CSE 431/531: Analysis of Algorithms

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Greedy algorithm: design efficient algorithms
- Greedy algorithm: design efficient algorithms
- Divide-and-conquer: design more efficient algorithms
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1. if \(n = 1\) then
2. return \(A\)
3. else
4. \(B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\right)\)
5. \(C \leftarrow \text{merge-sort}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\right)\)
6. return \(\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
merge-sort\((A, n)\)

1. if \(n = 1\) then
2. return \(A\)
3. else
4. \(B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\right)\)
5. \(C \leftarrow \text{merge-sort}\left(A[\lceil n/2\rceil + 1..n], \lceil n/2\rceil\right)\)
6. return $\text{merge}(B, C, \lfloor n/2\rfloor, \lceil n/2\rceil)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
$T(n)$ = running time for sorting n numbers, then

\[
T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 T([n/2]) + T([n/2]) + O(n) & \text{if } n \geq 2
\end{cases}
\]
- \(T(n) \) = running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T([n/2]) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]
\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases} \]

With some tolerance of informality:

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases} \]

Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \lg n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Example:

10
8
15
9
12

10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):

(10, 8), (10, 9), (15, 9), (15, 12)
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

| 10 | 8 | 15 | 9 | 12 |
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10  8  15  9  12
  8  9   10  12  15
```

4 inversions (for convenience, using numbers, not indices):

- (10, 8)
- (10, 9)
- (15, 9)
- (15, 12)
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

- 4 inversions (for convenience, using numbers, not indices): (10, 8), (10, 9), (15, 9), (15, 12)
count-inversions(A, n)

1. $c \leftarrow 0$
2. for every $i \leftarrow 1$ to $n - 1$
3. for every $j \leftarrow i + 1$ to n
4. if $A[i] > A[j]$ then $c \leftarrow c + 1$
5. return c
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{ccccccc}
B: & 3 & 8 & 12 & 20 & 32 & 48 \\
C: & 5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\(\text{total} = 0 \)
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}\] \hspace{1cm} \text{total} = 0

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 0$

$+0$

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B:

| 3 | 8 | 12 | 20 | 32 | 48 |

C:

| 5 | 7 | 9 | 25 | 29 |

$+0$

3 5

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

3 5

+0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

$+0$

3 5 7
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 0$

B: \begin{array}{cccccc}
3 & 5 & 7 \\
\end{array}$

C: \begin{array}{cccccc}
+0 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

+0 +2

3 5 7 8

Total = 2
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ $+2$

B: total = 2

C:
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 2$

$+0 \quad +2$

3 5 7 8 9
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 2

+0 +2

3 5 7 8 9
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$total = 5$

B: 3 5 7 8 9 12

C: +0 +2 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total = 5

+0 +2 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[\text{total} = 8\]

C:

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]\n
\[+0 \quad +2 \quad +3 \quad +3\]

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C:

\[
\begin{array}{cccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
+0 & +2 & +3 & +3 & & \\
3 & 5 & 7 & 8 & 9 & 12 & 20 \\
\end{array}
\]

$\text{total}= 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
 3 8 12 20 32 48
 +0 +2 +3 +3

C: 5 7 9 25 29
 5 7 9 25 29

B: 3 5 7 8 9 12 20 25
 3 5 7 8 9 12 20 25

C: 5 7 9 25 29
 5 7 9 25 29

B: 3 8 12 20 32 48
 3 8 12 20 32 48

C: 5 7 9 25 29
 5 7 9 25 29

total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array}$

$C: \begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array}$

$\begin{array}{cccccc} & +0 & +2 & +3 & +3 & \\ 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \end{array}$

$\text{total} = 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2 +3 +3$

B: 3 5 7 8 9 12 20 25 29

C: 5 7 9 25 29

$+0 +2 +3 +3$

$\text{total} = 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}

C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}

\begin{array}{cccccc}
+0 & +2 & +3 & +3 \\
\end{array}

B: \begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}

\text{total} = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 13$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
+0 & +2 & +3 & +3 & +5 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\end{array}
\]

total = 13
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

$+0$ $+2$ $+3$ $+3$ $+5$ $+5$

\[
\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}
\]

$total = 18$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 18$

+0 +2 +3 +3 +5 +5
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1. $count \leftarrow 0$
2. $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
3. while $i \leq n_1$ or $j \leq n_2$
4.
 - if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
 - append $B[i]$ to A; $i \leftarrow i + 1$
 - $count \leftarrow count + (j - 1)$
 - else
 - append $C[j]$ to A; $j \leftarrow j + 1$
5. return $(A, count)$
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

```plaintext
sort-and-count(A, n)

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$
```
A procedure that returns the sorted array of A and counts the number of inversions in A:

\[
\text{sort-and-count}(A, n)
\]

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- **Divide:** trivial
- **Conquer:** 4, 5
- **Combine:** 6, 7
sort-and-count(A, n)

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow$ sort-and-count$(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow$ sort-and-count$(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow$ merge-and-count$(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count(A, n)

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Self-Balancing Binary Search Trees
8 Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Conquer</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Conquer</td>
<td></td>
<td></td>
<td>Recurse</td>
</tr>
<tr>
<td>Combine</td>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.

