
A Dependent LP-rounding Approach for the k-Median
Problem

Moses Charikar1 and Shi Li1

Department of computer science, Princeton University, Princeton NJ 08540, USA

Abstract. In this paper, we revisit the classical k-median problem: Given n
points in a metric space, select k centers so as to minimize the sum of distances
of points to their closest center. Using the standard LP relaxation for k-median,
we give an efficient algorithm to construct a probability distribution on sets of k
centers that matches the marginals specified by the optimal LP solution. Our al-
gorithm draws inspiration from clustering and randomized rounding approaches
that have been used previously for k-median and the closely related facility lo-
cation problem, although ensuring that we choose at most k centers requires a
careful dependent rounding procedure.
Analyzing the approximation ratio of our algorithm presents significant techni-
cal difficulties: we are able to show an upper bound of 3.25. While this is worse
than the current best known 3 + ϵ guarantee of [2], our approach is interesting
because: (1) The random choice of the k centers given by the algorithm keeps
the marginal distributions and satisfies the negative correlation, leading to 3.25
approximation algorithms for some generalizations of the k-median problem, in-
cluding the k-UFL problem introduced in [8], (2) our algorithm runs in Õ(k3n2)
time compared to the O(n8) time required by the local search algorithm of [2]
to guarantee a 3.25 approximation, and (3) our approach has the potential to beat
the decade old bound of 3 + ϵ for k-median by a suitable instantiation of various
parameters in the algorithm.
We also give a 34-approximation for the knapsack median problem, which greatly
improves the approximation constant in [11]. Besides the improved approxima-
tion ratio, both our algorithm and analysis are simple, compared to [11]. Using
the same technique, we also give a 9-approximation for matroid median problem
introduced in [9], improving on their 16-approximation.

1 Introduction

In this paper, we present a novel LP rounding algorithm for the metric k-median prob-
lem which achieves approximation ratio 3.25. For the k-median problem, we are given
a finite metric space (F ∪ C, d) and an integer k ≥ 1, where F is a set of facility loca-
tions and C is a set of clients. Our goal is to select k facilities to open, such that the total
connection cost for all clients in C is minimized, where the connection cost of a client
is its distance to its nearest open facility. When F = C = X , the set of points with the
same nearest open facility is known as a cluster and thus the sum measures how well X
can be partitioned into k clusters. The k-median problem has numerous applications,
starting from clustering to data mining [3], to assigning efficient sources of supplies to
minimize the transportation cost([10, 13]).

The problem is NP-hard and has received a lot of attention. The first constant factor
approximation is due to [5]. Based on LP rounding, their algorithm produces a 6 2

3 -
approximation. The best known approximation algorithm is the local search algorithm
given by [2]. They showed that if there is a solution F ′, where any p swaps of the
centers can not improve the solution, then F ′ is a 3 + 2/p approximation. This leads to
a 3 + ϵ approximation in n2/ϵ running time. Jain, Mahdian and Saberi [7] proved that
the k-median problem is 1 + 2/e ≈ 1.736-hard to approximate.

Our algorithm (like several previous ones) is based on the following natural LP
relaxation:

LP(1) min
∑

i∈F,j∈C d(i, j)xi,j s.t.∑
i∈F

xi,j = 1, ∀j ∈ C; xi,j ≤ yi, ∀i ∈ F , j ∈ C;∑
i∈F

yi ≤ k; xi,j , yi ∈ [0, 1], ∀i ∈ F , j ∈ C

It is known that the LP has an integrality gap of 2. On the positive side, [1] showed that
the integrality gap is at most 3 by giving an exponential time rounding algorithm that
requires to solve maximum independent set.

Very recently, Kumar [11] gave a (large) constant-factor approximation algorithm
for a generalization of the k-median problem, which is called knapsack median prob-
lem. In this problem, each facility i ∈ F has an opening cost fi and we are given a
budget M . The goal is to open a set of facilities such that their total opening cost is
at most M , and minimize the total connection cost of all clients. When M = k and
fi = 1 for all facilities i ∈ F , the problem is k-median problem.

Another generalization of the k-median problem is the matroid-median problem,
introduced by Krishnaswamy et al. [9]. In the problem, the set of open facilities has to
form an independent set of some given matroid. [9] gave a 16-approximation for this
problem, assuming there is a separation oracle for the matroid polytope.

1.1 Our results

We give a simple and efficient rounding procedure. Given a LP solution, we open a
set of k facilities from some distribution and connect each client j to its nearest open
facility, such that the expected connection cost of j is at most 3.25 times its fractional
connection cost. This leads to a 3.25 approximation for the k-median algorithm. Though
the provable approximation ratio is worse than that of the current best algorithm, we
believe the algorithm (and particularly our approach) is interesting for the following
reasons:

Firstly, our algorithm is more efficient than the 3+ ϵ-approximation algorithm with
the same approximation guarantee. The bottleneck of our algorithm is solving the LP.
Using Young’s (1 + ϵ)-approximation for the k-median LP [15] (for ϵ = O(1/k)),
we get a running time of Õ(k3n2). By comparison, the local search algorithm of [2]
requires O(n8) time to achieve a 3.25 approximation.

Secondly, our approach has the potential to beat the decade old 3+ϵ-approximation
algorithm for k-median. In spite of the simplicity of our algorithm, we are unable to

exploit its full potential due to technical difficulties in the analysis. Our upper bound
of 3.25 is not tight. The algorithm has some parameters which we have instantiated for
ease of analysis. It is possible that the algorithm with these specific choices gives an ap-
proximation ratio strictly better than 3; further there is additional room for improvement
by making a judicious choice of algorithm parameters.

The distribution of solutions produced by the algorithm has two nice properties that
make it applicable for some variants of the k-median problem: (1) The probability that
a facility i is open is exactly yi, and (2) The events that facilities are open are negatively
related. Consequently, the algorithm can be easily extended to solve the k-median prob-
lem with facility costs and the k-median problem with multiple types of facilities, both
introduced in [8]. The techniques of this paper yield a factor 3.25 algorithm for the two
generalizations.

Based on our techniques for the k-median problem, we give a 34-approximation al-
gorithm for the knapsack median problem, which greatly improves the constant approx-
imation given by [11].(The constant was 2700.) Besides the improved approximation
ratio, both our algorithm and analysis are simpler compared to those in [11]. Following
the same line of the algorithm, we can give a 9-approximation for the matroid-median
problem, improving on the 16-approximation in [9].

2 The approximation algorithm for the k-median problem

Our algorithm is inspired by the 6 2
3 -approximation for k-median by [5] and the clus-

tered rounding approach of Chudak and Shmoys [6] for facility location as well as the
analysis of the 1.5-approximation for UFL problem by [4]. In particular, we are able
to save the additive factor of 4 that is lost at the beginning of the 6 2

3 -approximation
algorithm by [5], using some ideas from the rounding approaches for facility location.

We first give with a high level overview of the algorithm. A simple way to match
the marginals given by the LP solution is to interpret the yi variables as probabilities of
opening facilities and sample independently for each i. This has the problem that with
constant probability, a client j could have no facility opened close to j. In order to ad-
dress this, we group fractional facilities into bundles, each containing a total fractional
of between 1/2 and 1. At most one facility is opened in each bundle and the probability
that some facility in a bundle is picked is exactly the volume, i.e. the sum of yi values
for the bundle.

Creating bundles reduces the uncertainty of the sampling process. E.g. if the facil-
ities in a bundle of volume 1/2 are sampled independently, with probability e−1/2 in
the worst case, no facility will be open; while sampling the bundle as a single entity
reduces the probability to 1/2. The idea of creating bundles alone does not reduce the
approximation ratio to a constant, since still with some non-zero probability, no nearby
facilities are open.

In order to ensure that clients always have an open facility within expected dis-
tance comparable to their LP contribution, we pair the bundles. Each pair now has at
least a total fraction of 1 facility and we ensure that the rounding procedure always
picks one facility in each pair. The randomized rounding procedure makes independent
choices for each pair of bundles and for fractional facilities that are not in any bundle.

This produces k facilities in expectation. We get exactly k by replacing the indepen-
dent rounding by a dependent rounding procedure with negative correlation properties
so that our analysis need only consider the independent rounding procedure. One final
detail: In order to obtain a faster running time, we use a procedure that yields an approx-
imately optimal LP solution with at most (1+ ϵ)k fractional facilities. Setting ϵ = δ/k,
and applying our dependent rounding approach, we get at most k facilities with high
probability with a small additive loss in the guarantee.

Now we proceed to give more details. We solve LP(1) to obtain a fractional solution
(x, y). By splitting one facility into many if necessary, we can assume xi,j ∈ {0, yi}.
We remove all facilities i from C that have yi = 0. Let Fj = {i ∈ F : xi,j > 0}. So,
instead of using x and y, we shall use (y, {Fj |j ∈ C}) to denote a solution.

For a subset of facilities F ′ ⊆ F , define vol(F ′) =
∑

i∈F ′ yi to be the volume of
F ′. So, vol(Fj) = 1,∀j ∈ C. W.L.O.G, we assume vol(F) = k. Denote by d(j,F ′) the
average distance from j to F ′ w.r.t weights y, i.e, d(j,F ′) =

∑
i∈F ′ yid(j, i)/vol(F ′).

Unless otherwise stated, d(j, ∅) = 0. Define dav(j) =
∑

i∈Fj
yid(i, j) to be the con-

nection cost of j in the fractional solution. For a client j, let B(j, r) denote the set of
facilities that have distance strictly smaller than r to j.

Our rounding algorithm consists of 4 phases, which we now describe.

2.1 Filtering phase

We begin our algorithm with a filtering phase, where we select a subset C′ ⊆ C of
clients. C′ has two properties: (1) The clients in C′ are far away from each other. With
this property, we can guarantee that each client in C′ can be assigned an exclusive set
of facilities with large volume. (2) A client in C\C′ is close to some client in C′, so that
its connection cost is bounded in terms of the connection cost of its neighbour in C′.
So, C′ captures the connection requirements of C and also has a nice structure. After
this filtering phase, our algorithm is independent of the clients in C\C′. Following is the
filtering phase.

