \lor \neg x_2 \lor \neg x_4 \)

- We can satisfy all the 5 clauses: \(x = (1, 1, 1, 0, 1) \)
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma

Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

For each clause C_j, let $Z_j = 1$ if C_j is satisfied and 0 otherwise. $Z = \sum_{j=1}^{m} Z_j$ is the total number of satisfied clauses.

$E[Z_j] = \frac{7}{8}$: out of 8 possible assignments to the 3 variables in C_j, 7 of them will make C_j satisfied.

$E[Z] = E[\sum_{j=1}^{m} Z_j] = \sum_{j=1}^{m} E[Z_j] = \sum_{j=1}^{m} \frac{7}{8} = \frac{7}{8}m$, by linearity of expectation.
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability $1/2$, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability $1/2$, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

- for each clause C_j, let $Z_j = 1$ if C_j is satisfied and 0 otherwise
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

- for each clause C_j, let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- $Z = \sum_{j=1}^{m} Z_j$ is the total number of satisfied clauses
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability $1/2$, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

- for each clause C_j, let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- $Z = \sum_{j=1}^{m} Z_j$ is the total number of satisfied clauses
- $\mathbb{E}[Z_j] = 7/8$: out of 8 possible assignments to the 3 variables in C_j, 7 of them will make C_j satisfied
Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable $x_u = 1$ with probability $1/2$, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

- for each clause C_j, let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- $Z = \sum_{j=1}^{m} Z_j$ is the total number of satisfied clauses
- $\mathbb{E}[Z_j] = 7/8$: out of 8 possible assignments to the 3 variables in C_j, 7 of them will make C_j satisfied
- $\mathbb{E}[Z] = \mathbb{E}\left[\sum_{j=1}^{m} Z_j\right] = \sum_{j=1}^{m} \mathbb{E}[Z_j] = \sum_{j=1}^{m} \frac{7}{8} = \frac{7}{8}m$, by linearity of expectation.
Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.
Lemma Let \(m \) be the number of clauses. Then, in expectation, \(\frac{7}{8}m \) number of clauses will be satisfied.

- Since the optimum solution can satisfy at most \(m \) clauses, lemma gives a randomized \(7/8 \)-approximation for Max-3-SAT.
Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

- Since the optimum solution can satisfy at most m clauses, lemma gives a randomized $7/8$-approximation for Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no ρ-approximation algorithm for MAX-3-SAT for any $\rho > 7/8$.
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. \(\frac{7}{8}\)-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
<table>
<thead>
<tr>
<th></th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Conquer</td>
<td>Recurse</td>
<td>Recurse</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.

\begin{tabular}{cccccccccccc}
 29 & 82 & 75 & 64 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 17 & 85 \\
\end{tabular}

\begin{tabular}{cccccccccccc}
 29 & 38 & 45 & 25 & 15 & 37 & 17 & 64 & 82 & 75 & 94 & 92 & 69 & 76 & 85 \\
\end{tabular}
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

```plaintext
quicksort(A, n)

1. if n ≤ 1 then return A
2. x ← lower median of A
3. A_L ← elements in A that are less than x
4. A_R ← elements in A that are greater than x
5. B_L ← quicksort(A_L, A_L.size)
7. t ← number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
```
Quicksort

quicksort(A, n)

if \(n \leq 1 \) then return A

\(x \leftarrow \) lower median of A

\(A_L \leftarrow \) elements in A that are less than \(x \) \hspace{1cm} \| \hspace{0.5cm} \text{Divide} \)

\(A_R \leftarrow \) elements in A that are greater than \(x \) \hspace{1cm} \| \hspace{0.5cm} \text{Divide} \)

\(B_L \leftarrow \) quicksort(\(A_L, A_L\).size) \hspace{1cm} \| \hspace{0.5cm} \text{Conquer} \)

\(B_R \leftarrow \) quicksort(\(A_R, A_R\).size) \hspace{1cm} \| \hspace{0.5cm} \text{Conquer} \)