```
   29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```
Assumption We can choose median of an array of size n in $O(n)$ time.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
</tr>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.
Quicksort

quicksort(A, n)

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \| Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \| Divide
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\) \hspace{1cm} \| Conquer
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\) \hspace{1cm} \| Conquer
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Quicksort

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \(\|\) Divide
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \(\|\) Divide
5. \(B_L \leftarrow\) quicksort\((A_L, A_L\text{.size})\) \(\|\) Conquer
6. \(B_R \leftarrow\) quicksort\((A_R, A_R\text{.size})\) \(\|\) Conquer
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
Quicksort

quicksort(*A, n*)

1. if *n* ≤ 1 then return *A*
2. *x* ← lower median of *A*
3. *A_L* ← elements in *A* that are less than *x* \ Divide
4. *A_R* ← elements in *A* that are greater than *x* \ Divide
5. *B_L* ← quicksort(*A_L, A_L*.size) \ Conquer
6. *B_R* ← quicksort(*A_R, A_R*.size) \ Conquer
7. *t* ← number of times *x* appear in *A*
8. return the array obtained by concatenating *B_L*, the array containing *t* copies of *x*, and *B_R*

- Recurrence: \(T(n) \leq 2T(n/2) + O(n) \)
- Running time = \(O(n \log n) \)
Assumption: We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size \(n \) in \(O(n) \) time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in \(O(n) \) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a pivot randomly and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(\(A, n\))

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\)
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\)
5. \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\)
6. \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\)
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random
Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random
- In theory: make the assumption
Quicksort Using A Random Pivot

Quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ a random element of A (x is called a pivot)
3. $A_L \leftarrow$ elements in A that are less than x \ Divide
4. $A_R \leftarrow$ elements in A that are greater than x \ Divide
5. $B_L \leftarrow$ quicksort(A_L, A_L size) \ Conquer
6. $B_R \leftarrow$ quicksort(A_R, A_R size) \ Conquer
7. $t \leftarrow$ number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

When we talk about randomized algorithm in the future, we show that the expected running time of the algorithm is $O(n \lg n)$.

Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[i \quad j \]

| 17 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 64 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[i \quad j \]

17 64 75 29 38 45 94 69 25 76 15 92 37 82 85
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

```
17 37 75 29 38 45 94 69 25 76 15 92 64 82 85

i

j
```
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm:** an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[\begin{array}{cccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 25 & 69 & 64 & 76 & 94 & 92 & 75 & 82 & 85 \\
\end{array} \]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  37  15  29  38  45  25  64  69  76  94  92  75  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
i, j
```

```
17  37  15  29  38  45  25  64  69  76  94  92  75  82  85
```
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

partition(A, ℓ, r)

1. $p \leftarrow$ random integer between ℓ and r
2. swap $A[p]$ and $A[\ell]$
3. $i \leftarrow \ell$, $j \leftarrow r$
4. while $i < j$ do
5. while $i < j$ and $A[i] \leq A[j]$ do $j \leftarrow j - 1$
6. swap $A[i]$ and $A[j]$
7. while $i < j$ and $A[i] \leq A[j]$ do $i \leftarrow i + 1$
8. swap $A[i]$ and $A[j]$
9. return i
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

quicksort\((A, \ell, r)\)

1. if \(\ell \geq r\) return
2. \(p \leftarrow \text{partition}(A, \ell, r)\)
3. \(q \leftarrow p - 1; \text{while } A[q] = A[p] \text{ and } q \geq \ell \text{ do: } q \leftarrow q - 1\)
4. quicksort\((A, \ell, q)\)
5. \(q \leftarrow p + 1; \text{while } A[q] = A[p] \text{ and } q \leq r \text{ do: } q \leftarrow q + 1\)
6. quicksort\((A, q, r)\)

To sort an array \(A\) of size \(n\), call quicksort\((A, 1, n)\).

Note: We pass the array \(A\) by reference, instead of by copying.
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
  3  8  12  20  32  48
  5  7  9  25  29
  3
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5
```
To merge two arrays, we need a third array with size equaling the total size of two arrays.

3 8 12 20 32 48

5 7 9 25 29

3 5 7
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8  9  12  20  25  29
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8  9  12  20  25  29  32  48
```
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$. You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

- $x = 1$?
- $x \leq 2$?
- $x = 3$?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.

\[
\begin{align*}
&x = 1? \\
&x \leq 2? \\
&x = 3? \\
&1 2 3 4
\end{align*}
\]
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots , N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