Initially, C′ = ∅, C′′ = C. At each step, we select the client j ∈ C′′ with the
minimum dav(j), breaking ties arbitrarily, add j to C′ and remove j and all j′s that
d(j, j′) ≤ 4dav(j

′) from C′′. This operation is repeated until C′′ = ∅.

Lemma 1. The following statements hold:

1. For any j, j′ ∈ C′, j ̸= j′, d(j, j′) > 4max {dav(j), dav(j′)};
2. For any j′ ∈ C\C′, there is a client j ∈ C′ such that dav(j) ≤ dav(j

′), d(j, j′) ≤
4dav(j

′).

Proof. Consider two different clients j, j′ ∈ C′. W.L.O.G, assume j is added to C′ first.
So, dav(j) ≤ dav(j

′). Since j′ is not removed from C′′, we have d(j, j′) > 4dav(j
′) =

4max {dav(j), dav(j′)}.
Now we prove the second statement. Since j′ is not in C′, it must be removed from

C′′ when some j is added to C′. Since j was picked instead of j′, dav(j) ≤ dav(j
′);

since j′ was removed from C′′, d(j, j′) ≤ 4dav(j
′).

2.2 Bundling phase

Since clients in C′ are far away from each other, each client j ∈ C′ can be assigned a set
of facilities with large volume. To be more specific, for a client j ∈ C′, we define a set
Uj as follows. Let Rj = 1

2 minj′∈C′,j′ ̸=j d(j, j
′) be half the distance of j to its nearest

neighbour in C′, and F ′
j = Fj ∩ B(j, 1.5Rj) to be the set of facilities that serve j and

are at most 1.5Rj away.1 A facility i which belongs to at least one F ′
j is claimed by the

nearest j ∈ C′ such that i ∈ F ′
j , breaking ties arbitrarily. Then, Uj ⊆ Fj is the set of

facilities claimed by j.

Lemma 2. The following two statements are true:
(1) 1/2 ≤ vol(Uj) ≤ 1, ∀j ∈ C′, and (2) Uj ∩ Uj′ = ∅, ∀j, j′ ∈ C′, j ̸= j′.

Proof. Statement 2 is trivial; we only consider the first one. Since Uj ⊆ F ′
j ⊆ Fj , we

have vol(Uj) ≤ vol(Fj) = 1. For a client j ∈ C′, the closest client j′ ∈ C′\ {j} to j has
d(j, j′) > 4dav(j) by lemma 1. So, Rj > 2dav(j) and the facilities in Fj that are at
most 2dav(j) away must be claimed by j. The set of these facilities has volume at least
1− dav(j)/(2dav(j)) = 1/2. Thus, vol(Uj) ≥ 1/2.

The sets Uj’s are called bundles. Each bundle Uj is treated as a single entity in
the sense that at most 1 facility from it is open, and the probability that 1 facility is
open is exactly vol(Uj). From this point, a bundle Uj can be viewed as a single facility
with y = vol(Uj), except that it does not have a fixed position. We will use the phrase
“opening the bundle Uj” the operation that opens 1 facility randomly from Uj , with
probabilities yi/vol(Uj).

2.3 Matching phase

Next, we construct a matching M over the bundles (or equivalently, over C′). If two
bundles Uj and Uj′ are matched, we sample them using a joint distribution. Since each
bundle has volume at least 1/2, we can choose a distribution such that with probability
1, at least 1 bundle is open.

We construct the matching M using a greedy algorithm. While there are at least 2
unmatched clients in C′, we choose the closest pair of unmatched clients j, j′ ∈ C′ and
match them.

2.4 Sampling phase

Following is our sampling phase.

1 It is worthwhile to mention the motivation behind the choice of the scalar 1.5 in the definition
of F ′

j . If we were only aiming at a constant approximation ratio smaller than 4, we could
replace 1.5 with 1, in which case the analysis is simpler. On the other hand, we believe that
changing 1.5 to ∞ would give the best approximation, in which case the algorithm also seems
cleaner (since F ′

j = Fj). However, if the scalar were ∞, the algorithm is hard to analyze due
to some technical reasons. So, the scalar 1.5 is selected so that we don’t lose too much in the
approximation ratio and yet the analysis is still manageable.

1: for each pair (j, j′) ∈ M do
2: With probability 1− vol(Uj′), open Uj ; with probability 1− vol(Uj), open Uj′ ;

and with probability vol(Uj) + vol(Uj′)− 1, open both Uj and Uj′ ;
3: end for
4: If some j ∈ C′ is not matched in M, open Uj randomly and independently with

probability vol(Uj);
5: For each facility i not in any bundle Uj , open it independently with probability yi.

It is easy to see that our sampling process opens k facilities in expectation, since
each facility i is open with probability yi. It does not always open k facilities as we
promised.2 We shall describe in Appendix B how to modify our algorithm so that it
opens exactly k facilities, without sacrificing the approximation ratio. We also show in
Appendix B that the distribution for the k open facilities satisfies a negative correlation
property so that our approximation ratio analysis need only consider the simpler sam-
pling process above. Along with the marginal probability property, we show how our
algorithm can be extended to solve variants of the k-median problem in Appendix B.

We shall outline the proof of the 3.25 approximation ratio for the above algorithm
in section 3. As a warmup, we conclude this section with a much weaker result:

Lemma 3. The algorithm gives a constant approximation for the k-median problem.

Proof. It is enough to show that the ratio between the expected connection cost of j
and dav(j) is bounded, for any j ∈ C. Moreover, it suffices to consider a client j ∈ C′.
Indeed, if j /∈ C′, there is a client j1 ∈ C′ such that dav(j1) ≤ dav(j), d(j, j1) ≤
4dav(j), by the second property of lemma 1. So the expected connection cost for j is at
most the expected connection cost for j1 plus 4dav(j). Thus, the ratio for j is bounded
by the ratio for j1 plus 4. So, it suffices to consider the expected connection cost of j1.

W.L.O.G, assume dav(j1) = 1. Let j2 be the client in C′\ {j1} that is closest to j1.
Consider the case where j1 is not matched with j2 (this is worse than the case where
they are matched). Then, j2 must be matched with another client, say j3 ∈ C′, before
j1 is matched, and d(j2, j3) ≤ d(j1, j2). The sampling process guarantees that there
must be a open facility in Uj2 ∪ Uj3 . It is true that j2 and j3 may be far away from
j1. However, if d(j1, j2) = 2R (thus, d(j1, j3) ≤ 4R, dav(j2), dav(j3) ≤ R/2), the
volume of Uj1 is at least 1− 1/R. That means with probability at least 1− 1/R, j1 will
be connected to a facility that serves it in the fractional solution; only with probability
1/R, j1 will be connected to a facility that is O(R) away. So, the algorithm will give a
constant approximation.

3 Outline of the proof of the 3.25 approximation ratio

If we analyze the algorithm as in the proof of lemma 3, an additive factor of 4 is lost
at the first step. This additive factor can be avoided,3 if we notice that there is a set Fj

2 One could argue that with high probability, the number of open facilities is at most k +
O(

√
k) by applying Chernoff bound. This argument, however, can only lead to a pseudo-

approximation.
3 this is inspired by the analysis for the facility location problem in [6, 4, 12].

of facilities of volume 1 around j. Hopefully with some probability, some facility in Fj

is open. It is not hard to show that this probability is at least 1 − 1/e. So, only with
probability 1/e, we are going to pay the additive factor of 4. Even if there are no open
facilities in Fj , the facilities in Fj1 and Fj2 can help to reduce the constant.

A natural style of analysis is: focus on a set of “potential facilities”, and consider
the expected distance between j and the closest open facility in this set. An obvious
candidate for the potential set is Fj ∪ Fj1 ∪ Fj2 ∪ Fj3 . However, we are unable to
analyze this complicated system.

Instead, we will consider a different potential set. Observing that Uj1 ,Uj2 ,Uj3 are
disjoint, the potential set Fj ∪ Uj1 ∪ Uj2 ∪ Uj3 is much more tractable. Even with this
simplified potential set, we still have to consider the intersection between Fj and each
of Uj1 , Uj2 and Uj3 . Furthermore, we tried hard to reduce the approximation ratio at the
cost of complicating the analysis(recall the argument about the choice of the scalar 1.5).
With the potential set Fj ∪ Uj1 ∪ Uj2 ∪ Uj3 , we can only prove a worse approximation
ratio. To reduce it to 3.25, different potential sets are considered for different bottleneck
cases.

W.L.O.G, we can assume j ̸∈ C′, since we can think of the case j ∈ C′ as j ̸∈ C′

and there is another client j1 ∈ C′ with d(j, j1) = 0. We also assume dav(j) = 1. Let
j1 ∈ C′ be the client such that dav(j1) ≤ dav(j) = 1, d(j, j1) ≤ 4dav(j) = 4. Let j2
be the closest client in C′\ {j1} to j1, thus d(j1, j2) = 2Rj1 . Then, either j1 is matched
with j2, or j2 is matched with a different client j3 ∈ C′, in which case we will have
d(j2, j3) ≤ d(j1, j2) = 2Rj1 . We only consider the second case. Readers can verify
this is indeed the bottleneck case.

For the ease of notation, define 2R := d(j1, j2) = 2Rj1 , 2R
′ := d(j2, j3) ≤

2R, d1 := d(j, j1), d2 := d(j, j2) and d3 := d(j, j3).
At the top level, we divide the analysis into two cases : the case 2 ≤ d1 ≤ 4 and the

case 0 ≤ d1 ≤ 2(Notice that we assumed dav(j) = 1 and thus 0 ≤ d1 ≤ 4). For some
technical reason, we can not include the whole set Fj in the potential set for the case
2 ≤ d1 ≤ 4. Instead we only include a subset F ′

j (notice that j /∈ C′ and thus F ′
j was

not defined before). F ′
j is defined as Fj ∩B(j, d1).

