CSE 431/531: Analysis of Algorithms

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
- Greedy algorithm: design efficient algorithms
- Divide-and-conquer: design more efficient algorithms
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1. if $n = 1$ then
 2. return A
3. else
 4. $B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil)$
 5. $C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$
There are $O(\lg n)$ levels
Running time $= O(n \lg n)$
Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

 \[
 T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
 \end{cases}
 \]

- With some tolerance of informality:

 \[
 T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 2T(n/2) + O(n) & \text{if } n \geq 2
 \end{cases}
 \]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \lg n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):

$(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

```markdown
count-inversions(A, n)

1. \( c \leftarrow 0 \)
2. for every \( i \leftarrow 1 \) to \( n - 1 \)
3. \hspace{1em} for every \( j \leftarrow i + 1 \) to \( n \)
4. \hspace{2em} if \( A[i] > A[j] \) then \( c \leftarrow c + 1 \)
5. return \( c \)
```
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i,j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2 +3 +3 +5 +5$

$\text{total} = 18$
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1. $count \leftarrow 0$
2. $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
3. while $i \leq n_1$ or $j \leq n_2$
 4. if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
 5. append $B[i]$ to $A; i \leftarrow i + 1$
 6. $count \leftarrow count + (j - 1)$
 else
 7. append $C[j]$ to $A; j \leftarrow j + 1$
8. return $(A, count)$
A procedure that returns the sorted array of A and counts the number of inversions in A:

$$\text{sort-and-count}(A, n)$$

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

Divide: trivial
Conquer: 4, 5
Combine: 6, 7
sort-and-count(A, n)

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Conquer</th>
<th>Combine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Recurse</td>
<td>Merge 2 sorted arrays</td>
</tr>
</tbody>
</table>

Merge Sort

QuickSort

Separate small and big numbers
Recurse
Trivial
Assumption We can choose median of an array of size n in $O(n)$ time.

```
 29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```

```
 29  38  45  25  15  37  17  64  82  75  94  92  69  76  85
```

```
 25  15  17  29  38  45  37  64  82  75  94  92  69  76  85
```
Quicksort

quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x
4. $A_R \leftarrow$ elements in A that are greater than x
5. $B_L \leftarrow$ quicksort(A_L, A_L.size)
6. $B_R \leftarrow$ quicksort(A_R, A_R.size)
7. $t \leftarrow$ number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a **pivot randomly** and pretend it is the median (it is practical)
quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ a random element of A (x is called a pivot)
3. $A_L \leftarrow$ elements in A that are less than x \ Divide
4. $A_R \leftarrow$ elements in A that are greater than x \ Divide
5. $B_L \leftarrow$ quicksort($A_L, A_L.size$) \ Conquer
6. $B_R \leftarrow$ quicksort($A_R, A_R.size$) \ Conquer
7. $t \leftarrow$ number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: make the assumption
Quicksort Using A Random Pivot

```plaintext
quicksort(A, n)