```
x = 1?
  x = 1?
    1
  x = 2?
    2
x = 3?
  x = 3?
    3
  x = 4?
    4
x \leq 2?
```

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over \{1, 2, 3, \ldots, n\} in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.

You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

At least $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
1. Divide-and-Conquer
2. Counting Inversions
3. **Quicksort and Selection**
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

Quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x
4. $A_R \leftarrow$ elements in A that are greater than x
5. $B_L \leftarrow$ quicksort(A_L, A_L.size)
6. $B_R \leftarrow$ quicksort(A_R, A_R.size)
7. $t \leftarrow$ number of times x appear in A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Selection Algorithm with Median Finder

\[
\text{selection}(A, n, i)
\]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{lower median of } A \)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \hspace{1cm} \text{\textbackslash\textbackslash Divide}
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \hspace{1cm} \text{\textbackslash\textbackslash Divide}
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1cm} return \(\text{selection}(A_L, A_L.\text{size}, i) \) \hspace{1cm} \text{\textbackslash\textbackslash Conquer}
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1cm} return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \hspace{1cm} \text{\textbackslash\textbackslash Conquer}
9. else return \(x \)
Selection Algorithm with Median Finder

selection(\(A, n, i\))

1. if \(n = 1\) then return \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \\ Divide
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \\ Divide
5. if \(i \leq A_L\.size\) then
6. return \(\text{selection}(A_L, A_L\.size, i)\) \\ Conquer
7. elseif \(i > n \− A_R\.size\) then
8. return \(\text{select}(A_R, A_R\.size, i \− (n \− A_R\.size))\) \\ Conquer
9. else return \(x\)

- Recurrence for selection: \(T(n) = T(n/2) + O(n)\)
selection \((A, n, i) \)

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \(\backslash \backslash \) Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \(\backslash \backslash \) Divide
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1cm} return selection \((A_L, A_L.\text{size}, i) \) \hspace{1cm} \(\backslash \backslash \) Conquer
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1cm} return select \((A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \hspace{1cm} \(\backslash \backslash \) Conquer
9. else return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\texttt{selection}(A, n, i)

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \) random element of \(A \) (called pivot)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \)
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \)
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1em} return \(\text{selection}(A_L, A_L.\text{size}, i) \)
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1em} return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \)
9. else return \(x \)
Randomized Selection Algorithm

\[
\text{selection}(A, n, i)
\]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \)
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \)
5. if \(i \leq A_L.\text{size} \) then
 6. return \(\text{selection}(A_L, A_L.\text{size}, i) \)
5. elseif \(i > n - A_R.\text{size} \) then
 7. return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \)
9. else return \(x \)

- expected running time = \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$
$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$
$$- 10x^4 + 15x^3 - 30x^2 + 25x$$
$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

polynomial-multiplication(A, B, n)

1. let $C[k] = 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2. for $i \leftarrow 0$ to $n - 1$
3. \hspace{1em} for $j \leftarrow 0$ to $n - 1$
4. \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5. return C

Running time: $O(n^2)$
Naïve Algorithm

polynomial-multiplication\(^{(A, B, n)}\)

1. let \(C[k] = 0\) for every \(k = 0, 1, 2, \cdots, 2n - 2\)
2. for \(i \leftarrow 0\) to \(n - 1\)
3. \hspace{1em} for \(j \leftarrow 0\) to \(n - 1\)
4. \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5. return \(C\)

Running time: \(O(n^2)\)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[
p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)
\]
\[
q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)
\]

- \(p(x)\): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x)\): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L)
\]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L \]
\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right)
= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L

\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n
+ \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2}
+ \text{multiply}(p_L, q_L)

\bullet \text{ Recurrence: } T(n) = 4T(n/2) + O(n)
\bullet \quad T(n) = O(n^2)
Reduce Number from 4 to 3
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[\begin{align*}
H &= \text{multiply}(p_H, q_H) \\
L &= \text{multiply}(p_L, q_L) \\
(p, q) &= r_H \times x^n + \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L\right) \times x^{n/2} + r_L
\end{align*} \]

Solving Recurrence:

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

\[T(n) = O(n \log_2 3) = O(n^{1.585}) \]
$r_H = \text{multiply}(p_H, q_H)$

$r_L = \text{multiply}(p_L, q_L)$
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \]
\[+ r_L \]
Divide-and-Conquer for Polynomial Multiplication

\[
\begin{align*}
r_H &= \text{multiply}(p_H, q_H) \\
r_L &= \text{multiply}(p_L, q_L) \\
\text{multiply}(p, q) &= r_H \times x^n + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} + r_L
\end{align*}
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
\[
multiply(p, q) = r_H \times x^n \]
\[+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} + r_L \]

- **Solving Recurrence:** \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\lg_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

\[
multiply(A, B, n)
\]

1. if \(n = 1 \) then return \((A[0]B[0])\)
2. \(A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3. \(B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4. \(C_L \leftarrow multiply(A_L, B_L, n/2) \)
5. \(C_H \leftarrow multiply(A_H, B_H, n/2) \)
6. \(C_M \leftarrow multiply(A_L + A_H, B_L + B_H, n/2) \)
7. \(C \leftarrow \text{array of } (2n - 1) \text{ 0’s} \)
8. for \(i \leftarrow 0 \) to \(n - 2 \) do
 9. \(C[i] \leftarrow C[i] + C_L[i] \)
 10. \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11. \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12. return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
• Closest pair
• Convex hull
• Matrix multiplication
• FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line.

![Diagram of points divided by a vertical line]
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
time for combine = $O(n)$ (many technicalities omitted)

Recurrence:
$$T(n) = 2T(n/2) + O(n)$$

Running time:
$$O(n \lg n)$$
Each box contains at most one pair
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $= O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
time for combine $= O(n)$ (many technicalities omitted)
Recurrence: $T(n) = 2T(n/2) + O(n)$
Running time: $O(n \log n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

- **Input:** two $n \times n$ matrices A and B
- **Output:** $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

Running time: $O(n^3)$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)

Output: \(C = AB \)

Naive Algorithm: \texttt{matrix-multiplication}(A, B, n)

1. for \(i \leftarrow 1 \) to \(n \)
2. for \(j \leftarrow 1 \) to \(n \)
3. \(C[i, j] \leftarrow 0 \)
4. for \(k \leftarrow 1 \) to \(n \)