The case 2 ≤ d1 ≤ 4 is further divided into 2 sub-cases : F ′
j ∩ F ′

j1
⊆ Uj1 and

F ′
j ∩ F ′

j1
̸⊆ Uj1 . Thus, we will have 3 cases :

1. 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1
⊆ Uj1 . In this case, we consider the potential set F ′′ =

F ′
j ∪F ′

j1
∪ Uj2 ∪ Uj3 . Notice that F ′

j = Fj ∩B(j, d1), F ′
j1

= Fj1 ∩B(j1, 1.5R).
In Appendix C.1, we show that the expected connection cost of j in this case is
bounded by 3.243.

2. 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1
̸⊆ Uj1 . In this case, some facility i in F ′

j ∩ F ′
j1

must be
claimed by some client j′ ̸= j1. Since d(j, i) ≤ d1, d(j1, i) ≤ 1.5R, we have

d(j, j′) ≤ d(j, i) + d(j′, i) ≤ d(j, i) + d(j1, i) ≤ d1 + 1.5R.

If j′ /∈ {j2, j3}, we can include Uj′ in the potential set and thus the potential set is
F ′′ = F ′

j ∪ F ′
j1

∪ Uj2 ∪ Uj3 ∪ Uj′ . If j ∈ {j2, j3}, then we know j and j2, j3 are
close. So, we either have a “larger” potential set, or small distances between j and
j2, j3. Intuitively, this case is unlikely to be the bottleneck case. In Appendix C.2,
we prove that the expected connection cost of j in this case is bounded by 3.189.

3. 0 ≤ d1 ≤ 2. In this case, we consider the potential set F ′′ = Fj ∪Uj1 ∪Uj2 ∪Uj3 .
In Appendix C.3, we show that the expected connection cost of j in this case is
bounded by 3.25.

3.1 Running time of the algorithm

Let’s now analyze the running time of our algorithm in terms of n = |F ∪ C|. The
bottleneck of the algorithm is solving the LP. Indeed, generating the set C′, creating
bundles and constructing the matching M all take time O(n2). Then new sampling
algorithm takes time O(n) and computing the nearest open facility for all the clients
takes time O(n2). Thus, the total time to round a fractional solution is O(n2).

To solve the LP, we use the (1 + ϵ) approximation algorithm for the fractional k-
median problem in [15]. The algorithm gives a fractional solution which opens (1 +
ϵ)k facilities with connection cost at most 1 + ϵ times the fractional optimal in time
O(kn2 ln(n/ϵ)/ϵ2). To apply it here, we set ϵ = δ/k for some small constant δ. Then,
our rounding procedure will open k facilities with probability 1− δ and k+1 facilities
with probability δ. The expected connection cost of the integral solution is at most
3.25(1 + δ/k) times the fractional optimal. Conditioned on the rounding procedure
opening k facilities, the expected connection cost is at most 3.25(1 + δ/k)/(1 − δ) ≤
3.25(1 +O(δ)) times the optimal fractional value.

Theorem 1. For any δ > 0, there is a 3.25(1 + δ)-approximation algorithm for k-
median problem that runs in Õ

(
(1/δ2)k3n2

)
time.

3.2 Generalization of the algorithm to variants of k-median problems

The distribution of k open facilities that our algorithm produces has two good proper-
ties. First, the probability that a facility i is open is exactly yi. Second, the events that
facilities are open are negatively correlated, as stated in Lemma 10. The two properties
allow our algorithm to be extended to some variants of the k-median problem, which
the local search algorithm seems hard to apply to.

The first variant is a common generalization of the k-median problem and the UFL
problem introduced in [8]. In the generalized problem, we have both upper bound on
the number of facilities we can open and facility costs. For this problem, the LP is the
same as LP(1), except that the objective function contains a term for the opening cost.
After solving the LP, we can use our rounding procedure to get an integral solution. The
expected opening cost of the integral solution is exactly the fractional opening cost in
the LP solution, while the expected connection cost is at most 3.25 times the fractional
connection cost.

Another generalization introduced in [8] is the k-median problem with multiple
types of facilities. Suppose we have t types of facilities, and the total number of the
t types of facilities we can open is at most k so that each client is connected to one
facility of each type. The goal is to minimize the total connection cost. Our techniques
yield a 3.25 approximation for this problem as well. We first solve the natural LP for
this problem and then round t instances of the k-median problem separately. We can
again use the dependence rounding technique described in Appendix B to guarantee the
cardinality constraint.

4 Approximation algorithms for knapsack-median problem and
matroid-median problem

The LP for Knapsack-median problem is the same as LP (1), except that we change the
cardinality constraint

∑
i∈F yi ≤ k to the knapsack constraint

∑
i∈F fiyi ≤ M .

As showed in [11], the LP has unbounded integrality gap. To amend this, we do the
same trick as in [11]. Suppose we know the optimal cost OPT for the knapsack median
problem. For a client j, let Lj be its connection cost. Then, for some other client j′, its
connection cost is at least max {0, Lj − d(j, j′)}. This suggests∑

j′∈C

max{0, Lj − d(j, j′)} ≤ OPT. (1)

Thus, knowing OPT, we can get an upper bound Lj on the connection cost of j: Lj

is the largest number such that the above inequality is true. We solve the LP with the
additional constraint that xi,j = 0 if d(i, j) > Lj . Then, the LP solution, denoted
by LP, must be at most OPT. By binary searching, we find the minimum OPT so
that LP ≤ OPT. Let

(
x(1), y(1)

)
be the fractional solution given by the LP. We use

LPj = dav(j) =
∑

i∈F d(i, j)x
(1)
i,j to denote the contribution of the client j to LP.

Then we select a set of filtered clients C′ as we did in the algorithm for the k-
median problem. For a client j ∈ C, let π(j) be a client j′ ∈ C′ such that dav(j′) ≤
dav(j), d(j, j

′) ≤ 4dav(j). Notice that for a client j ∈ C′, we have π(j) = j. This time,
we can not save the additive factor of 4; instead, we move the connection demand on
each client j /∈ C′ to π(j). For a client j′ ∈ C′, let wj′ =

∣∣π−1(j′)
∣∣ be its connection

demand. Let LP(1) =
∑

j′∈C′,i∈F wj′xi,j′d(i, j
′) =

∑
j′∈C′ wj′dav(j

′) be the cost of

the solution
(
x(1), y(1)

)
to the new instance. For a client j ∈ C, let LP(1)

j = dav(π(j))

be the contribution of j to LP(1). (The amount wj′dav(j
′) is evenly spread among the

wj′ clients in π−1(j′).) Since LPj = dav(j) ≤ dav(j) ≤ LP
(1)
j , we have LP(1) ≤ LP.

For any client j ∈ C′, let 2Rj = minj′∈C′,j′ ̸=j d(j, j
′), if vol(B(j, Rj)) ≤ 1;

otherwise let Rj be the smallest number such that vol(B(j, Rj)) = 1. (vol(S) is defined
as
∑

i∈S y
(1)
i .) Let Bj = B(j, Rj) for the ease of notation. If vol(Bj) = 1, we call Bj a

full ball; otherwise, we call Bj a partial ball. Notice that we always have vol(Bj) ≥ 1/2.
Notice that Rj ≤ Lj since x

(1)
i,j = 0 for all facilities i with di,j > Lj .

We find a matching M over the partial balls as in Section 2: while there are at least
2 unmatched partial balls, match the two balls Bj and Bj′ with the smallest d(j, j′).

Consider the following LP.

LP(2) min
∑

j′∈C′ wj′

(∑
i∈Bj′

d(i, j′)yi +
(
1−

∑
i∈Bj

yi

)
Rj′

)
s.t.∑

i∈Bj′

yi = 1, ∀j′ ∈ C′, Bj′ full;
∑
i∈Bj′

yi ≤ 1, ∀j′ ∈ C′, Bj′ partial;

∑
i∈Bj

yi +
∑
i∈Bj′

yi ≥ 1, ∀(Bj , Bj′) ∈ M;
∑
i∈F

fiyi ≤ M ;

yi ≥ 0, ∀i ∈ F

Let y(2) be an optimal basic solution of LP (2) and let LP(2) be the value of LP(2).
For a client j ∈ C with π(j) = j′, let LP(2)

j =
∑

i∈Bj′
d(i, j′)yi+

(
1−

∑
i∈Bj′

yi

)
Rj′

be the contribution of j to LP(2). Then we prove

Lemma 4. LP(2) ≤ LP(1).

Proof. It is easy to see that y(1) is a valid solution for LP(2). By slightly abusing the
notation, we can think of LP(2) is the cost of y(1) to LP(2). We compare the contribution
of each client j ∈ C with π(j) = j′ to LP(2) and to LP(1). If Bj′ is a full ball, j′

contributes the same to LP(2) and as to LP(1). If Bj′ is a partial ball, j′ contributes∑
i∈Fj′

d(i, j′)y
(1)
i to LP(1) and

∑
i∈Bj′

d(i, j′)y
(1)
i + (1−

∑
i∈Bj′

y
(1)
i)Rj′ to LP(2).

Since Bj′ = B(j′, Rj′) ⊆ Fj′ and vol(Fj′) = 1, the contribution of j′ to LP(2) is at
most that to LP(1). So, LP(2) ≤ LP(1).

Notice that LP(2) only contains y-variables. We show that any basic solution y∗ of
LP(2) is almost integral. In particular, we prove the following lemma in Appendix A.

Lemma 5. Any basic solution y∗ of LP(2) contains at most 2 fractional values. More-
over, if it contains 2 fractional values y∗i , y

∗
i′ , then y∗i + y∗i′ = 1 and either there exists

some j ∈ C′ such that i, i′ ∈ Bj or there exists a pair (Bj , Bj′) ∈ M such that
i ∈ Bj , i

′ ∈ Bj′ .

Let y(3) be the integral solutin obtained from y(2) as follows. If y(2) contains at
most 1 fractional value, we zero-out the fractional value. If y(2) contains 2 fractional
values y(2)i , y

(2)
i′ , let y(3)i = 1, y

(3)
i′ = 0 if fi ≤ fi′ and let y(3)i = 0, y

(3)
i′ = 1 otherwise.

Notice that since y
(2)
i + y

(2)
i′ = 1, this modification does not increase the budget. Let

SOL be the cost of the solution y(3) to the original instance.
We leave the proof of the following lemma to Appendix A.