\(t \leftarrow \) number of times \(x \) appear \(A \)

return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
Quicksort

quicksort(A, n)

1. if n ≤ 1 then return A
2. x ← lower median of A
3. AL ← elements in A that are less than x
\|\| Divide
4. AR ← elements in A that are greater than x
\|\| Divide
5. BL ← quicksort(AL, AL.size)
\|\| Conquer
6. BR ← quicksort(AR, AR.size)
\|\| Conquer
7. t ← number of times x appear A
8. return the array obtained by concatenating BL, the array containing t copies of x, and BR

- Recurrence $T(n) ≤ 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$
Each level has total running time $O(n)$
Number of levels = $O(\lg n)$
Total running time = $O(n \lg n)$
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>82</td>
<td>75</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
</tr>
</tbody>
</table>

To partition the array into two parts, we only need $O(1)$ extra space.
QuickSort can be implemented as an “in-place” sorting algorithm.

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1)\) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” *extra* space.

![Partitioning Array](image)

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quick sort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 17 | 37 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 64 | 82 | 85 |

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[i \quad j \]

\[
\begin{array}{cccccccccccccccc}
17 & 37 & 64 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 75 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quickso...
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

17 37 15 29 38 45 64 69 25 76 94 92 75 82 85

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[\begin{array}{cccccccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 64 & 69 & 25 & 76 & 94 & 92 & 75 & 82 & 85 \\
\end{array}\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm:** an algorithm that only uses “small” extra space.

```
17  37  15  29  38  45  25  69  64  76  94  92  75  82  85
```

To partition the array into two parts, we only need \(O(1) \) extra space.

Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

![Array Illustration]

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Randomized Quicksort Algorithm

quicksort\((A, n)\)

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \)
 \(\text{\\ Divide} \)
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \)
 \(\text{\\ Divide} \)
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\)
 \(\text{\\ Conquer} \)
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\)
 \(\text{\\ Conquer} \)
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Variant of Randomized Quicksort Algorithm

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. repeat
3. \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
4. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \text{\\ Divide}
5. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \text{\\ Divide}
6. until \(A_L\).size \(\leq\) \(3n/4\) and \(A_R\).size \(\leq\) \(3n/4\)
7. \(B_L \leftarrow\) quicksort\((A_L, A_L\).size\) \hspace{1cm} \text{\\ Conquer}
8. \(B_R \leftarrow\) quicksort\((A_R, A_R\).size\) \hspace{1cm} \text{\\ Conquer}
9. \(t \leftarrow\) number of times \(x\) appear \(A\)
10. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Analysis of Variant

3. $x \leftarrow$ a random element of A
4. $A_L \leftarrow$ elements in A that are less than x
5. $A_R \leftarrow$ elements in A that are greater than x

Q: What is the probability that $A_L.size \leq 3n/4$ and $A_R.size \leq 3n/4$?
Analysis of Variant

3. $x \leftarrow$ a random element of A

4. $A_L \leftarrow$ elements in A that are less than x

5. $A_R \leftarrow$ elements in A that are greater than x

Q: What is the probability that A_L.size $\leq 3n/4$ and A_R.size $\leq 3n/4$?

A: At least 1/2
repeat
\[x \leftarrow \text{a random element of } A \]
\[A_L \leftarrow \text{elements in } A \text{ that are less than } x \]
\[A_R \leftarrow \text{elements in } A \text{ that are greater than } x \]
\[\text{until } A_L.\text{size} \leq 3n/4 \text{ and } A_R.\text{size} \leq 3n/4 \]

Q: What is the expected number of iterations the above procedure takes?
repeat
3 \[x \leftarrow \text{a random element of } A \]
4 \[A_L \leftarrow \text{elements in } A \text{ that are less than } x \]
5 \[A_R \leftarrow \text{elements in } A \text{ that are greater than } x \]
6 until \(A_L \text{.size} \leq 3n/4 \) and \(A_R \text{.size} \leq 3n/4 \)

Q: What is the expected number of iterations the above procedure takes?