5. \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)
6. return \(C \)

- running time = \(O(n^3) \)
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}_{n/2}
\quad B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}_{n/2}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), ...
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication\((A, B)\) recursively calls
 - matrix_multiplication\((A_{11}, B_{11})\),
 - matrix_multiplication\((A_{12}, B_{21})\),
 ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)

- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!

- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)

- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
$T(n) = 2T(n/2) + O(n)$

Each level takes running time $O(n)$.

There are $O(lg n)$ levels.

Running time = $O(n \cdot lg n)$.
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
Recursion-Tree Method

- \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \]

Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
- Running time = \(O(n \log n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

- Total running time at level i?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- **Total running time at level \(i \)?** \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)

- **Index of last level?** \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n)\)

- Total running time at level \(i\)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n\)
- Index of last level? \(\lg_2 n\)
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

[Diagram of a recursion tree with nodes labeled with \((n/2)^2\) and \((n/4)^2\) at various levels, illustrating the division and multiplication by 3 in the recurrence relation.]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[\begin{array}{c}
\text{n}^2 \\
(n/2)^2 \\
(n/4)^2 \\
(n/8)^2 \\
\vdots \\
(n/2^i)^2 \end{array} \]

- Total running time at level \(i \): \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

Diagram:

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?
- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^{\log_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem
\(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1, b > 1, c \geq 0\) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c), \) where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
\text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a
\end{cases}$$
Theorem

\(T(n) = aT(n/b) + O(n^c), \) where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
?? & \text{if } c < \log_b a \\
?? & \text{if } c = \log_b a \\
?? & \text{if } c > \log_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n \log_2^3)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

\[
T(n) = \begin{cases}
 O(n^{\log_b a}) & \text{if } c < \log_b a \\
 & \text{if } c = \log_b a \\
 & \text{if } c > \log_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). **Case 2.** \(T(n) = O(n^2 \log n) \)
Theorem \(T(n) = aT(n/b) + O(n^c), \) where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg b \ a}) & \text{if } c < \lg b \ a \\
O(n^c \lg n) & \text{if } c = \lg b \ a \\
O(n^c) & \text{if } c > \lg b \ a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2). \) Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n). \) Which Case?
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \log n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1 \), \(b > 1 \), \(c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
Theorem: \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{1\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\[n^c \]

\[a \text{ nodes} \]

\[(n/b)^c \]

\[a^2 \text{ nodes} \]

\[\left(\frac{n}{b^2}\right)^c \quad \left(\frac{n}{b^2}\right)^c \]

\[a^3 \text{ nodes} \]

\[\left(\frac{n}{b^3}\right)^c \quad \left(\frac{n}{b^3}\right)^c \quad \left(\frac{n}{b^3}\right)^c \quad \left(\frac{n}{b^3}\right)^c \quad \left(\frac{n}{b^3}\right)^c \quad \left(\frac{n}{b^3}\right)^c \]

\[\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \]

\[c < \log_b a: \text{ bottom-level dominates:} \]

\[\left(\frac{n}{b}\right)^c \]

\[\frac{\log n}{\log b} \quad \frac{\log n}{\log b} \quad \frac{\log n}{\log b} \quad \frac{\log n}{\log b} \]

\[\ldots \quad \ldots \quad \ldots \quad \ldots \]

\[c > \log_b a: \text{ top-level dominates:} \]

\[O(n^c) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- 1 node
- \(a \) nodes
- \(a^2 \) nodes
- \(a^3 \) nodes

\[\left(\frac{n}{b^3} \right)^c \] \[\left(\frac{n}{b^2} \right)^c \] \[\left(\frac{n}{b} \right)^c \]

\(c < \log_b a \) : bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\log_b n} n^c = n^{\log_b a} \)
\[T(n) = aT(n/b) + O(n^c) \]

- **c < \lg_b a**: bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \)
- **c = \lg_b a**: all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **c < \lg_b a**: bottom-level dominates: \((\frac{a}{b^c})^{\lg_b n} n^c = n^{\lg_b a} \)
- **c = \lg_b a**: all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
- **c > \lg_b a**: top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Self-Balancing Binary Search Trees
8. Computing n-th Fibonacci Number
Elements are organized in a binary-tree structure
Each element (node) is associated with a \textbf{key} value

- if node u is in the left sub-tree of node v, then $u.key \leq v.key$
- if node u is the right sub-tree of node v, then $u.key \geq v.key$

BST: numbers denote keys

BST: in-order traversal gives a sorted list of keys

BST: numbers denote keys
Binary Search Tree (BST)

- Elements are organized in a binary-tree structure
- Each element (node) is associated with a key value

- If node u is in the left sub-tree of node v, then $u.key \leq v.key$
- If node u is the right sub-tree of node v, then $u.key \geq v.key$
- In-order traversal of tree gives a sorted list of keys

BST: numbers denote keys

![BST Diagram](attachment:image.png)
Operations on Binary Search Tree T

- **insert**: insert an element to T
Operations on Binary Search Tree T

- **insert**: insert an element to T
- **delete**: delete an element from T
Operations on Binary Search Tree T

- **insert**: insert an element to T
- **delete**: delete an element from T
- **count-less-than**: return the number of elements in T with key values smaller than a given value
Operations on Binary Search Tree T

- **insert**: insert an element to T
- **delete**: delete an element from T
- **count-less-than**: return the number of elements in T with key values smaller than a given value
- check existence, return element with i-th smallest key value,
 ...
Counting Inversions Via Binary Search Tree (BST)

count-inversions\((A, n)\)

1. \(T \leftarrow \) empty BST
2. \(c \leftarrow 0 \)
3. for \(i \leftarrow n \) downto 1
4. \(c \leftarrow c + T.\text{count-less-than}(A[i]) \)
5. \(T.\text{insert}(A[i]) \)
6. return \(c \)

running time = \(n \times (\text{time for } \text{count-less-than} + \text{time for } \text{insert}) \)
count-inversions(A, n)

1. $T \leftarrow$ empty BST
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
 4. $c \leftarrow c + T$.count-less-than($A[i]$)
 5. T.insert($A[i]$)
4. return c

running time $=$

$n \times (\text{time for count + time for insert})$
Counting Inversions Via Binary Search Tree (BST)

count-inversions\((A, n)\)

1. \(T \leftarrow\) empty BST
2. \(c \leftarrow 0\)
3. for \(i \leftarrow n\) downto 1
4. \(c \leftarrow c + T\.\text{count-less-than}(A[i])\)
5. \(T\.\text{insert}(A[i])\)
6. return \(c\)

running time =
\(n \times (\text{time for count} + \text{time for insert})\)
Counting Inversions Via Binary Search Tree (BST)

count-inversions (A, n)

1. $T \leftarrow$ empty BST
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. $c \leftarrow c + T$.count-less-than($A[i]$)
5. T.insert($A[i]$)
6. return c

Running time =

$n \times (\text{time for count} + \text{time for insert})$

tree elements