1 if n ≤ 1 then return A
2 x ← a random element of A (x is called a pivot)
3 A_L ← elements in A that are less than x  \ Divide
4 A_R ← elements in A that are greater than x  \ Divide
5 B_L ← quicksort(A_L, A_L.size)  \ Conquer
6 B_R ← quicksort(A_R, A_R.size)  \ Conquer
7 t ← number of times x appear A
8 return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
```

- When we talk about randomized algorithm in the future, we show that the expected running time of the algorithm is \(O(n \lg n)\).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

\[
\text{partition}(A, \ell, r)
\]

1. \(p \leftarrow \text{random integer between } \ell \text{ and } r\)
2. swap \(A[p]\) and \(A[\ell]\)
3. \(i \leftarrow \ell, j \leftarrow r\)
4. while \(i < j\) do
 5. while \(i < j\) and \(A[i] \leq A[j]\) do \(j \leftarrow j - 1\)
 6. swap \(A[i]\) and \(A[j]\)
 7. while \(i < j\) and \(A[i] \leq A[j]\) do \(i \leftarrow i + 1\)
 8. swap \(A[i]\) and \(A[j]\)
9. return \(i\)
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

\[
\text{quicksort}(A, \ell, r)
\]

1. if \(\ell \geq r \) return
2. \(p \leftarrow \text{partition}(A, \ell, r) \)
3. \(q \leftarrow p - 1; \text{while } A[q] = A[p] \text{ and } q \geq \ell \text{ do: } q \leftarrow q - 1 \)
4. \(\text{quicksort}(A, \ell, q) \)
5. \(q \leftarrow p + 1; \text{while } A[q] = A[p] \text{ and } q \leq r \text{ do: } q \leftarrow q + 1 \)
6. \(\text{quicksort}(A, q, r) \)

To sort an array \(A \) of size \(n \), call \(\text{quicksort}(A, 1, n) \).

Note: We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(*A*, *n*)

1. if *n* ≤ 1 then return *A*
2. \(x \leftarrow \text{lower median of } A \)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \(\text{// Divide} \)
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \(\text{// Divide} \)
5. \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \(\text{// Conquer} \)
6. \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \(\text{// Conquer} \)
7. \(t \leftarrow \text{number of times } x \text{ appear } A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Selection Algorithm with Median Finder

selection(A, n, i)

1. if $n = 1$ then return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x \ Divide
4. $A_R \leftarrow$ elements in A that are greater than x \ Divide
5. if $i \leq A_L$.size then
 6. return selection(A_L, A_L.size, i) \ Conquer
7. elseif $i > n - A_R$.size then
 8. return select(A_R, A_R.size, $i - (n - A_R$.size)) \ Conquer
9. else return x

- Recurrence for selection: $T(n) = T(n/2) + O(n)$
- Solving recurrence: $T(n) = O(n)$
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \hfill \text{\textbackslash \textbackslash \text{Divide}}
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \hfill \text{\textbackslash \textbackslash \text{Divide}}
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1em} return \(\text{selection}(A_L, A_L.\text{size}, i) \) \hfill \text{\textbackslash \textbackslash \text{Conquer}}
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1em} return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \hfill \text{\textbackslash \textbackslash \text{Conquer}}
9. else return \(x \)

- \textbf{expected} running time = \(O(n) \)
1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]

\[
= 6x^6 - 9x^5 + 18x^4 - 15x^3
\]

\[
+ 4x^5 - 6x^4 + 12x^3 - 10x^2
\]

\[
- 10x^4 + 15x^3 - 30x^2 + 25x
\]

\[
+ 8x^3 - 12x^2 + 24x - 20
\]

\[
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

\textbf{polynomial-multiplication}(A, B, n)

1. let $C[k] = 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2. for $i \leftarrow 0$ to $n - 1$
3. \hspace{1em} for $j \leftarrow 0$ to $n - 1$
4. \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5. return C

Running time: $O(n^2)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L)
= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L
\]
\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n
\]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2}
\]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \]
\[+ r_L \]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

\begin{align*}
\text{multiply}(A, B, n) & \\
1 & \text{if } n = 1 \text{ then return } (A[0]B[0]) \\
2 & A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \\
3 & B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \\
4 & C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \\
5 & C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \\
6 & C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \\
7 & C \leftarrow \text{array of } (2n - 1) \text{ 0's} \\
8 & \text{for } i \leftarrow 0 \text{ to } n - 2 \text{ do} \\
9 & \quad C[i] \leftarrow C[i] + C_L[i] \\
10 & \quad C[i + n] \leftarrow C[i + n] + C_H[i] \\
11 & \quad C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \\
12 & \text{return } C
\end{align*}
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: n points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- **Trivial algorithm:** $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

![Diagram showing points and a vertical line dividing them into halves.](image)
Each box contains at most one pair
For each point, only need to consider \(O(1) \) boxes nearby
Time for combine = \(O(n) \) (many technicalities omitted)
Recurrence: \(T(n) = 2T(n/2) + O(n) \)
Running time: \(O(n \log n) \)
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: `matrix-multiplication(A, B, n)`

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication\((A, B)\) recursively calls matrix_multiplication\((A_{11}, B_{11})\),
 matrix_multiplication\((A_{12}, B_{21})\),
 ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)

Index of last level? \(\lg_2 n \)

Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

Index of last level? \(\lg_2 n \)

Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2)
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **c < \log_b a**: bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\log_b n} n^c = n^{\log_b a} \)
- **c = \log_b a**: all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
- **c > \log_b a**: top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. **Self-Balancing Binary Search Trees**
8. Computing n-th Fibonacci Number
Binary Search Tree (BST)

- Elements are organized in a binary-tree structure
- Each element (node) is associated with a key value

- if node u is in the left sub-tree of node v, then $u.key \leq v.key$
- if node u is the right sub-tree of node v, then $u.key \geq v.key$
- in-order traversal of tree gives a sorted list of keys

BST: numbers denote keys

```
8  3  10
1  6  4  7
14
13
```
- **insert**: insert an element to T
- **delete**: delete an element from T
- **count-less-than**: return the number of elements in T with key values smaller than a given value
- check existence, return element with i-th smallest key value, ...
Counting Inversions Via Binary Search Tree (BST)

count-inversions\((A, n) \)

1. \(T \leftarrow \) empty BST
2. \(c \leftarrow 0 \)
3. for \(i \leftarrow n \) down to 1
4. \(c \leftarrow c + T.\text{count-less-than}(A[i]) \)
5. \(T.\text{insert}(A[i]) \)
6. return \(c \)

running time =
\(n \times (\text{time for count} + \text{time for insert}) \)

tree elements

\[
\begin{array}{ccccccc}
15 & 3 & 16 & 12 & 32 & 7 \\
\end{array}
\]

count-less-than(7) = 0
insert(7)
count-less-than(32) = 1
insert(32)
count-less-than(12) = 1
insert(12)
count-less-than(16) = 2
Binary Search Tree: Insertion