A: At most 2
Suppose an experiment succeeds with probability $p \in (0, 1]$, independent of all previous experiments.

1. repeat
2. run an experiment
3. until the experiment succeeds

Lemma The expected number of experiments we run in the above procedure is $1/p$.
Fact For $q \in (0, 1)$, we have $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$.
Lemma The expected number of experiments we run in the above procedure is $1/p$.

Proof

Expectation
$$= p + (1 - p)p \times 2 + (1 - p)^2p \times 3 + (1 - p)^3p \times 4 + \cdots$$
$$= p \sum_{i=1}^{\infty} (1 - p)^{i-1}i = p \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} (1 - p)^{i-1}$$
$$= p \sum_{j=1}^{\infty} (1 - p)^{j-1} \frac{1}{1 - (1 - p)} = \sum_{j=1}^{\infty} (1 - p)^{j-1}$$
$$= (1 - p)^{0} \frac{1}{1 - (1 - p)} = 1/p$$
Variant Randomized Quicksort Algorithm

quicksort(A, n)

1. if \(n \leq 1 \) then return \(A \)
2. repeat
3. \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
4. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \\\nDivide
5. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \\\nDivide
6. until \(A_L.size \leq 3n/4 \) and \(A_R.size \leq 3n/4 \)
7. \(B_L \leftarrow \) quicksort\((A_L, A_L.size)\) \\\nConquer
8. \(B_R \leftarrow \) quicksort\((A_R, A_R.size)\) \\\nConquer
9. \(t \leftarrow \) number of times \(x \) appear in \(A \)
10. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Analysis of Variant

- Divide and Combine: takes $O(n)$ time
- Conquer: break an array of size n into two arrays, each has size at most $3n/4$. Recursively sort the 2 sub-arrays.

Number of levels $\leq \log_{4/3} n = O(\log n)$
Randomized Quicksort Algorithm

quicksort(\(A, n\))

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow \) a random element of \(A\) (\(x\) is called a pivot)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \| \text{Divide}
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \| \text{Divide}
5. \(B_L \leftarrow\) quicksort(\(A_L, A_L\).size) \hspace{1cm} \| \text{Conquer}
6. \(B_R \leftarrow\) quicksort(\(A_R, A_R\).size) \hspace{1cm} \| \text{Conquer}
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

- Intuition: the quicksort algorithm should be better than the variant.
\[T(n) \]: an upper bound on the expected running time of the randomized quicksort algorithm on \(n \) elements.
Analysis of Randomized Quicksort Algorithm

- $T(n)$: an upper bound on the expected running time of the randomized quicksort algorithm on n elements
- Assuming we choose the element of rank i as the pivot.
Analysis of Randomized Quicksort Algorithm

- $T(n)$: an upper bound on the **expected** running time of the randomized quicksort algorithm on n elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most $i - 1$
Analysis of Randomized Quicksort Algorithm

- $T(n)$: an upper bound on the expected running time of the randomized quicksort algorithm on n elements.
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most $i - 1$.
- The right sub-instance has size at most $n - i$.
• $T(n)$: an upper bound on the expected running time of the randomized quicksort algorithm on n elements.

• Assuming we choose the element of rank i as the pivot.

• The left sub-instance has size at most $i - 1$.

• The right sub-instance has size at most $n - i$.