```
15  3  16  12  32  7
```

count-less-than(7) = 0
count-inversions\((A, n)\)

1. \(T \leftarrow \) empty BST
2. \(c \leftarrow 0\)
3. for \(i \leftarrow n\) downto 1
4. \(c \leftarrow c + T.\text{count-less-than}(A[i])\)
5. \(T.\text{insert}(A[i])\)
6. return \(c\)

running time =

\(n \times (\text{time for count} + \text{time for insert})\)
Counting Inversions Via Binary Search Tree (BST)

count-inversions(A, n)

1. \(T \leftarrow \text{empty BST} \)
2. \(c \leftarrow 0 \)
3. for \(i \leftarrow n \) downto 1
4. \[c \leftarrow c + T.\text{count-less-than}(A[i]) \]
5. \(T.\text{insert}(A[i]) \)
6. return \(c \)

running time =
\(n \times (\text{time for count} + \text{time for insert}) \)
Counting Inversions Via Binary Search Tree (BST)

Algorithm:

Given an array A of length n

1. Initialize empty BST T
2. Initialize $c = 0$
3. For i from n down to 1
 - $c = c + T$.count-less-than($A[i]$)
5. **Return** c

Running Time:

$n \times (\text{time for count} + \text{time for insert})$

Example:

```
<table>
<thead>
<tr>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
```

- count-less-than(7) = 0
- count-less-than(32) = 1
- Insert(7)
- Insert(32)
count-inversions(A, n)

1. $T \leftarrow$ empty BST
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. $c \leftarrow c + T.\text{count-less-than}(A[i])$
5. $T.\text{insert}(A[i])$
6. return c

running time =

$n \times (\text{time for count} + \text{time for insert})$
Counting Inversions Via Binary Search Tree (BST)

count-inversions(A, n)

1. \(T \leftarrow \text{empty BST} \)
2. \(c \leftarrow 0 \)
3. for \(i \leftarrow n \) downto 1
4. \(c \leftarrow c + T.\text{count-less-than}(A[i]) \)
5. \(T.\text{insert}(A[i]) \)
6. return \(c \)

running time =
\(n \times (\text{time for count} + \text{time for insert}) \)
Counting Inversions Via Binary Search Tree (BST)

count-inversions(A, n)

1. $T \leftarrow$ empty BST
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. \hspace{1em} $c \leftarrow c + T$.count-less-than($A[i]$)
5. \hspace{1em} T.insert($A[i]$)
6. return c

running time = $n \times$ (time for count + time for insert)

tree elements

15 3 16 12 32 7

T.insert(7)
T.insert(32)
T.insert(12)

count-less-than(7) = 0
count-less-than(32) = 1
count-less-than(12) = 1
count-less-than(16) = 2
count-inversions(A, n)

1. $T \leftarrow \text{empty BST}$
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. \hspace{1em} $c \leftarrow c + T.\text{count-less-than}(A[i])$
5. \hspace{1em} $T.\text{insert}(A[i])$
6. return c

running time =

$n \times (\text{time for count} + \text{time for insert})$
Counting Inversions Via Binary Search Tree (BST)

count-inversions\((A, n)\)

1. \(T \leftarrow \) empty BST
2. \(c \leftarrow 0\)
3. for \(i \leftarrow n\) downto 1
4. \(c \leftarrow c + T.\text{count-less-than}(A[i])\)
5. \(T.\text{insert}(A[i])\)
6. return \(c\)

running time = \(n \times (\text{time for count} + \text{time for insert})\)

tree elements

\[
\begin{array}{c}
15 & 3 & 16 & 12 & 32 & 7 \\
\end{array}
\]

count-less-than(7) = 0
insert(7)
count-less-than(32) = 1
insert(32)
count-less-than(12) = 1
insert(12)
count-less-than(16) = 2
insert(16)
count-less-than(3) = 0
count-inversions(A, n)

1. $T \leftarrow \text{empty BST}$
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. \hspace{1em} $c \leftarrow c + T.\text{count-less-than}(A[i])$
5. \hspace{1em} $T.\text{insert}(A[i])$
6. return c

running time =

$n \times (\text{time for count} + \text{time for insert})$
count-inversions(A, n)

1. \(T \leftarrow \) empty BST
2. \(c \leftarrow 0 \)
3. for \(i \leftarrow n \) downto 1
4. \(c \leftarrow c + T.\text{count-less-than}(A[i]) \)
5. \(T.\text{insert}(A[i]) \)
6. return \(c \)

running time =
\[n \times (\text{time for count} + \text{time for insert}) \]
Counting Inversions Via Binary Search Tree (BST)

count-invensions(A, n)

1. $T \leftarrow$ empty BST
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. \[c \leftarrow c + T.\text{count-less-than}(A[i]) \]
5. $T.\text{insert}(A[i])$
6. return c

running time =
$n \times (\text{time for count} + \text{time for insert})$

count-less-than(7) = 0
insert(7)
count-less-than(32) = 1
insert(32)
count-less-than(12) = 1
insert(12)
count-less-than(16) = 2
insert(16)
count-less-than(3) = 0
insert(3)
count-less-than(15) = 3
insert(15)
Counting Inversions Via Binary Search Tree (BST)

count-inversions(A, n)

1. $T \leftarrow$ empty BST
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. \hspace{0.5cm} $c \leftarrow c + T$.count-less-than$(A[i])$
5. \hspace{0.5cm} T.insert$(A[i])$
6. return c

running time =
$n \times ($time for count + time for insert$)$

count-less-than$(7) = 0$
count-less-than$(32) = 1$
count-less-than$(12) = 1$
count-less-than$(16) = 2$
count-less-than$(3) = 0$
count-less-than$(15) = 3$
c = 0 + 1 + 1 + 2 + 0 + 3 = 7$
Binary Search Tree: Insertion

BST: numbers denote keys
Binary Search Tree: Insertion
Binary Search Tree: Insertion

Diagram of a binary search tree with nodes 1, 3, 5, 6, 7, 8, 10, 13, 14.
Binary Search Tree: Insertion
Binary Search Tree: Insertion

Diagram of a binary search tree with numbers 1, 3, 6, 4, 7, 10, 14, 8, and 5 indicated. The tree structure shows the insertion of a new node at position 5.
Binary Search Tree: Insertion