```
8
/   \
3   10
/   /  \
1   6   4
/ \
4   7
/   /
13
/  \
14
/  \
1
```

```
5
```
recursive-insert\((v, key)\)

1. if \(v = \text{nil}\) then
2. \(u \gets \text{new node with } u._\text{left} = u._\text{right} = \text{nil}\)
3. \(u.\text{key} \gets key\)
4. return \(u\)
5. if \(key < v.\text{key}\) then
6. \(v._\text{left} \gets \text{recursive-insert}(v._\text{left}, key)\)
7. else
8. \(v._\text{right} \gets \text{recursive-insert}(v._\text{right}, key)\)
9. return \(v\)

insert\((key)\)

1. root \(\gets \text{recursive-insert}(\text{root}, key)\)
Binary Search Tree: Deletion

Diagram of a binary search tree with nodes labeled from 1 to 20. The node with the value 7 is highlighted, indicating it is being deleted.
recursive-delete(v)

1. if $v.right = nil$ then return ($v.left, v$)
2. ($v.right, del) \leftarrow$ recursive-delete($v.right$)
3. return (v, del)

- recursive-delete(v) deletes the element in the sub-tree rooted at v with the largest key value
- returns: the new root and the deleted node

delete(v)

\[\text{\textbackslash \textbackslash returns the new root after deletion} \]

1. if $v.left = nil$ then return $v.right$
2. ($r, del) \leftarrow$ recursive-delete($v.left$)
3. $r.key \leftarrow del.key$
4. return r
recursive-delete(v)

1. if $v.right = \text{nil}$ then return $(v.left, v)$
2. $(v.right, del) \leftarrow \text{recursive-delete}(v.right)$
3. return (v, del)

delete(v) \hspace{1cm} \text{// returns the new root after deletion}

1. if $v.left = \text{nil}$ then return $v.right$
2. $(r, del) \leftarrow \text{recursive-delete}(v.left)$
3. $r.key \leftarrow del.key$
4. return r

- to remove left-child of v: call $v.left \leftarrow \text{delete}(v.left)$
- to remove right-child of v: call $v.right \leftarrow \text{delete}(v.right)$
- to remove root: call $root \leftarrow \text{delete}(root)$
Binary Search Tree: count-less-than

- Need to maintain a "size" property for each node
- \(v.size = \) number of nodes in the tree rooted at \(v \)

\[\# \text{ (elements < 10)} = (5+1) + 1 = 7 \]
Trick: “nil” is a node with size 0.

```
recursive-count(v, value)
1  if v = nil then return 0
2  if value ≤ v.key
3    return recursive-count(v.left, key)
4  else
5    return v.left.size + 1 + recursive-count(v.right, key)
```

```
count-less-than(value)
1  return recursive-count(root, value)
```
Running Time for Each Operation

- Each operation takes time $O(h)$.
- $h = \text{height of tree}$
- $n = \text{number of nodes in tree}$

Q: What is the height of the tree in the best scenario?

A: $O(\lg n)$

Q: What is the height of the tree in the worst scenario?

A: $O(n)$
Def. A self-balancing BST is a BST that automatically keeps its height small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ...
An AVL Tree is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.
An AVL Tree Is Balanced

Balanced: for every node \(v \) in the tree, the heights of the left and right sub-trees of \(v \) differ by at most 1.

Lemma Property guarantees height = \(O(\log n) \).

- \(f(h) \): minimum size of a balanced tree of height \(h \)

- \(f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 \cdots \)
• $f(h)$: minimum size of a balanced tree of height h

\[f(0) = 0 \]
\[f(1) = 1 \]
\[f(h) = f(h - 1) + f(h - 2) + 1 \quad h \geq 2 \]

• $f(h) = 2^{\Theta(h)}$ (i.e, $\lg f(h) = \Theta(h)$)
Depth of AVL tree

- \(f(h) \): minimum size of a balanced tree of height \(h \)
- \(f(h) = 2^{\Theta(h)} \)
- If a AVL tree has size \(n \) and height \(h \), then
 \[
 n \geq f(h) = 2^{\Theta(h)}
 \]
- Thus, \(h \leq \Theta(\log n) \)
An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

- How can we maintain the balanced property?
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog**, we inserted an element to the left-sub-tree of **A**
- **B**: the root of left-sub-tree of **A**
- case 1: we inserted an element to the left-sub-tree of **B**
Maintain Balance Property After Insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B
count-inversions(A, n)

1. $T \leftarrow$ empty AVL tree
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. \hspace{1cm} $c \leftarrow c + T.count-less-than(A[i])$
5. \hspace{1cm} $T.insert(A[i])$
6. return c

- Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(lg n)$.
- Running time = $O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, \ F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \ \forall n \geq 2 \)
- Fibonacci sequence: \(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots \)

\(n \)-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\ldots

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if $n = 0$ then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

2. $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$

3. $R \leftarrow R \times R$

4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5. return R

Fib(n)

1. if $n = 0$ then return 0

2. $M \leftarrow \text{power}(n - 1)$

3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ···:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time