• Thus, the expected running time in this case is

$$ (T(i - 1) + T(n - i)) + O(n) $$
Analysis of Randomized Quicksort Algorithm

- $T(n)$: an upper bound on the expected running time of the randomized quicksort algorithm on n elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most $i - 1$
- The right sub-instance has size at most $n - i$
- Thus, the expected running time in this case is $\left(T(i - 1) + T(n - i) \right) + O(n)$
- Overall, we have

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} \left(T(i - 1) + T(n - i) \right) + O(n)$$
Analysis of Randomized Quicksort Algorithm

- \(T(n) \): an upper bound on the expected running time of the randomized quicksort algorithm on \(n \) elements
- Assuming we choose the element of rank \(i \) as the pivot.
- The left sub-instance has size at most \(i - 1 \)
- The right sub-instance has size at most \(n - i \)
- Thus, the expected running time in this case is
 \[
 (T(i - 1) + T(n - i)) + O(n)
 \]
- Overall, we have
 \[
 T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i - 1) + T(n - i)) + O(n)
 \]
 \[
 = \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n)
 \]
Analysis of Randomized Quicksort Algorithm

- $T(n)$: an upper bound on the expected running time of the randomized quicksort algorithm on n elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most $i - 1$
- The right sub-instance has size at most $n - i$
- Thus, the expected running time in this case is
 \[(T(i - 1) + T(n - i)) + O(n) \]
- Overall, we have
 \[
 T(n) = \frac{1}{n} \sum_{i=1}^{n} \left(T(i - 1) + T(n - i) \right) + O(n) \\
 = \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n)
 \]
- Can prove $T(n) \leq c(n \log n)$ for some constant c by reduction
The induction step of the proof:

\[
T(n) \leq \frac{2}{n} \sum_{i=0}^{n-1} T(i) + c'n \leq \frac{2}{n} \sum_{i=0}^{n-1} ci \lg i + c'n
\]

\[
\leq \frac{2c}{n} \left(\sum_{i=0}^{\lfloor n/2 \rfloor-1} i \lg \frac{n}{2} + \sum_{i=\lfloor n/2 \rfloor}^{n-1} i \lg n \right) + c'n
\]

\[
\leq \frac{2c}{n} \left(\frac{n^2}{8} \lg \frac{n}{2} + \frac{3n^2}{8} \lg n \right) + c'n
\]

\[
= c \left(\frac{n}{4} \lg n - \frac{n}{4} + \frac{3n}{4} \lg n \right) + c'n
\]

\[
= cn \lg n - \frac{cn}{4} + c'n \leq cn \lg n \quad \text{if } c \geq 4c'
\]
Exercise: Coupon Collector

Coupon Collector

Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, in expectation, how many boxes before you have all coupon types?

- Break into n stages 1, 2, 3, \ldots , n
- Stage i terminates when we have collected i coupon types
- X_i: number of coupons collected in stage i
- $X = \sum_{i=1}^{n} X_i$: total number of coupons collected
Exercise: Coupon Collector

- X_i: number of coupons collected in stage i
- $X = \sum_{i=1}^{n} X_i$: total number of coupons collected

In stage i: with probability $\frac{n-(i-1)}{n}$, a random coupon has type different from the $i - 1$ types already seen

Thus, $\mathbb{E}[X_i] = \frac{n}{n-(i-1)}$.

By linearity of expectation:

\[
\mathbb{E}[X] = \sum_{i=1}^{n} \frac{n}{n-(i-1)} = \sum_{i=1}^{n} \frac{n}{i} = nH(n),
\]

where $H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \Theta(\lg n)$ is called the n-th Harmonic number.

$\mathbb{E}[X] = \Theta(n \lg n)$.
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. \(\frac{7}{8}\)-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. \(\frac{7}{8}\)-Approximation Algorithm for Max 3-SAT
5. Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Example of Linear Programming

\[
\begin{align*}
\text{min} & \quad 4x_1 + 5x_2 \\
\text{s.t.} & \quad 2x_1 + x_2 \geq 6 \\
& \quad x_1 + 2x_2 \geq 4 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

Optimum point: \(x_1 = \frac{8}{3}, x_2 = \frac{2}{3} \)