Lemma 6.
∑

i∈B(j′,5Rj′)
y
(2)
i ≥ 1 and

∑
i∈B(j′,5Rj′)

y
(3)
i ≥ 1. i.e, there is an open

facility (possibly two facilities whose opening fractions sum up to 1) inside B(j′, 5Rj′)
in both the solution y(2) and the solution y(3).

Lemma 7. SOL ≤ 34OPT.

Proof. Let ĩ be the facility that y(2)
ĩ

> 0, y
(3)

ĩ
= 0, if it exists; let j̃ be the client that

ĩ ∈ Bj̃ .
Now, we focus on a client j ∈ C with π(j) = j′. Then, d(j, j′) ≤ 4dav(j) = 4LPj .

Assume that j′ ̸= j̃. Then, to obtain y(3), we did not move or remove an open facility
from Bj′ . In other words, for every i ∈ Bj′ , y

(3)
i ≥ y

(2)
i . In this case, we show

SOLj′ ≤
∑
i∈Bj′

d(i, j′)y
(2)
i + (1−

∑
i∈Bj′

y
(2)
i)× 5Rj′ .

If there is no open facility in Bj′ in y(3), then there is also no open facility in Bj′ in
y(2). Then, by Lemma 6, SOLj′ = 5Rj′ = right-side. Otherwise, there is exactly one

open facility in Bj′ in y(3). In this case, SOLj′ =
∑

i∈Bj′
d(j′, i)y

(3)
i ≤ right-side

since y
(3)
i ≥ y

(2)
i and d(i, j′) ≤ 5Rj′ for every i ∈ Bj′ .

Observing that the right side of the inequality is at most 5LP(2)
j , we have SOLj ≤

4LPj + SOLj′ ≤ 4LPj + 5LP
(2)
j .

Now assume that j′ = j̃. Since there is an open facility in B(j′, 5Rj′) by Lemma 6,
we have SOLj ≤ 4LPj +5Rj′ . Consider the set π−1(j′) of clients. Notice that we have
Rj′ ≤ Lj′ since x(1)

i,j′ = 0 for facilities i such that d(i, j′) > Lj′ . Also by Inequality (1),
we have

∑
j∈π−1(j′)(Rj′−d(j, j′)) ≤

∑
j∈π−1(j′)(Lj′−d(j, j′)) ≤ OPT. Then, since

d(j, j′) ≤ 4LPj for every j ∈ π−1(j′), we have∑
j∈π−1(j′)

SOLj ≤
∑
j

(4LPj + 5Rj′) ≤ 4
∑
j

LPj + 5
∑
j

Rj′

≤ 4
∑
j

LPj + 5
(
OPT+

∑
j

d(j, j′)
)
≤ 24

∑
j

LPj + 5OPT,

where the sums are all over clients j ∈ π−1(j′). Summing up all clients j ∈ C, we have

SOL =
∑
j∈C

SOLj =
∑

j /∈π−1(j̃)

SOLj +
∑

j∈π−1(j̃)

SOLj

≤
∑

j /∈π−1(j̃)

(4LPj + 5LP
(2)
j) + 24

∑
j∈π−1(j̃)

LPj + 5OPT

≤ 24
∑
j∈C

LPj + 5
∑
j∈C

LP
(2)
j + 5OPT ≤ 24LP+ 5LP(2) + 5OPT ≤ 34OPT,

where the last inequality follows from the fact that LP(2) ≤ LP(1) ≤ LP ≤ SOL. Thus,
we proved

Theorem 2. There is an efficient 34-approximation algorithm for the knapsack-median
problem.

It is not hard to change our algorithm so that it works for the matroid median prob-
lem. The analysis for the matroid median problem is simpler, since y(2) will already be
an integral solution. We leave the proof of the following theorem to Appendix A.

Theorem 3. There is an efficient 9-approximation algorithm for the matroid median
problem, assuming there is an efficient oracle for the input matroid.

References

1. Aaron Archer, Ranjithkumar Rajagopalan, and David B. Shmoys. Lagrangian relaxation for
the k-median problem: new insights and continuity properties. In In Proceedings of the 11th
Annual European Symposium on Algorithms, pages 31–42, 2003.

2. Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In
Proceedings of the thirty-third annual ACM symposium on Theory of computing, STOC ’01,
pages 21–29, New York, NY, USA, 2001. ACM.

3. P. S. Bradley, Usama M. Fayyad, and O. L. Mangasarian. Mathematical programming for
data mining: Formulations and challenges. INFORMS Journal on Computing, 11:217–238,
1998.

4. Jaroslaw Byrka. An optimal bifactor approximation algorithm for the metric uncapacitated
facility location problem. In APPROX ’07/RANDOM ’07: Proceedings of the 10th Interna-
tional Workshop on Approximation and the 11th International Workshop on Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 29–43, Berlin, Heidel-
berg, 2007. Springer-Verlag.

5. Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor ap-
proximation algorithm for the k-median problem (extended abstract). In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, STOC ’99, pages 1–10, New
York, NY, USA, 1999. ACM.

6. Fabián A. Chudak and David B. Shmoys. Improved approximation algorithms for the unca-
pacitated facility location problem. SIAM J. Comput., 33(1):1–25, 2004.

7. Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, STOC ’02, pages 731–740, New York, NY, USA, 2002. ACM.

8. Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001.

9. Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In In Proceedings of ACM-SIAM Symposium
on Discrete Algorithms, pages 1117–1130, 2011.

10. A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses. 9(9):643–
666, July 1963.

11. Amit Kumar. Constant factor approximation algorithm for the knapsack median problem.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’12, pages 824–832. SIAM, 2012.

12. Shi Li. A 1.488-approximation algorithm for the uncapacitated facility location problem. In
In Proceeding of the 38th International Colloquium on Automata, Languages and Program-
ming, 2011.

13. A.S Manne. Plant location under economies-of-scale-decentralization and computation. In
Managment Science, 1964.

14. A. Srinivasan. Distributions on level-sets with applications to approximation algorithms. In
Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, FOCS ’01,
pages 588–, Washington, DC, USA, 2001. IEEE Computer Society.

15. Neal E. Young. K-medians, facility location, and the chernoff-wald bound. In Proceedings
of the eleventh annual ACM-SIAM symposium on Discrete algorithms, SODA ’00, pages
86–95, Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathematics.

A Proofs omitted from Section 4

Proof (of Lemma 5). Focus on an independent set of tight constraints defining y∗. We make sure that if
y∗i = 0, then the constraint yi = 0 is in the independent set. Any tight constraint other than the knapsack
constraint and the constraints yi = 0 is defined by a set S, which is either Bj for some j ∈ C ′ or Bj ∪Bj′

for some (Bj , Bj′) ∈ M. The constraint for S is
∑

i∈S yi = 1. Let S be the set of subsets S whose
correspondent constraint is in the independent set.

We show that sets in S are disjoint. This is not true only if there is some pair (Bj , Bj′) ∈ M such that
Bj ∈ S, Bj ∪Bj′ ∈ S . However, this would imply that yi = 0 for every i ∈ Bj′ . Thus, the two constraints
for Bj and Bj ∪Bj′ are not independent. Thus, sets in S are disjoint.

Consider the matrix A defined by the set of tight constraints, where each rows represent constraints and
columns represent variables. Focus on set S∗ of columns (facilities) correspondent to the fractional values
in y∗. Then, the sub-matrix AY ∗ defined by Y ∗ must have rank |Y ∗|. Also, if some S ∈ S contains elements
in S∗, it must contain at least 2 elements in S∗. Noticing that sets in S are disjoint, if |S∗| ≥ 3, the rank
of AY ∗ can be at most ⌊|S∗|/2⌋ + 1 < |S∗|. Thus, |S∗| ≤ 2. If |S∗| = 2, then there must be a set S ∈ S
containing S∗. This implies that the two fractional value y∗i , y

∗
i′ satisfies y∗i + y∗i′ = 1 and either i, i′ ∈ Bj

for some j ∈ mC ′, or i ∈ Bj , i
′ ∈ Bj′ for some (Bj , Bj′) ∈ M.

Proof (of Lemma 6). Focus on the solution y(2). Consider the nearest neighbour j2 of j′ in C′. If Bj′ is a
full ball, then there is an open facility inside Bj′ = B(j′, Rj′); we assume Bj′ is a partial ball and thus
d(j′, j2) = 2Rj′ , Rj2 ≤ Rj′ . If Bj2 is a full ball, there is an open facility in Bj2 ⊆ B(j′, 2Rj′ + Rj2) ⊆
B(j′, 3Rj′). We assume Bj2 is a partial ball. If Bj′ is matched with Bj3 , then there is an open facility inside
Bj′ ∪ Bj2 ⊆ B(j′, 3Rj′). Otherwise, assume Bj2 is matched with Bj3 for some j3 ∈ C′. By the matching
rule, d(j2, j3) ≤ d(j′, j2) = 2R′. In this case, there is an open facility inside Bj2 ∪Bj3 ⊆ B(j′, 5Rj′ .

Now we prove the lemma for the solution y(3). If y(2) contains 2 fractional facilities, then to obtain
y(3), we moved 1 fractional facility within some ball Bj̃ , or moved 1 fractional facility from Bj̃ to Bj̃′ for
some (Bj̃ , Bj̃′) ∈ M. It is easy to check that the argument for y(2) also works for y(3). If y(2) contains 1
fractional open facility, then after removing this facility, we still have that every full ball contains an open
facility and every pair of matched partial balls contains an open facility. Thus, in the solution y(3), there is
an open facility inside B(j′, 5Rj′).

Proof (sketch of Theorem 3). We follow the same line of the algorithm for the knapsack median problem,
except that we change the knapsack constraint (in LP (1) and LP (2)) to the constraints∑

i∈S

yi ≤ rH(S), ∀S ⊆ F ,

where H is the given matroid, and rH(S) is the rank function of H. We shall show that the basic solution
y(2) for LP 2 is already an integral solution. This is true since the polytope of the LP is the intersection of a
matroid polytope and a polytope given by a laminar system of constraints. By the same argument as in the
proof of lemma 3.2 in [9], y(2) is an integral solution, i.e, we have y(3) = y(2). Then, following the same
proof of Lemma 7, we can show that SOLj ≤ 4LPj + 5LP

(2)
j for every j ∈ C, which immediately implies

an 9-approximation for the matroid median problem.

