CSE 431/531: Analysis of Algorithms

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Course webpage:
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up the course on Piazza:
http://piazza.com/buffalo/fall2016/cse431531
CSE 431/531: Analysis of Algorithms

- **Time and location:**
 - MoWeFr, 9:00-9:50am
 - Cooke 121

- **Lecturer:**
 - Shi Li, shil@buffalo.edu
 - Office hours: TBD

- **TAs**
 - Di Wang, dwang45@buffalo.edu
 - Minwei Ye, minweiye@buffalo.edu
 - Alexander Stachnik, ajstachn@buffalo.edu
You **should** know:

- **Mathematical Tools**
 - Mathematical inductions
 - Probabilities and random variables
- **Data Structures**
 - Stacks, queues, linked lists
- **Some Programming Experience**
 - E.g., C, C++ or Java

You **may** know:

- Asymptotic analysis
- Simple algorithm design techniques such as greedy, divide-and-conquer, dynamic programming
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
 - Network flow
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Reductions
- NP-completeness
Required Textbook:

- Algorithm Design, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

20% for homeworks
 - 5 homeworks, each worth 4%
20% for projects
 - 2 projects, each worth 10%
30% for in-class exams
 - 2 in-class exams, each worth 15%
30% for final exam
 - If to your advantage: each in-class exam is worth 5% and final is worth 50%
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussing
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm courses
- Copy solutions from other students

If you are not following the rules, you will get an “F” for the course.
Projects

- Need to implement an algorithm for each of the two projects
- Can not copy codes from others or the Internet

If you are not following the rules, you will get an “F” for the course.
Late policy

- You have one late credit
- turn in a homework or a project late for three days using the late credit
- no other late submissions will be accepted
Exams

- Closed-book
- Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an “F” for the course.

Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational problem: specifies the input/output relationship.

- An algorithm **solves** a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:

- **Input:** 210, 270
- **Output:** 30

Algorithm: Euclidean algorithm

- $\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60)$
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n) \)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n) \) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- **Algorithms:** insertion sort, merge sort, quicksort, \ldots
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

- Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, associated with a particular programming language
Pseudo-Code:

Euclidean\((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \mod b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b){
  int c;
  while (b > 0){
    c = b;
    b = a % b;
    a = c;
  }
  return a;
}
```
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
 • readability
 • extensibility
 • user-friendliness
 • ...

Why is it important to study the running time (efficiency) of an algorithm?
1. feasible vs. infeasible
2. use efficiency to pay for user-friendliness, extensibility, etc.
3. fundamental
4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
At the end of j-th iteration, make the first j numbers sorted.

- iteration 1: 53, 12, 35, 21, 59, 15
- iteration 2: 12, 53, 35, 21, 59, 15
- iteration 3: 12, 35, 53, 21, 59, 15
- iteration 4: 12, 21, 35, 53, 59, 15
- iteration 5: 12, 21, 35, 53, 59, 15
- iteration 6: 12, 15, 21, 35, 53, 59
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for $j \leftarrow 2$ to n
2. $key \leftarrow A[j]$
3. $i \leftarrow j - 1$
4. while $i > 0$ and $A[i] > key$
5. $A[i + 1] \leftarrow A[i]$
6. $i \leftarrow i - 1$
7. $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 15 21 35 53 59

\uparrow

i
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Invariant: after iteration j of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

after $j = 1$: 53, 12, 35, 21, 59, 15
after $j = 2$: 12, 53, 35, 21, 59, 15
after $j = 3$: 12, 35, 53, 21, 59, 15
after $j = 4$: 12, 21, 35, 53, 59, 15
after $j = 5$: 12, 21, 35, 53, 59, 15
after $j = 6$: 12, 15, 21, 35, 53, 59
Analyze Running Time of Insertion Sort

Q: Size of input?
A: Running time as function of size

possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

Q: Which input?
A: Worst-case analysis:
 Worst running time over all input instances of a given size

Q: How fast is the computer?
Q: Programming language?
A: Important idea: asymptotic analysis
 Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$

$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$

$2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$

$2^{n/3+100} + 100n^{100} = O(2^{n/3})$
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

O-notation allows us to
- ignore architecture of computer
- ignore programming language
Asymptotic Analysis of Insertion Sort

insertion-sort\((A, n) \)

1. for \(j \leftarrow 2 \) to \(n \)
2. \(\text{key} \leftarrow A[j] \)
3. \(i \leftarrow j - 1 \)
4. while \(i > 0 \) and \(A[i] > \text{key} \)
5. \(A[i + 1] \leftarrow A[i] \)
6. \(i \leftarrow i - 1 \)
7. \(A[i + 1] \leftarrow \text{key} \)

- Worst-case running time for iteration \(j \) in the outer loop? Answer: \(O(j) \)
- Total running time = \(\sum_{j=2}^{n} O(j) = O(n^2) \) (informal)
Computation Model

- Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

- Precision of real numbers?
 In most scenarios in the course, assuming real numbers are represented exactly

- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort, heap sort, ...
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \) \hspace{1cm} Yes
- \(2^n - n^{20} \) \hspace{1cm} Yes
- \(100n - n^2/10 + 50? \) \hspace{1cm} No

We only consider asymptotically positive functions.
O-Notation For a function \(g(n) \),
\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c \) and large enough \(n \).
- Informally, think of it as “\(f \leq g \)”.

- \(3n^2 + 2n \in O(n^3) \)
- \(3n^2 + 2n \in O(n^2) \)
- \(n^{100} \in O(2^n) \)
- \(n^3 \notin O(n^2) \)
We use “\(f(n) = O(g(n)) \)” to denote “\(f(n) \in O(g(n)) \)”

- \(3n^2 + 2n = O(n^3) \)

- \(4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) \)
 - There exists a function \(f(n) \in O(n^3) \), such that \(4n^3 + 3n^2 + 2n = 4n^3 + f(n) \).

- \(n^2 + O(n) = O(n^2) \)
 - For every function \(f(n) \in O(n) \), there exists a function \(g(n) \in O(n^2) \), such that \(n^2 + f(n) = g(n) \).

- Rule: left side \(\rightarrow \forall \), right side \(\rightarrow \exists \)
Conventions

- \(3n^2 + 2n = O(n^3) \)
- \(4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) \)
- \(n^2 + O(n) = O(n^2) \)

“=” is asymmetric! Following statements are wrong:
- \(O(n^3) = 3n^2 + 2n \)
- \(4n^3 + O(n^3) = 4n^3 + 3n^2 + 2n \)
- \(O(n^2) = n^2 + O(n) \)

Chaining is allowed:
- \(4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) = O(n^3) = O(n^4) \)
\Omega-Notation: Asymptotic Lower Bound

\textbf{\(O\)-Notation} \ For a function \(g(n)\),
\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \ \text{such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

\textbf{\(\Omega\)-Notation} \ For a function \(g(n)\),
\[
\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \ \text{such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in \Omega(g(n))\) if \(f(n) \geq cg(n)\) for some \(c\) and large enough \(n\).
- Informally, think of it as \("f \geq g"\).
Again, we use “=” instead of \in.

- $4n^2 = \Omega(n)$
- $3n^2 - n + 10 = \Omega(n^2)$
- $\Omega(n^2) + n = \Omega(n^2) = \Omega(n)$

Theorem $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.
- Informally, think of it as “$f = g$”.

- $3n^2 + 2n = \Theta(n^2)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$

Theorem $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\lg^{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Asymptotic Notations

\begin{array}{c|c|c}
\text{Comparison Relations} & O & \Omega & \Theta \\
\hline
\leq & \geq & = \\
\end{array}

Trivial Facts on Comparison Relations
- \(f \leq g \iff g \geq f \)
- \(f = g \iff f \leq g \text{ and } f \geq g \)
- \(f \leq g \text{ or } f \geq g \)

Correct Analogies
- \(f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \)
- \(f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \)

Incorrect Analogy
- \(f(n) = O(g(n)) \text{ or } g(n) = O(f(n)) \)
Incorrect Analogy

- $f(n) = O(g(n))$ or $g(n) = O(f(n))$

$$f(n) = n^2$$

$$g(n) = \begin{cases}
1 & \text{if } n \text{ is odd} \\
2^n & \text{if } n \text{ is even}
\end{cases}$$
Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- Thus $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

Formally: if $n > 10$, then $n^2 < 3n^2 - 10n - 5 < 3n^2$. So, $3n^2 - 10n - 5 \in \Theta(n^2)$.
o and ω-Notations

o-Notation For a function $g(n)$,

$$o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

ω-Notation For a function $g(n)$,

$$\omega(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

Example:
- $3n^2 + 5n + 10 = o(n^2 \lg n).$
- $3n^2 + 5n + 10 = \omega(n^2/\lg n).$
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of n numbers

\[
\text{sum}(A, n) \\
1. S \leftarrow 0 \\
2. \text{for } i \leftarrow 1 \text{ to } n \\
3. \hspace{1em} S \leftarrow S + A[i] \\
4. \text{return } S
\]
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array}
\]
$O(n)$ (Linear) Running Time

merge(B, C, n_1, n_2) \[B \text{ and } C \text{ are sorted, with length } n_1 \text{ and } n_2 \]

1. $A \leftarrow []$; $i \leftarrow 1$; $j \leftarrow 1$
2. while $i \leq n_1$ and $j \leq n_2$
3. if ($B[i] \leq C[j]$) then
4. append $B[i]$ to A; $i \leftarrow i + 1$
5. else
6. append $C[j]$ to A; $j \leftarrow j + 1$
7. if $i \leq n_1$ then append $B[i..n_1]$ to A
8. if $j \leq n_2$ then append $C[j..n_2]$ to A
9. return A

Running time = $O(n)$ where $n = n_1 + n_2$.
\(O(n \lg n) \) Running Time