```
8
|--- 3
|   |--- 1
|   |   |--- 4
|   |--- 6
|   |   |--- 7
|   |--- 10
|       |--- 14
|   |   |--- 13
|   |--- 5
```
recursive-insert(v, key)

1. if $v = \text{nil}$ then
2. $u \leftarrow \text{new node with } u.left = u.right = \text{nil}$
3. $u.key \leftarrow key$
4. return u
5. if $key < v.key$ then
6. $v.left \leftarrow \text{recursive-insert($v.left, key$)}$
7. else
8. $v.right \leftarrow \text{recursive-insert($v.right, key$)}$
9. return v

insert(key)

1. $root \leftarrow \text{recursive-insert($root, key$)}$
Binary Search Tree: Deletion

no right child
Binary Search Tree: Deletion

no right child
Binary Search Tree: Deletion

Diagram of a binary search tree with nodes labeled 1 to 20. Node 7 is highlighted, indicating a deletion operation.
recursive-delete(v)

1. if $v.right = nil$ then return ($v.left, v$)
2. ($v.right, del) \leftarrow \text{recursive-delete}(v.right)$
3. return (v, del)

- recursive-delete(v) deletes the element in the sub-tree rooted at v with the largest key value
recursive-delete(v)

1. if $v.right = \text{nil}$ then return ($v.left, v$)
2. ($v.right, del) \leftarrow \text{recursive-delete}(v.right)$
3. return (v, del)

- $\text{recursive-delete}(v)$ deletes the element in the sub-tree rooted at v with the largest key value
- returns: the new root and the deleted node
recursive-delete(v)

1. if $v.right = nil$ then return $(v.left, v)$
2. $(v.right, del) \leftarrow$ recursive-delete($v.right$)
3. return (v, del)

- recursive-delete(v) deletes the element in the sub-tree rooted at v with the largest key value
- returns: the new root and the deleted node

delete(v) \hspace{1cm} \text{\textbackslash \textbackslash returns the new root after deletion}

1. if $v.left = nil$ then return $v.right$
2. $(r, del) \leftarrow$ recursive-delete($v.left$)
3. $r.key \leftarrow del.key$
4. return r
recursive-delete(v)

1. if $v.right = \text{nil}$ then return $(v.left, v)$
2. $(v.right, del) \leftarrow \text{recursive-delete}(v.right)$
3. return (v, del)

delete(v) \quad \text{returns the new root after deletion}

1. if $v.left = \text{nil}$ then return $v.right$
2. $(r, del) \leftarrow \text{recursive-delete}(v.left)$
3. $r.key \leftarrow del.key$
4. return r
recursive-delete(v)

1. if \(v.right = \text{nil} \) then return \((v.left, v)\)
2. \((v.right, \text{del}) \leftarrow \text{recursive-delete}(v.right)\)
3. return \((v, \text{del})\)

delete(v) \hspace{1cm} \(\text{\\ returns the new root after deletion}\)

1. if \(v.left = \text{nil} \) then return \(v.right\)
2. \((r, \text{del}) \leftarrow \text{recursive-delete}(v.left)\)
3. \(r.key \leftarrow \text{del.key}\)
4. return \(r\)

- to remove left-child of \(v \): call \(v.left \leftarrow \text{delete}(v.left)\)
- to remove right-child of \(v \): call \(v.right \leftarrow \text{delete}(v.right)\)
- to remove root: call \(root \leftarrow \text{delete}(root)\)
Binary Search Tree: count-less-than

Need to maintain a "size" property for each node:

v.size = number of nodes in the tree rooted at v
Need to maintain a “size” property for each node
• Need to maintain a “size” property for each node
• \(v.size = \) number of nodes in the tree rooted at \(v \)
Binary Search Tree: count-less-than

- Need to maintain a “size” property for each node
- $v.size =$ number of nodes in the tree rooted at v
- Need to maintain a “size” property for each node
- \(v.size \) = number of nodes in the tree rooted at \(v \)

\[
\begin{align*}
\# (\text{elements} < 10) &= 8 \\
3 &\quad 11 \\
1 &\quad 6 &\quad 4 &\quad 7 &\quad 14 &\quad 13 &\quad 10 \\
1 &\quad 1 &\quad 1 &\quad 2 \\
4 &\quad 1 &\quad 1 &\quad 1 &\quad 1 &\quad 1
\end{align*}
\]
Need to maintain a “size” property for each node

\[v.size = \text{number of nodes in the tree rooted at } v \]

\[\text{# (elements < 10) = } \]
- Need to maintain a “size” property for each node
- $v.size =$ number of nodes in the tree rooted at v

(elements < 10) = (5+1)
Binary Search Tree: count-less-than

- Need to maintain a “size” property for each node
- $v.size =$ number of nodes in the tree rooted at v

\[
\begin{align*}
\# \text{(elements < 10)} &= (5+1) \\
\end{align*}
\]
Need to maintain a “size” property for each node

\[v.size = \text{number of nodes in the tree rooted at } v \]

\# \text{(elements < 10)} = (5+1)
Need to maintain a “size” property for each node

$v.size = \text{number of nodes in the tree rooted at } v$

$\# (\text{elements } < 10) = (5+1) + 1$
Need to maintain a “size” property for each node

$$v.size = \text{number of nodes in the tree rooted at } v$$

$$(\text{elements } < 10) = (5+1) + 1 = 7$$
Trick: “nil” is a node with size 0.