Value: \(4 \times \frac{8}{3} + 5 \times \frac{2}{3} = \frac{14}{3} \)
Example of Linear Programming

\[
\begin{align*}
\text{min} & \quad 4x_1 + 5x_2 \\
\text{s.t.} & \quad 2x_1 + x_2 \geq 6 \\
& \quad x_1 + 2x_2 \geq 4 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Example of Linear Programming

\[
\begin{align*}
\text{min} & \quad 4x_1 + 5x_2 \\
\text{s.t.} & \quad 2x_1 + x_2 \geq 6 \\
& \quad x_1 + 2x_2 \geq 4 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Example of Linear Programming

\[
\begin{align*}
\text{min} & \quad 4x_1 + 5x_2 \\
\text{s.t.} & \quad 2x_1 + x_2 \geq 6 \\
& \quad x_1 + 2x_2 \geq 4 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Example of Linear Programming

\[\text{min } 4x_1 + 5x_2 \quad \text{s.t.} \]
\[2x_1 + x_2 \geq 6 \]
\[x_1 + 2x_2 \geq 4 \]
\[x_1, x_2 \geq 0 \]
Example of Linear Programming

\[
\begin{align*}
\text{min} & \quad 4x_1 + 5x_2 \\
\text{s.t.} & \quad 2x_1 + x_2 \geq 6 \\
& \quad x_1 + 2x_2 \geq 4 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

- optimum point: \(x_1 = \frac{8}{3}, x_2 = \frac{2}{3} \)
Example of Linear Programming

\[
\begin{align*}
\text{min} & \quad 4x_1 + 5x_2 & \quad \text{s.t.} \\
& 2x_1 + x_2 \geq 6 \\
& x_1 + 2x_2 \geq 4 \\
& x_1, x_2 \geq 0
\end{align*}
\]

- optimum point: \(x_1 = \frac{8}{3}, x_2 = \frac{2}{3} \)
- value = \(4 \times \frac{8}{3} + 5 \times \frac{2}{3} = 14 \)
Standard Form of Linear Programming

\[\text{min} \quad c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \quad \text{s.t.} \]
\[\sum A_{1,1} x_1 + A_{1,2} x_2 + \cdots + A_{1,n} x_n \geq b_1 \]
\[\sum A_{2,1} x_1 + A_{2,2} x_2 + \cdots + A_{2,n} x_n \geq b_2 \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]
\[\sum A_{m,1} x_1 + A_{m,2} x_2 + \cdots + A_{m,n} x_n \geq b_m \]
\[x_1, x_2, \cdots, x_n \geq 0 \]
Standard Form of Linear Programming

Let \(x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \), \(c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \),

\[A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{pmatrix}, \]

\(b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \).

Then, LP becomes

\[
\min c^T x \quad \text{s.t.} \quad Ax \geq b, \\
x \geq 0
\]

\(\geq \) means coordinate-wise greater than or equal to.
Linear programmings can be solved in polynomial time

Algorithms for Solving LPs

- **Simplex method**: exponential time in theory, but works well in practice
- **Ellipsoid method**: polynomial time in theory, but slow in practice
- **Internal point method**: polynomial time in theory, works well in practice
Outline

1. Approximation Algorithms
2. Approximation Algorithms for Traveling Salesman Problem
3. 2-Approximation Algorithm for Vertex Cover
4. $\frac{7}{8}$-Approximation Algorithm for Max 3-SAT
5. Randomized QuickSort
 - Recap of QuickSort
 - Randomized QuickSort Algorithm
6. 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover
Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.
Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

![Diagram of a graph with vertex cover highlighted]
Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Weighted Vertex-Cover Problem

Input: $G = (V, E)$ with vertex weights $\{w_v\}_{v \in V}$

Output: a vertex cover S with minimum $\sum_{v \in S} w_v$
For every $v \in V$, let $x_v \in \{0, 1\}$ indicate whether we select v in the vertex cover S.