B Handling the cardinality constraint

In this section, we show how to modify our algorithm so that it opens exactly k facilities. The main idea
is to apply the technique of dependent rounding. For each pair of matched bundles, we have a 0-1 variable

indicating whether there are 2 or 1 open facilities in the pair of bundles. For the unmatched bundle and
each facility that is not in any bundle, we have a 0-1 variable indicating whether the facility or the bundle
is open. In the algorithm described in section 2, these indicator variables are generated independently. The
expected sum of these indicator variables is k − |M|. To make sure that we open exactly k facilities, we
need to guarantee that the sum is always k − |M|. To achieve this, we can, for example, use the tree-based
dependent rounding procedure introduced in [14]. After the indicator variables are determined, we sample
separately each pair of bundles and the unmatched bundle .

Let us define some notations here. We are given n real numbers x1, x2, · · · , xn with 0 ≤ xi ≤ 1 for
every i and m =

∑n
i=1 xi is an integer. We use the random process in [14] to select exactly m elements

from [n]. Let Ai denote the event that i is selected. For an event E, we use Ē to denote the negation of E.
The random events {Ai : i ∈ [n]} satisfy:

1. Marginal distribution : Pr[Ai] = xi, ∀i ∈ [n];
2. Negative correlation : for any subset S ⊆ [n], Pr

[∧
i∈S Ai

]
≤
∏

i∈S Pr [Ai] and Pr
[∧

i∈S Āi

]
≤∏

i∈S Pr
[
Āi

]
.

Then, for each i, we sample independently an event Bi using the following process for some 0 ≤
pi ≤ qi ≤ 1. If Āi, with probability pi, let Bi happen; if Ai, with probability qi, let Bi happen. Thus,
Pr[B̄i|Āi] = 1− pi,Pr[B̄i|Ai] = 1− qi. We shall prove that Bi’s are negatively correlated :

Lemma 8. Let U ⊆ [n], we have

Pr

[∧
i∈U

B̄i

]
≤
∏
i∈U

Pr
[
B̄i

]
Proof. Define NA(S) =

∧
i∈S Āi,MA(S) =

∧
i∈S Ai, NB(S) =

∧
i∈S B̄i.

Pr [NB(U)] =
∑
S⊆U

Pr [NA(S) ∧MA(U\S)]
∏
i∈S

(1− pi)
∏

i∈U\S

(1− qi)

=
∑
S⊆U

∑
T⊃S,T⊆U

(−1)|T\S| Pr [NA(T)]
∏
i∈S

(1− pi)
∏

i∈U\S

(1− qi)

=
∑
T⊆U

Pr [NA(T)]

(∏
i∈U\T

(1− qi)

)∑
S⊆T

(−1)|T\S|
∏
i∈S

(1− pi)
∏

i∈T\S

(1− qi)

=
∑
T⊆U

Pr [NA(T)]

(∏
i∈U\T

(1− qi)

)∏
i∈T

((1− pi)− (1− qi))

Pr [NB(U)] ≤
∑
T⊆U

(∏
i∈T

(1− xi)

)(∏
i∈U\T

(1− qi)

)∏
i∈T

(qi − pi)

=
∏
i∈U

((1− xi)(qi − pi) + (1− qi)) =
∏
i∈U

((1− xi)(1− pi) + xi(1− qi))

=
∏
i∈U

Pr
[
B̄i

]
The second equality used the inclusion-exclusion principle.

We are ready to apply the above lemma to our approximation algorithm. In the new algorithm, we
sample the indicator variables using the dependence rounding procedure. So, we can guarantee that exactly
k facilities are open. Then, we show that the expected connection cost for a client u does not increase :

Lemma 9. The approximation ratio of the algorithm using the dependence rounding procedure is at most
that of the original algorithm (i.e, the algorithm described in section 2).

Proof. For the ease of description, we assume that every facility is in some bundle and all the bundles are
matched. For a client u, we order the facilities in the ascending order of distances to u. Let z1, z2, · · · , zt
be the order. Then, u is connected to the first open facility in the order, and thue

Expected connection cost of u =

t∑
s=1

Pr[the first s facilities are not open] (d(u, zs+1)− d(u, zs))

It suffices to show that for every s, the probability Pnew that the first s facilities are not open in the new
algorithm is at most the correspondent probability Pold in the old algorithm. For a pair i of bundles, let Ai

be the variable indicating whether the pair i contains 2 or 1 open facility. Let B̄i denote the event that the
first s facilities that are in in bundle i are not open. Notice that in the new algorithm, Bi is independent of
{Aj |j ̸= i}∩{Bj |j ̸= i} under the condition Ai (Āi as well). It’s easy to see that Pr

[
B̄i|Āi

]
≥ Pr

[
B̄i|Ai

]
.

Since Pnew = Pr
[∧

i B̄i

]
and Pold =

∏
i Pr[B̄i], we have Pnew ≤ Pold, by lemma 8. Thus, the

expected connection cost of any facility in the new algorithm is at most its expected connection cost in the
original algorithm.

Lemma 10. The distribution of the k open facilities generated by our new algorithm satisfy the following
negative correlation. Let T be a subset of facilities. We have

Pr

[∧
z∈T

z

]
≤
∏
z∈T

Pr[z], Pr

[∧
z∈T

z̄

]
≤
∏
z∈T

Pr[z̄]

where z also denotes the event that facility z is open, and z̄ is the negation of z.

Proof. We only prove the second inequality; the proof for the first is symmetric. Again, for the ease of
description, assume all facilities are in a pair of matched bundles. For a pair i of bundles, let B̄i be the event

that facilities in T that are in pair i are not open. Again, by lemma 8, we have Pr

[∧
i B̄i

]
≤
∏

i Pr
[
B̄i

]
.

It’s easy to see that Pr[B̄i] ≤
∏

z Pr[z̄], where the product is over all z’s which are in T and are in pair i.
Thus, we proved the lemma.

C Proof of the 3.25 approximation ratio

We now start the long journey of bounding the expected connection cost, denoted by E, of a client j with
dav(j) = 1. Before dispatching the analysis into the 3 cases, we outline our main techniques for the analysis.
When analyzing each case, we will focus on a set of potential facilities F ′′ and a set C′′ of clients. C′′ will
be either {j, j1, j2, j3} (Section C.1 and C.3) or {j, j1, j2, j3, j′} (Section C.2). Each facility in F ′′ serves
at least 1 client in C′′. In the analysis, we only focus on the sub-metric induced by F ′′ ∪ C′′. Using similar
argument as we proved lemma 10, we may assume the minimum dependence between the facilities in F ′′.
To be more specific, we assume

1. Facilities in F ′′ that are not claimed by any facility in C′′ were sampled independently in the algorithm.
We call these facilities individual facilities.

2. If j′ ∈ C′′, Uj′ and Uj1 are not matched in M(We know Uj2 and Uj3 are matched).

With these conditions, we prove the following lemma.

Lemma 11. Consider a set G ⊆ F ′′ of individual facilities. We have

1. The probability that G contains at least 1 open facility is at least 1− e−vol(G).
2. Under the condition that there is at least 1 open facility in G, the expected distance between j and the

closest open facility in G is at most d(j,G).

Proof. The probability that no facility in G is open is at most∏
i∈G

(1− yi) ≤
∏
i∈G

e−yi = e−vol(G)

This implies the first statement.
For the second statement, we sort all facilities in G according the non-decreasing distances to j. Let the

order be i1, i2, · · · , im. Then, the expected distance between j and the closest open facility in G is(
m∑
t=1

(
t−1∏
s=1

(1− yis)

)
yitd(j, it)

)/(
1−

m∏
t=1

(1− yit)

)

Compare the coefficients for d(j, ia) and d(j, ib) for some a < b in the above quantity. The ratio of the

two coefficients is
yia
yib

/
b−1∏
t=a

(1 − yit) ≥ yia
yib

. Compared to d(j,G) =
∑m

t=1 yitd(j, it)/vol(G), the above

quantity puts relatively more weights on smaller distances. Thus, the expected distance between j and the
closest open facility in G is at most d(j,G).

In the analysis for each case, the potential set F ′′ is split into disjoint “atoms” I1, I2, · · · , IM . Each
atom is either a sub bundle (i.e a subset of a bundle) or a set of individual facilities. Typically, an atom is a
region in the Venn diagram of some sets (for example, in subsection C.1, we consider the Venn diagram of
sets F ′

j ,F ′
j1
,Uj1 ,Uj2 ,Uj3). An atom contains facilities with the same “characterization”, so that averaging

the locations of the facilities in the same atom will still give a valid instance, from the view of F ′′ ∪ C′′.
Given a order o of the facilities in F ′′, the value of o, denoted by val(o), is defined as the connection cost

from j to the first open facility in o. It is easy to see that E = E(val(o)), if o is the order where facilities are
sorted according to the increasing distances to j. Also, for every order o, E ≤ E(val(o)). In our analysis,
we only consider the orders where the facilities in the same atom are consecutive and are sorted optimally.
Thus, each atom is equivalent to a single facility at the weighted averaging location of the facilities in the
atom, by the first statement of lemma 11(if the atom is a sub bundle, we can also average the locations). The
equivalent facility has y value vol(It) if It is a sub-bundle and 1 − e−vol(It) if It is an atom of individual
facilities, by the second statement of 11.

At each step, we maintain a partial order p. A partial order p is an order (S1,S2, · · · Sm), where
{S1,S2, · · · ,Sm} forms a partitioning for the atoms {I1, I2, · · · , IM}. The value of p, denoted by val(p),
is the distance between j and the closest open atom (notice that each atom is already replaced by a facility)
in St, where St is the first set in p containing an open atom. Initially, the partial order p contains only 1 set
{I1, I2, · · · , IM} and E(val(p)) = E. In each step, we may refine the partial order p by splitting some set
Si into smaller subsets and replace Si with some order of these subsets; or we may merge some atoms in
some set St into 1 atom. Both operations can only increase E(val(p)).