```
recursive-count(v, value)

1. if v = nil then return 0
2. if value ≤ v.key
3. return recursive-count(v.left, key)
4. else
5. return v.left.size + 1 + recursive-count(v.right, key)
```

```
count-less-than(value)

1. return recursive-count(root, value)
```
Each operation takes time $O(h)$.

$h = \text{height of tree}$

$n = \text{number of nodes in tree}$
Running Time for Each Operation

- Each operation takes time $O(h)$.
- $h =$ height of tree
- $n =$ number of nodes in tree

Q: What is the height of the tree in the best scenario?
Each operation takes time $O(h)$.

$h = \text{height of tree}$

$n = \text{number of nodes in tree}$

Q: What is the height of the tree in the best scenario?

A: $O(\lg n)$
Running Time for Each Operation

- Each operation takes time $O(h)$.
- $h =$ height of tree
- $n =$ number of nodes in tree

Q: What is the height of the tree in the **best** scenario?

A: $O(\lg n)$

Q: What is the height of the tree in the **worst** scenario?
Each operation takes time $O(h)$.

- $h =$ height of tree
- $n =$ number of nodes in tree

Q: What is the height of the tree in the **best** scenario?

A: $O(\lg n)$

Q: What is the height of the tree in the **worst** scenario?

A: $O(n)$
Def. A self-balancing BST is a BST that automatically keeps its height small.
Def. A **self-balancing** BST is a BST that automatically keeps its height small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ...
Def. A self-balancing BST is a BST that automatically keeps its height small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ...
An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.
An AVL Tree Is Balanced

Balanced: for every node \(v \) in the tree, the heights of the left and right sub-trees of \(v \) differ by at most 1.
An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

![AVL Tree Diagram]

not balanced
An AVL Tree Is Balanced

Balanced: for every node \(v \) in the tree, the heights of the left and right sub-trees of \(v \) differ by at most 1.

![Balanced AVL Trees Diagram](image)
An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

Lemma Property guarantees height $= O(\log n)$.

- $f(h)$: minimum size of a balanced tree of height h
An AVL Tree Is Balanced

Balanced: for every node \(v \) in the tree, the heights of the left and right sub-trees of \(v \) differ by at most 1.

Lemma Property guarantees height = \(O(\log n) \).

- \(f(h) \): minimum size of a balanced tree of height \(h \)

- \(f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 \cdots \)
- $f(h)$: minimum size of a balanced tree of height h

\[
f(0) = 0 \]
\[
f(1) = 1 \]
\[
f(h) = f(h - 1) + f(h - 2) + 1 \quad h \geq 2
\]
- $f(h)$: minimum size of a balanced tree of height h

\[
f(0) = 0 \quad f(1) = 1 \quad f(h) = f(h - 1) + f(h - 2) + 1 \quad h \geq 2
\]

- $f(h) = 2^{\Theta(h)}$ (i.e., $\lg f(h) = \Theta(h)$)
Depth of AVL tree

- $f(h)$: minimum size of a balanced tree of height h
- $f(h) = 2^{\Theta(h)}$
Depth of AVL tree

- \(f(h) \): minimum size of a balanced tree of height \(h \)
- \(f(h) = 2^{\Theta(h)} \)
- If a AVL tree has size \(n \) and height \(h \), then
 \[
n \geq f(h) = 2^{\Theta(h)}
 \]
Depth of AVL tree

- \(f(h) \): minimum size of a balanced tree of height \(h \)
- \(f(h) = 2^{\Theta(h)} \)
- If a AVL tree has size \(n \) and height \(h \), then
 \[
 n \geq f(h) = 2^{\Theta(h)}
 \]
- Thus, \(h \leq \Theta(\log n) \)
An AVL Tree Is Balanced

Balanced: for every node \(v \) in the tree, the heights of the left and right sub-trees of \(v \) differ by at most 1.

How can we maintain the balanced property?
An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

How can we maintain the balanced property?
Maintain Balance Property After Insertion

A: the deepest node such that the balance property is not satisfied after insertion.

Wlog, we inserted an element to the left-sub-tree of A:

B: the root of left-sub-tree of A.

Case 1: we inserted an element to the left-sub-tree of B.
A: the deepest node such that the balance property is not satisfied after insertion
A: the deepest node such that the balance property is not satisfied after insertion

Wlog, we inserted an element to the left-sub-tree of A
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog**, we inserted an element to the left-sub-tree of **A**
- **B**: the root of left-sub-tree of **A**
Maintain Balance Property After Insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 1: we inserted an element to the left-sub-tree of B
A: the deepest node such that the balance property is not satisfied after insertion

Wlog, we inserted an element to the left-sub-tree of A

B: the root of left-sub-tree of A

case 1: we inserted an element to the left-sub-tree of B
A: the deepest node such that the balance property is not satisfied after insertion

Wlog, we inserted an element to the left-sub-tree of A

B: the root of left-sub-tree of A

case 1: we inserted an element to the left-sub-tree of B
Maintain Balance Property After Insertion

- **A:** the deepest node such that the balance property is not satisfied after insertion
- **Wlog, we inserted an element to the left-sub-tree of A**
- **B:** the root of left-sub-tree of A
- **case 1:** we inserted an element to the left-sub-tree of B

\[
\begin{array}{c}
\text{A} \\
(\text{h + 2}) \\
\text{B} \\
(\text{h + 1}) \\
\text{B}_L \\
\text{B}_R \\
\end{array}
\]