```plaintext
merge-sort(A, n)

1. if \( n = 1 \) then
2. return \( A \)
3. else
4. \( B \leftarrow \text{merge-sort} \left( A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor \right) \)
5. \( C \leftarrow \text{merge-sort} \left( A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor \right) \)
6. return \( \text{merge}(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor) \)
```
$O(n \lg n)$ Running Time

- **Merge-Sort**

![Diagram of Merge-Sort]

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

```
closest-pair(x, y, n)

1. bestd ← ∞
2. for i ← 1 to n − 1
3.     for j ← i + 1 to n
4.         d ← √((x[i] − x[j])^2 + (y[i] − y[j])^2)
5.         if d < bestd then
6.             besti ← i, bestj ← j, bestd ← d
7. return (besti, bestj)
```

Closest pair can be solved in \(O(n \lg n)\) time!
Multiply two matrices of size $n \times n$

\begin{verbatim}
matrix-multiplication(A, B, n)
1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to n
3. for $j \leftarrow 1$ to n
4. for $k \leftarrow 1$ to n
5. $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return C
\end{verbatim}
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size k

Input: graph $G = (V, E)$, an integer k

Output: whether there is an independent set of size k
Independent Set of Size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k

```
independent-set(G = (V, E))

1. for every set $S \subseteq V$ of size $k$
2. \hspace{1em} $b \leftarrow$ true
3. for every $u, v \in S$
4. \hspace{2em} if $(u, v) \in E$ then $b \leftarrow$ false
5. \hspace{1em} if $b$ return true
6. return false
```

Running time = $O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assume k is a constant)
Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the maximum independent set of G

```plaintext
def max-independent-set(G = (V, E)):
    \[\begin{align*}
    & R \leftarrow \emptyset \\
    & \text{for every set } S \subseteq V \\
    & \quad b \leftarrow \text{true} \\
    & \quad \text{for every } u, v \in S \\
    & \quad \quad \text{if } (u, v) \in E \text{ then } b \leftarrow \text{false} \\
    & \quad \quad \text{if } b \text{ and } |S| > |R| \text{ then } R \leftarrow S \\
    & \text{return } R
    \end{align*}\]
```

Running time $= O(2^n n^2)$.
Beyond Polynomial Time: $O(n!)$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

Hamiltonian($G = (V, E)$)

1. for every permutation (p_1, p_2, \cdots, p_n) of V
2. $b \leftarrow true$
3. for $i \leftarrow 1$ to $n - 1$
4. \hspace{1em} if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow false$
5. \hspace{1em} if $(p_n, p_1) \notin E$ then $b \leftarrow false$
6. \hspace{1em} if b then return (p_1, p_2, \cdots, p_n)
7. return “No Hamiltonian Cycle”

Running time $= O(n! \times n)$
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

```plaintext
binary-search($A, n, t$)

1. $i \leftarrow 1$, $j \leftarrow n$
2. while $i \leq j$ do
3.   $k \leftarrow \lfloor (i + j)/2 \rfloor$
4.   if $A[k] = t$ return true
5.   if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false
```

Running time $= O(lg n)$
Compare the Orders

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using “<” and “=”)

 \(n^{\sqrt{n}} \), \(\lg n \), \(n \), \(n^2 \), \(n \lg n \), \(n! \), \(2^n \), \(e^n \), \(\lg(n!) \), \(n^n \)

- \(\lg n < n^{\sqrt{n}} \)
- \(\lg n < n < n^{\sqrt{n}} \)
- \(\lg n < n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n! \)
- \(\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \(\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
- \(\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! < n^n \)
Terminologies

When we talk about upper bounds:
- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$

When we talk about lower bounds:
- Super-linear time: $\omega(n)$
- Super-quadratic time: $\omega(n^2)$
- Super-polynomial time: $\bigcap_{k>0} \omega(n^k)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- For reasonable n, algorithm with lower order running time beats algorithm with higher order running time.