Now, we shall consider the 3 cases one by one. Let’s recall some notations here. d1 = d(j, j1), d2 =
d(j, j2), d3 = d(j, j3), 2R = 2Rj1 = d(j1, j2), 2R

′ = 2Rj2 = d(j2, j3),F ′
j = Fj ∩ B(j, d1),F ′

j1
=

Fj1 ∩B(j1, 1.5R).

C.1 The case 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1
⊆ Uj1

In this subsection, we consider the case 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1
⊆ Uj1 . The potential set to be considered is

F ′′ = F ′
j ∪ F ′

j1
∪ Uj2 ∪ Uj3 .

Essentially, we would like to show that figure C.1 is the worst instance in this case. Notice that we are
not using the facilities in Fj2\Uj2 . The expected connection cost of j in this case is

e−
3
4

(
3

4
· 4 + 1

4

(
1− e−

1
4

)
× 8 +

1

4
e−

1
4 · 1

2
· 12 + 1

4
e−

1
4 · 1

2
· 22
)

= e−
3
4

(
5 + 2.25e−

1
4

)
< 3.19

At some point, we relaxed the objective function. e−3/4
(
5 + 2.25e−3/16

)
< 3.243 is the upper bound

we can prove.
The idea is showing that W.L.O.G, we can assume F ′

j ∪F ′
j1

and Uj2 ∪Uj3 are disjoint. Then, under the
condition that no facility is open in F ′

j ∪F ′
j1

, the expected connection cost of j is at most (1/2)(d1+2R)+
(1/2)(d1 +2.5R) = d1 +3.25R. Then, by using d1 +3.25R as a “backup” value, we can ignore j2 and j3.

4 8

03/43/4

1/4

4 4

1/2

1/2

1

28
j j1 j3j2

Fig. C.1. The worst case for 2 ≤ d1 ≤ 4,F ′
j ∩F ′

j1 ⊆ Uj1 . The 3 solid rectangles represent the facilities claimed by j1,
j2 and j3; the 3 dash rectangles represent the facilities serving j1, j2 and j3. 1/4 fractional facility at j1 is serving j.

Initially, an atom is a region in the Venn diagram of the following 5 sets : F ′
j ,F ′

j1
,Uj1 ,Uj2 ,Uj3 . We first

consider the partial order p =
(
F ′

j ∪ F ′
j1
,Uj2\(F ′

j ∪ F ′
j1
),Uj3\(F ′

j ∪ F ′
j1
)
)
.

Let E3 be the expected value of p under the condition that no atom in F ′
j ∪F ′

j1
∪Uj2 is open. We prove

Lemma 12. If d2 + 0.5R′ ≥ d1, E3 ≤ d2 + 2.5R′.

Proof. Under the condition that no atom in F ′
j∪F ′

j1
∪Uj2 is open, there is exactly 1 open atom in Uj3\(F ′

j∪
F ′

j1
). Thus, E3 = d(j,Uj3\(F ′

j ∪ F ′
j1
)). Since d(j3,Fj3) ≤ Rj3/2 and d(j3,Fj3\Uj3) ≥ Rj3 , we have

d(j3,Uj3) ≤ Rj3/2 ≤ R′/2.
Uj3 ∩ (F ′

j ∪ F ′
j1
) contains 2 components : Uj3 ∩ F ′

j ,Uj3 ∩ (F ′
j1
\F ′

j). If the average distance from j3
to each of the 2 components is at least R′/2, then d(j3,Uj3\(F ′

j ∪ F ′
j1
)) is at most R′/2 and thus E3 is at

most d2 + 2R′ + R′/2 ≤ d2 + 2.5R′. So, it suffices to consider the case where at least 1 component has
average distance strictly smaller than R′/2 to j3.

If d(j3,Uj3 ∩ F ′
j) < R′/2, then since d(j,Uj3 ∩ F ′

j) ≤ d1(recall that F ′
j = Fj ∩ B(j, d1)), we have

d(j, j3) ≤ d1 +R′/2. Since d(j3,Uj3\F ′
j) ≤ 1.5R′, we have E3 ≤ d1 +R′/2 + 1.5R′ ≤ d2 + 2.5R′.

If d(j3,Uj3 ∩ (F ′
j1
\Fj)) < R′/2, then since d(j1,Uj3 ∩ (F ′

j1
\Fj)) ≤ 1.5R, we have d(j1, j3) <

1.5R+R′/2 ≤ 2R, which contradicts the fact that the closest neighbor of j1 in C′\ {j1} has distance 2R.

Let β2 = vol(Uj2\(F ′
j ∪ F ′

j1
)), b2 = d(j2,Uj2\(F ′

j ∪ F ′
j1
)), and E2 be the expected value of p under

the condition that no atom in F ′
j ∪ F ′

j1
is open.

Lemma 13. E2 ≤ d1 + 3.25R.

Proof. Under the condition that no atom in F ′
j ∪ F ′

j1
is open, there is at least 1 open atom in (Uj2 ∪

Uj3)\(F ′
j ∪F ′

j1
). We first try to connect j to Uj2\(F ′

j ∪F ′
j1
); if this fails, we connect j to Uj3\(F ′

j ∪F ′
j1
).

E2 is the expected connection cost.
If d2 + 0.5R′ ≤ d1, then d(j,Uj2\(F ′

j ∪ F ′
j1
)) ≤ d2 + 1.5R′ ≤ d1 + R and d(j,Uj3\(F ′

j ∪ F ′
j1
)) ≤

d2 + 2R′ + 1.5R′ ≤ d1 + 3R. Clearly in this case, E2 ≤ max {d1 +R, d1 + 3R} = d1 + 3R. So, we
assume d2 + 0.5R′ > d1. Thus, by lemma 12, E3 ≤ d2 + 2.5R′.

Let θ = vol(Uj2 ∩ (F ′
j ∪ F ′

j1
)), t = d(j2,Uj2 ∩ (F ′

j ∪ F ′
j1
)). Then

E2 ≤ β2

1− θ
(d2 + b2) +

1− θ − β

1− θ
E3

≤ β2

1− θ

(
d2 +

R′/2− θt− (1− θ − β2)R
′

β2

)
+

1− θ − β2

1− θ
(d2 + 2.5R′)

≤ d2 +
R′/2− θt

1− θ
+

1− θ − β2

1− θ
1.5R′ ≤ d2 +

R′/2− θt

1− θ
+

(R′/2− θt)/R′

1− θ
1.5R′

= d2 + 2.5
R′/2− θt

1− θ

If t ≥ R′/2, then E2 ≤ d2 + 2.5R′/2 ≤ d1 + 2R+ 1.25R′ ≤ d1 + 3.25R.
Thus, we can assume that t < R′/2. This implies either d(j2,Uj2 ∩ F ′

j) < R′/2 or d(j2,Uj2 ∩
(F ′

j1
\F ′

j)) < R′/2. d(j2,Uj2 ∩ (F ′
j1
\F ′

j)) < R′/2 implies

d(j1, j2) ≤ d(j2,Uj2 ∩ (F ′
j1\F

′
j)) + d(j1,Uj2 ∩ (F ′

j1\F
′
j)) < R′/2 + 1.5R ≤ 2R,

contradicting d(j1, j2) = 2R. So, we only need to consider the case d(j2,Uj2 ∩ F ′
j) ≤ R′/2. In this

case, d2 ≤ d(j,Uj2 ∩ F ′
j) + d(j2,Uj2 ∩ F ′

j) ≤ d1 + R′/2. Then, d(j,Uj2\(F ′
j ∪ F ′

j1
)) ≤ d1 + R′/2 +

1.5R′ ≤ d1 + 2R′ and d(j,Uj3\(F ′
j ∪ F ′

j1
)) = E3 ≤ d2 + 2.5R′ ≤ d1 + 3R′. Thus, we have E2 ≤

max {d1 + 2R′, d1 + 3R′} ≤ d1 + 3.25R.

By lemma 13, we can replace the order p by
(
F ′

j ∪ F ′
j1
, d1 + 3.25R

)
. That is, connect j to the closest

open atom in F ′
j ∪ F ′

j1
, if it exists; otherwise use d1 + 3.25R as the value of p. By merging many atoms

into one, we can redefine atoms as regions in the Venn diagram of the sets F ′
j ,F ′

j1
,Uj1 . This means that we

can ignore j2 and j3 from now on.
Now, we refine the order p to

(
F ′

j\F ′
j1
,F ′

j ∩ F ′
j1
,Uj1\(F ′

j ∪ F ′
j1
),F ′

j1
\Uj1 , d1 + 3.25R

)
.

Define α = vol(F ′
j\Uj1), a = d(j,F ′

j\Uj1), α1 = vol(F ′
j ∩F ′

j1
), a1 = d(j1,F ′

j ∩F ′
j1
), a′1 = d(j,F ′

j ∩
F ′

j1
), β1 = vol(Uj1\F ′

j). Define b1 = d(j1,Uj1\F ′
j), γ = vol(F ′

j1
\Uj1), c = d(j1,F ′

j1
\Uj1). Define

s = dav(j1). See figure C.2 for illustration.
Let E1 be the expected value of p under the condition that the atom F ′

j\F ′
j1

is not open.