A: the deepest node such that the balance property is not satisfied after insertion

Wlog, we inserted an element to the left-sub-tree of A

B: the root of left-sub-tree of A

case 1: we inserted an element to the left-sub-tree of B
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog, we inserted an element to the left-sub-tree of A**
- **B**: the root of left-sub-tree of A
- **case 1**: we inserted an element to the left-sub-tree of B
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog**, we inserted an element to the left-sub-tree of **A**
- **B**: the root of left-sub-tree of **A**
- case 1: we inserted an element to the left-sub-tree of **B**
Maintain Balance Property After Insertion

- \(A \): the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of \(A \)
- \(B \): the root of left-sub-tree of \(A \)
Maintain Balance Property After Insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
Maintain Balance Property After Insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B
A: the deepest node such that the balance property is not satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog**, we inserted an element to the left-sub-tree of **A**
- **B**: the root of left-sub-tree of **A**
- **case 2**: we inserted an element to the right-sub-tree of **B**
- **C**: the root of right-sub-tree of **B**
Maintain Balance Property After Insertion

- \(A \): the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of \(A \)
- \(B \): the root of left-sub-tree of \(A \)
- case 2: we inserted an element to the right-sub-tree of \(B \)
- \(C \): the root of right-sub-tree of \(B \)
- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog, we inserted an element to the left-sub-tree of** A
- **B**: the root of left-sub-tree of **A**
- **case 2**: we inserted an element to the right-sub-tree of **B**
- **C**: the root of right-sub-tree of **B**
Maintain Balance Property After Insertion

- **A**: the deepest node such that the balance property is not satisfied after insertion
- **Wlog**, we inserted an element to the left-sub-tree of **A**
- **B**: the root of left-sub-tree of **A**
- case 2: we inserted an element to the right-sub-tree of **B**
- **C**: the root of right-sub-tree of **B**
count-inversions(A, n)

1. $T \leftarrow \text{empty AVL tree}$
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. $c \leftarrow c + T.\text{count-less-than}(A[i])$
5. $T.\text{insert}(A[i])$
6. return c

Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(\lg n)$. Running time $= O(n \lg n)$.
count-inversions(A, n)

1. $T \leftarrow$ empty AVL tree
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. $c \leftarrow c + T$.count-less-than($A[i]$)
5. T.insert($A[i]$)
6. return c

- Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(lg n)$.
count-inversions(A, n)

1. $T \leftarrow$ empty AVL tree
2. $c \leftarrow 0$
3. for $i \leftarrow n$ downto 1
4. $c \leftarrow c + T$.count-less-than($A[i]$)
5. T.insert($A[i]$)
6. return c

- Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(\lg n)$.
- Running time = $O(n \lg n)$
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?
Computing F_n : Stupid Divide-and-Conquer Algorithm

\[\text{Fib}(n) \]
\begin{enumerate}
\item if $n = 0$ return 0
\item if $n = 1$ return 1
\item return Fib($n - 1$) + Fib($n - 2$)
\end{enumerate}

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

The Fibonacci function $F(n)$ can be defined recursively as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>if $n = 0$ return 0</td>
</tr>
<tr>
<td>2</td>
<td>if $n = 1$ return 1</td>
</tr>
<tr>
<td>3</td>
<td>return $Fib(n - 1) + Fib(n - 2)$</td>
</tr>
</tbody>
</table>

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing \(F_n \): Stupid Divide-and-Conquer Algorithm

\(\text{Fib}(n) \)

1. if \(n = 0 \) return 0
2. if \(n = 1 \) return 1
3. return \(\text{Fib}(n - 1) + \text{Fib}(n - 2) \)

Q: Is the running time of the algorithm polynomial or exponential in \(n \)?

A: Exponential

- Running time is at least \(\Omega(F_n) \)
- \(F_n \) is exponential in \(n \)
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]

- Dynamic Programming
- Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[
\vdots
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power\((n) \)

1. if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
2. \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)
3. \(R \leftarrow R \times R \)
4. if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5. return \(R \)

Fib\((n) \)

1. if \(n = 0 \) then return 0
2. \(M \leftarrow \text{power}(n - 1) \)
3. return \(M[1][1] \)
power(n)

1. if $n = 0$ then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
2. $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time?
power\((n) \)

1. if \(n = 0 \) then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
2. \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)
3. \(R \leftarrow R \times R \)
4. if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5. return \(R \)

Fib\((n) \)

1. if \(n = 0 \) then return 0
2. \(M \leftarrow \text{power}(n - 1) \)
3. return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

Recurrence for running time?

- $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time. Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \ldots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, · · ·:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time