The integer programming for weighted vertex cover:

$$(\text{IP}_{WVC}) \quad \min \sum_{v \in V} w_v x_v \quad \text{s.t.}$$

$$x_u + x_v \geq 1 \quad \forall (u, v) \in E$$

$$x_v \in \{0, 1\} \quad \forall v \in V$$

$(\text{IP}_{WVC}) \iff$ weighted vertex cover

Thus it is NP-hard to solve integer programmings in general.
Integer programming for WVC:

\[
\text{(IP}_{WVC}\text{)} \quad \min \sum_{v \in V} w_v x_v \quad \text{s.t.}
\]
\[
x_u + x_v \geq 1 \quad \forall (u, v) \in E
\]
\[
x_v \in \{0, 1\} \quad \forall v \in V
\]

\[\text{let IP = value of (IP}_{WVC}\text{), LP = value of (LP}_{WVC}\text{)}\]

\[\text{Then, } LP \leq IP\]
• Integer programming for WVC:

\[(IP_{WVC}) \quad \min \sum_{v \in V} w_v x_v \quad \text{s.t.} \]
\[x_u + x_v \geq 1 \quad \forall (u, v) \in E \]
\[x_v \in \{0, 1\} \quad \forall v \in V \]

• Linear programming relaxation for WVC:

\[(LP_{WVC}) \quad \min \sum_{v \in V} w_v x_v \quad \text{s.t.} \]
\[x_u + x_v \geq 1 \quad \forall (u, v) \in E \]
\[x_v \in [0, 1] \quad \forall v \in V \]
- Integer programming for WVC:

\[
\text{(IP}_{WVC}\text{)} \quad \min \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
\quad x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
\quad x_v \in \{0, 1\} \quad \forall v \in V
\]

- Linear programming relaxation for WVC:

\[
\text{(LP}_{WVC}\text{)} \quad \min \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
\quad x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
\quad x_v \in [0, 1] \quad \forall v \in V
\]

- Let IP = value of (IP\text{\textsubscript{WVC}}), LP = value of (LP\text{\textsubscript{WVC}})
Integer programming for WVC:

\[(\text{IP}_{\text{WVC}}) \quad \text{min} \quad \sum_{v \in V} w_v x_v \quad \text{s.t.} \]

\[x_u + x_v \geq 1 \quad \forall (u, v) \in E\]

\[x_v \in \{0, 1\} \quad \forall v \in V\]

Linear programming relaxation for WVC:

\[(\text{LP}_{\text{WVC}}) \quad \text{min} \quad \sum_{v \in V} w_v x_v \quad \text{s.t.} \]

\[x_u + x_v \geq 1 \quad \forall (u, v) \in E\]

\[x_v \in [0, 1] \quad \forall v \in V\]

let IP = value of (IP_{WVC}), LP = value of (LP_{WVC})

Then, LP ≤ IP
Algorithm for Weighted Vertex Cover

1. Solving \((LP_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\).

2.

3.
Algorithm for Weighted Vertex Cover

1. Solving \((LP_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(LP = \sum_{u \in V} w_u x_u^* \leq IP\)

Lemma
\(S\) is a vertex cover of \(G\).

Proof.
Consider any edge \((u, v) \in E\): we have \(x_u^* + x_v^* \geq 1\). Thus, either \(x_u^* \geq 1/2\) or \(x_v^* \geq 1/2\). Thus, either \(u \in S\) or \(v \in S\).
Algorithm for Weighted Vertex Cover

1. Solving \((LP_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(LP = \sum_{u \in V} w_u x_u^* \leq IP\)
3. Let \(S = \{u \in V : x_u \geq 1/2\}\) and output \(S\)
Algorithm for Weighted Vertex Cover

1. Solving \((LP_{WVC}) \) to obtain a solution \(\{x_u^*\}_{u \in V} \)
2. Thus, \(LP = \sum_{u \in V} w_u x_u^* \leq IP \)
3. Let \(S = \{u \in V : x_u \geq 1/2\} \) and output \(S \)