E1 = α1a
′
1 + β1(d1 + b1) + (1− α1 − β1)(1− e−γ)(d1 + c) + (1− α1 − β1)e

−γ(d1 + 3.25R)

= α1a
′
1 + (1− α1)d1 + β1b1 + (1− α1 − β1)

(
(1− e−γ)c+ 3.25e−γR

)

F ′
j1

Uj1F ′
j

j j1

F ′
j\Uj1 Uj1\F ′

j

F ′
j ∩ Uj1

α a1a′1
a

α1

F ′
j1
\Uj1

γ

β1
b1

c

Fig. C.2. The definition of variables

Let E = E(val(p)), then E = (1− e−α)a+ e−αE1.
Consider the following optimization problem :

PROBLEM(1) max E = (1− e−α)a+ e−αE1, where

E1 = α1a
′
1 + (1− α1)d1 + β1b1 + (1− α1 − β1)

(
(1− e−γ)c+ 3.25e−γR

)
s.t

αa+ α1a
′
1 + (1− α− α1)d1 ≤ 1 a′1 ≤ d1 2 ≤ d1 ≤ 4

α+ α1 ≤ 1 s ≤ 1 a1 + a′1 ≥ d1

α1a1 + β1b1 + γc+ (1− α1 − β1 − γ)1.5R ≤ s b1 ≤ 1.5R R ≤ c ≤ 1.5R

α1 + β1 + γ ≤ 1 R ≤ 16/3 s ≤ R/2

We need to mention constraint R ≤ 16/3. To see this, define θ = vol(Fj ∩ Fj1), l = d(j,Fj\Fj1).
Then R ≤ d1 + l(assuming vol(Uj1) < 1). If l > d1/(d1 − 1), then θ ≥ 1− 1/l = 1/d1 and

dav(j1) ≥ θ(d1 − d(j,Fj ∩ Fj1)) = θ

(
d1 −

1− (1− θ)l

θ

)
> θd1 − 1 + (1− θ)d1/(d1 − 1)

≥ (1/d1)d1 − 1 + (1− 1/d1)d1/(d1 − 1) = 1

which leads to a contradiction. The last inequality above used that d1 ≥ d1/(d1 − 1). Since 2 ≤ d1 ≤ 4,
R ≤ d1 + d1/(d1 − 1) ≤ 4 + 4/3 = 16/3.

In subsection D.1, we prove that value of optimization problem 1 is at most 3.243.

C.2 The case 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1
̸⊆ Uj1

We only sketch the analysis for this case F ′
j ∩ F ′

j1
̸⊆ Uj1 , since the techniques are exactly the same as the

previous case. As we already showed, there is a client j′ ∈ C′, j′ ̸= j1 with d(j, j′) ≤ d1 +1.5R. There are
two cases.

1. j′ ∈ {j2, j3}.
In this case, we know j2(or j3) is close to j, compared to the previous case, where d(j, j2) could
be d1 + 2R. With this gain, we can consider a smaller potential set : F ′

j ∪ Uj1 ∪ Uj2 ∪ Uj3 . Using
similar argument, we can first show that E2 ≤ d1 + 1.5R + 2.5R/2 = d1 + 2.75R and then prove
E ≤ e−3/4(4 + 2.75) < 3.189.

2. j′ /∈ {j2, j3}.
In this case, we know that there is a client j′ ∈ C′ other than j1, j2, j3 that is close to j. We can use F ′

j∪
Uj1 ∪Uj′ ∪Uj2 ∪Uj3 as the potential set. We consider the order F ′

j ,Uj1\F ′
j ,Uj′\F ′

j ,Uj2\F ′
j ,Uj3\F ′

j .
Similarly, let E2 be the expected connection cost under the condition that no facilities in F ′

j ∪ Uj1 is
open. We can first show that E2 ≤ d1+(1/2)1.5R+(1/2)3.25R = d1+2.375R, i.e the maximum value
is achieved when F ′

j∪Uj1 and Uj′∪Uj2∪Uj3 are disjoint. Then, we can prove E ≤ e−3/4 (4 + 2.375) =

6.375e−3/4 < 3.02.

C.3 The case 0 ≤ d1 ≤ 2

In this case, we use the potential set F ′′ = Fj ∪ Uj1 ∪ Uj2 ∪ Uj3 .
We show that the worst instance in this case is give by figure C.3. Notice that we are not using the

facilities in FF2\FU2 . The expected connection cost for j is upper bounded by(
1− 1

R

)
· 0 + 1

R
(1− e−1/R) ·R+

1

R
e−1/R · 1

2
· 2R+

1

R
e−1/R · 1

2
· 4.5R = 1 + 2.25e−1/R

As R tends to ∞, the above upper bound tends to 3.25.

01/2

1/2

1

j3j2

R

j, j1

1/R

R

1− 1/R

2R 2R R/2

Fig. C.3. The worst instance for 0 ≤ d1 ≤ 2.

The proof is similar to the proof in subsection C.1. We first show that in the worst case, Fj ∪ Uj1

and Uj2 ∪ Uj3 are disjoint. Then, under the condition that no facilities are open in Fj ∪ Uj1 , the expected
connection cost of j is at most d1 + 3.25R.

An atom is a region in the Venn diagram of sets Fj ,Uj1 ,Uj2 ,Uj3 . The partial order p we first consider
is (Fj ,Uj1\Fj ,Uj2\Fj ,Uj3\Fj). Similar to the first case, define E3 to be the expected value of p under the
condition that there is no open atom in Fj ∪ Uj1 ∪ Uj2 is open.

Define α3 = vol(Fj ∩ Uj3), a3 = d(j3,Fj ∩ Uj3), a
′
3 = d(j,Fj ∩ Uj3), β3 = vol(Uj3\Fj), b3 =

d(j3,Uj3\Fj).

Lemma 14. If α3 ≤ 1/2 and a′3 ≤ d2 + 1.5R′, then E3 ≤ d2 + 2.5R.

Proof. Under the condition that there is no open atom in Fj ∪ Uj1 ∪ Uj2 , the atom Uj3\Fj is open. Thus,
E3 = d(j,Uj3\Fj).

Let R′′ = Rj3 and thus R′′ ≤ R′, dav(j3) ≤ R′′/2, and

b3 ≤ R′′/2− α3a3 − (1− α3 − β3)R
′′

β3
≤ R′′/2− α3a3 − (1− α3 − β3)R

′′ + (1− α3 − β3)R
′′

β3 + (1− α3 − β3)

=
R′′/2− α3a3

1− α3
≤ R′/2− α3a3

1− α3

where the second inequality used the fact that R′′/2−α3a3

1−α3
≤ R′′/2

1−1/2 = R′′

Since 1− α3

1−α3
≥ 0, d3 ≤ d2 + 2R′ and d3 − a3 ≤ a′3,

E3 ≤ d3 +
R′/2− α3a3

1− α3
≤ d3 + (d2 + 2R′ − d3) +

R′/2− α3(a3 + d2 + 2R′ − d3)

1− α3

≤ d2 + 2R′ +
R′/2− α3(d2 + 2R′ − a′3)

1− α3
≤ d2 + 2R′ +

R′/2− α3R
′/2

1− α3
= d2 + 2.5R′

Define α2 = vol(Fj ∩ Uj2), a2 = d(j2,Fj ∩ Uj2), a
′
2 = d(j,Fj ∩ Uj2), β2 = vol(Uj2\Fj), b2 =

d(j2,Uj2\Fj). Let E2 be the expected value of p under the condition that no atom in Fj ∪ Uj1 is open. We
show

Lemma 15. If α3 ≤ 1/2, a′2 ≤ d1 + 1.5R and α2 ≤ 2/7, then E2 ≤ d1 + 3.25R.

Proof. We first consider the case a′3 > d2 + 1.5R′(assuming α3 > 0). Consider the balls B(j1, R)
and B(j2, R

′). The two balls are disjoint and each has volume at least 1/2 and thus the union of the
two balls has volume at least 1. Since there are facilities in Fj that are a′3 away from j, we have a′3 ≤
max {d1 +R, d2 +R′}. According to the assumption a′3 > d2 + 1.5R′, we get d2 + 1.5R′ < d1 + R. In
this case E2 ≤ max{d2+1.5R′, d2+2R′+1.5R′} = d2+3.5R′ < d1+R+2R′ ≤ d1+3R ≤ d1+3.25R.

Now we can assume a′3 ≤ d2 + 1.5R′. By lemma 14, E3 ≤ d2 + 2.5R′. So,

E2 ≤ β2

1− α2

(
d2 +

R′/2− α2a2 − (1− α2 − β2)R
′

β2

)
+

1− α2 − β2

1− α2
(d2 + 2.5R′)

= d2 +
R′/2− α2a2

1− α2
+

1− α2 − β2

1− α2
1.5R′ ≤ d2 +

R′/2− α2a2
1− α2

+
(R′/2− α2a2)/R

′

1− α2
1.5R′

= d2 + 2.5
R′/2− α2a2

1− α2
≤ d2 + 2.5

R/2− α2a2
1− α2

Since d2 ≤ d1 + 2R, 1− 2.5α2

1−α2
≥ 0 and d2 − a2 ≤ a′2, we have

E2 ≤ d2 + (d1 + 2R− d2) + 2.5
R/2− α2(a2 + d1 + 2R− d2)

1− α2

≤ d1 + 2R+ 2.5
R/2− α2(d1 + 2R− a′2)

1− α2

≤ d1 + 2R+ 2.5R/2 = d1 + 3.25R

At this time, we assume α3 ≤ 1/2, a′2 ≤ d1 + 1.5R and α2 ≤ 2/7. We shall consider the other missing
cases later. By lemma 15, we can change p to (Fj ,Uj1\Fj , d1 + 3.25R). We redefine atoms as regions in
the Venn diagram of the 2 sets Fj ,Uj1 . From now on, we can forget about j2 and j3. Let E be the expected
value of p.

Define α = vol(Fj\Uj1) and a = d(j,Fj\Uj1), α1 = vol(Fj ∩ Uj1), a
′
1 = d(j,Fj ∩ Uj1), a1 =

d(j1,Fj ∩ Uj1). Define β1 = vol(Uj1\Fj), b1 = d(j1,Uj1\Fj). Define s = dav(j1). These definitions are
the same as the definitions in subsection C.1(see figure C.2).

We prove

Lemma 16. If α3 ≤ 1/2, a′2 ≤ d1 + 1.5R and α2 ≤ 2/7, E ≤ 3.25.

Proof. By lemma 15, we can consider the following maximization problem :

PROBLEM(2)

max E =

{
(1− e−α)a+ e−αα1a

′
1 + T a ≤ a′1

α1a
′
1 + (1− e−α)(1− α1)a+ T a′1 ≤ a

T = e−αβ1(d1+b1)+e−α(1−α1−β1)(d1+3.25R) = e−α(1−α1)d1+e−α (β1b1 + 3.25(1− α1 − β1)R)

s.t.