Lemma \(S \) is a vertex cover of \(G \).
Algorithm for Weighted Vertex Cover

1. Solving \((\text{LP}_{\text{WVC}})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)

2. Thus, \(\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}\)

3. Let \(S = \{u \in V : x_u \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Proof.
Algorithm for Weighted Vertex Cover

1. Solving \((\text{LP}_{\text{WVC}})\) to obtain a solution \(\{x^*_u\}_{u \in V}\)
2. Thus, \(\text{LP} = \sum_{u \in V} w_u x^*_u \leq \text{IP}\)
3. Let \(S = \{u \in V : x_u \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Proof.
- Consider any edge \((u, v) \in E\): we have \(x^*_u + x^*_v \geq 1\)
Algorithm for Weighted Vertex Cover

1. Solving \((LP_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(LP = \sum_{u \in V} w_u x_u^* \leq IP\)
3. Let \(S = \{u \in V : x_u \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Proof.
- Consider any edge \((u, v) \in E\): we have \(x_u^* + x_v^* \geq 1\)
- Thus, either \(x_u^* \geq 1/2\) or \(x_v^* \geq 1/2\)
Algorithm for Weighted Vertex Cover

1. Solving \((\text{LP}_{\text{WVC}})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}\)
3. Let \(S = \{u \in V : x_u \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Proof.
- Consider any edge \((u, v) \in E\): we have \(x_u^* + x_v^* \geq 1\)
- Thus, either \(x_u^* \geq 1/2\) or \(x_v^* \geq 1/2\)
- Thus, either \(u \in S\) or \(v \in S\).
Algorithm for Weighted Vertex Cover

1. Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
2. Thus, $\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}$
3. Let $S = \{u \in V : x_u \geq 1/2\}$ and output S

Lemma S is a vertex cover of G.
Algorithm for Weighted Vertex Cover

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solving ((\text{LP}{\text{WVC}})) to obtain a solution ({x_u^*}{u \in V})</td>
</tr>
<tr>
<td>2</td>
<td>Thus, (\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP})</td>
</tr>
<tr>
<td>3</td>
<td>Let (S = {u \in V : x_u \geq 1/2}) and output (S)</td>
</tr>
</tbody>
</table>

Lemma \(S\) is a vertex cover of \(G\).

Lemma \(\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP}\).
Algorithm for Weighted Vertex Cover

1. Solving \((\text{LP}_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}\)
3. Let \(S = \{u \in V : x_u \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Lemma \(\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP}\).

Proof.

\[
\text{cost}(S) = \sum_{u \in S} w_u \leq \sum_{u \in S} w_u \cdot 2x_u^* = 2 \sum_{u \in S} w_u \cdot x_u^*
\]

\[
\leq 2 \sum_{u \in V} w_u \cdot x_u^* = 2 \cdot \text{LP}.
\]
Algorithm for Weighted Vertex Cover

1. Solving \((\text{LP}_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}\)
3. Let \(S = \{u \in V : x_u^* \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Lemma \(\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP}\).
Algorithm for Weighted Vertex Cover

1. Solving \((LP_{WVC})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(LP = \sum_{u \in V} w_u x_u^* \leq IP\)
3. Let \(S = \{u \in V : x_u^* \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Lemma \(\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot LP\).

Theorem Algorithm is a 2-approximation algorithm for WVC.
Algorithm for Weighted Vertex Cover

1. Solving \((\text{LP}_{\text{WVC}})\) to obtain a solution \(\{x_u^*\}_{u \in V}\)
2. Thus, \(\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}\)
3. Let \(S = \{u \in V : x_u^* \geq 1/2\}\) and output \(S\)

Lemma \(S\) is a vertex cover of \(G\).

Lemma \(\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP}\).

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.
\[
\text{cost}(S) \leq 2 \cdot \text{LP} \leq 2 \cdot \text{IP} = 2 \cdot \text{cost(\text{best vertex cover})}.
\]