α+ α1 = 1 αa+ α1a
′
1 = 1 α1 + β1 ≤ 1 α1a1 + β1b1 + (1− α1 − β1)R ≤ 1

d1 ≤ 2 a′1 + a1 ≥ d1 b1 ≤ 1.5R d1 + a ≥ R

It is not hard to see that E = E(val(p)). All the constraints are straight forward except the last one
: d1 + a ≥ R. This is true if we assume facilities in B(j1, R) are all claimed by j1 (since otherwise
vol(Uj1) = 1 and we can prove that the expected connection cost of j is at most d1 + 1 ≤ 3) and Fj\Uj1 is
not empty (otherwise, we also have vol(Uj1) = 1).

We shall prove in subsection D.2 that the above optimization problem has value 3.25.

Now we remove the 3 assumptions : α3 ≤ 1/2, a′2 ≤ d1 + 1.5R and α2 ≤ 7/2. We consider the 3
conditions separately.

1. α3 > 1/2. Notice that all we need for lemma 16 is that E2 ≤ d1 + 3.25R. So, we can assume
E2 > d1+3.25R. By α3 > 1/2, we get α2 < 1/2 and d(j,Uj2\Fj) ≤ d1+2R+ R/2

1−α2
≤ d1+3R. Then

since d1 + 3.25R < E2 ≤ max {d(j,Uj2), E3} ≤ max {d1 + 3R,E3}, we have E3 > d1 + 3.25R.
We also have R ≥ 2dav(j1) ≥ 2(1− d1).
It is not hard to prove that

E3 ≤

{
1
α3

+ R/2
1−α3

1/2 < α3 ≤ 2/3
1
α3

+ 3R− R
α3

2/3 < α3 ≤ 1

For a fixed R, E3 ≤ max {2 +R, 1.5 + 1.5R, 1 + 2R} = max {2 +R, 1 + 2R}. If R ≥ 1, then
E3 ≤ 1 + 2R ≤ 3.25R, contradicting the assumption that E3 > d1 + 3.25R. So, R < 1 and thus
d1 + 3.25R < 2 + R < 3. Notice that if we consider the order (Uj1 ,Uj2 ,Uj3), we can get an upper
bound d1 + 3.25dav(j1) ≤ d1 + 1.625R for the expected connection cost of j. Now d1 + 1.625R ≤
d1 + 3.25R < 3. So, the expected connection cost of j is at most 3 in this case.

2. a′2 ≥ d1 + 1.5R. In this case, we have dmin(j1,Fj1\Fj) ≥ d1 + 1.5R − d1 = 1.5R, since otherwise
some facilities in Fj1\Fj should be claimed by j, leading to a contradiction. Thus, Uj1 ⊆ Fj , and
α1a1 + (1− α1)1.5R ≤ s, where s = dav(j1). Since R ≥ 2s, we have α1 ≥ 2/3, α ≤ 1/3.
Since E2 ≤ max {d1 + 2R+ 1.5R,E3} ≤ d1 + 4.5R. We can consider the order (Fj , d1 + 4.5R).
Then,

If a ≤ a′1, then

E = (1− e−α)a+ e−αα1a
′
1 + e−α(1− α1)(d1 + 4.5R)

≤ (1− e−α)a+ e−αα1a
′
1 + e−α(1− α1)d1 + 1.5e−αR

:= (1− e−α)a+ e−αα1a
′
1 + T

If a > a′1, then

E ≤ α1a
′
1 + (1− e−α)(1− α1)a+ e−α(1− α1)d1 + 1.5e−αR

= α1a
′
1 + (1− e−α)(1− α1)a+ T

We have the following constraints :

α+ α1 = 1 αa+ α1a
′
1 = 1 α1a1 + (1− α1)1.5R ≤ 1 d1 ≤ 2

a′1 + a1 ≥ d1 α ≤ 1/3 d1 + a ≥ R

Let’s compare the above maximization problem with problem (2) with restriction β1 = b1 = 0. We can
see that the two sets of constraints are almost the same, except that the constraint α1a1+(1−α1)1.5R ≤
1, which is stronger than the correspondent constraint α1a1 + (1 − α1)R ≤ 1 in problem (2), and
the above optimization problem has one more constraint α ≤ 1/3. Thus the constraints of the above
problem are stronger than that of problem (2).
Let’s compare the two objective functions. They are only different in the definition of T . In the above
problem, the value of T is e−α(1− α1)d1 + 1.5R, which is at most the correspondent value e−α(1−
α1)d1 + 3.25e−αR. Thus the above problem has value at most that of problem (2), which is 3.25.

3. α2 ≥ 2/7, a′2 < d1 + 1.5R. Again, we can assume E2 > d1 + 3.25R.
If 2/7 ≤ α2 ≤ 1/2, it’s not hard to see that E2 ≤ a′2 + 1/2

1−α2
2.5R. If α1 ≥ 0.1, we consider

the order
(
Fj ∩ Uj1 ,Uj1\Fj ,Fj ∩ Uj2 , a

′
2 +

1/2
1−α2

2.5R
)

. Notice that we do not use the facilities in
Fj\(Uj1 ∪ Uj2). Define β1 = vol(Uj1\Fj), b1 = d(j1,Uj1\Fj), then

E ≤ α1a
′
1 + β1(d1 + b1) + (1− α1 − β1)α2a

′
2 + (1− α1 − β1)(1− α2)

(
a′2 +

1/2

1− α2
2.5R

)
= α1a

′
1 + β1(d1 + b1) + (1− α1 − β1)(a

′
2 + 1.25R)

Consider the following optimization problem :

PROBLEM(3) max E = α1a
′
1 + β1(d1 + b1) + (1− α1 − β1)(a

′
2 + 1.25R) s.t.

αa+ α1a
′
1 + α2a

′
2 ≤ 1 α1a1 + β1b1 + (1− α1 − β1)R ≤ s a′2 +

1/2

1− α2
2.5R ≥ d1 + 3.25R

2/7 ≤ α2 ≤ 1/2 α+ α1 + α2 = 1 s ≤ min {R/2, 1}

In subsection D.3, we show that E ≤ 3.5, and E ≤ 3.21 if we have α1 ≥ 0.1. If α1 ≤ 0.1, we consider
the order

(
Fj\(Uj1 ∪ Uj2),Fj ∩ Uj1 ,Uj1\Fj ,Fj ∩ Uj2 , a

′
2 +

1/2
1−α2

2.5R
)

. Then,

E ≤ (1− e−α)a+ e−α (α1a
′
1 + β1(d1 + b1) + (1− α1 − β1)(a

′
2 + 1.25R)) ≤ (1− e−α)a+3.5e−α

We have α = 1− α1 − α2 ≥ 1− 1/2− 0.1 = 0.4 and a ≤ 1/α. So,

E ≤ (1− e−α)(1/α) + 3.5e−α ≤ (1− e−0.4)/0.4 + 3.5e−0.4 ≤ 3.18.

If 1/2 ≤ α2 ≤ 1, we have d1+3.25R < E2 ≤ a′2+
(α2 − 1/2)R

α2
+2.5R. Thus d1+b1 ≤ d1+1.5R ≤

a′2 + 1.25R.
Consider the order p =

(
Fj ∩ Uj1 ,Uj1\Fj ,Uj2\Fj , a

′
2 +

(α2−1/2)R
α2

+ 2.5R
)

, we have

E = α1a
′
1 + β1(d1 + b1) + (1− α1 − β1)α2a

′
2 + (1− α1 − β1)(1− α2)

(
a′2 +

(α2 − 1/2)R

α2
+ 2.5R

)
= α1a

′
1 + β1(d1 + b1) + (1− α1 − β1)

(
a′2 + (1− α2)

(
3.5− 0.5

α2

)
R

)
≤ α1a

′
1 + β1(d1 + b1) + (1− α1 − β1) (a

′
2 + 1.25R)

≤ α1a
′
1 +

(
1− α1 −

s− α1a1
R

)
d1 +

s− α1a1
R

(a′2 + 1.25R)

= α1a
′
1 + (1− α1)d1 +

s− α1a1
R

(a′2 − d1) + 1.25(s− α1a1)

≤ α1a
′
1 + (1/2− α1)d1 +

1

2
a′2 + 1.25

The third inequality used d1 + b1 ≤ a′2 + 1.25R and α1a1 + β1b1 + (1 − α1 − β1)R ≤ s. The right
hand side is maximized only if b1 = 0 and β1 = 1− α1 − (s− α1a1)/R.
Since α1a

′
1 +

1
2a

′
2 ≤ α1a

′
1 + α2a

′
2 ≤ 1, (1/2− α1)d1 ≤ 1, we have E ≤ 1 + 1 + 1.25 ≤ 3.25.

D Solving optimization problems

In this section, we solve the optimization problems mentioned before. The domain over which we need to
find a maximum point is a closed body Ω, and the function f over Ω is continuous.

The technique we shall use is finding all local maxima using local adjustments. That is, for every x ∈ Ω
which does not satisfy some condition, we can change it locally to x′ ∈ Ω such that x′ satisfies the condition
and f(x′) ≥ f(x), then we only need to consider the points in Ω that satisfy the condition.

In some cases, we may break the closed body Ω into two bodies according to a given function g : one
body Ω1 with g(x) ≥ 0 and the other body Ω2 with g(x) < 0. We will find local maxima in Ω1 and
Ω2 separately. Ω2 is not closed; it has an open boundary g(x) < 0. Since the function f is continuous
and the boundary g(x) = 0 is already considered in Ω1, we do not need to consider the local maxima at
the boundary g(x) = 0 when dealing with Ω2. If we can apply some local adjustment to move the points
arbitrarily close to the boundary g(x) = 0, then we can ignore these points. In this case, we say that the
local adjustment “hits the open boundary”.

All the variables in the following optimization problem are non-negative real numbers.

D.1 Optimization problem (1)

PROBLEM (1) max E = (1− e−α)a+ e−αE1, where

E1 = α1a
′
1 + (1− α1)d1 + β1b1 + (1− α1 − β1)

(
(1− e−γ)c+ 3.25e−γR

)
s.t αa+ α1a

′
1 + (1− α− α1)d1 ≤ 1 a′1 ≤ d1 2 ≤ d1 ≤ 4

α+ α1 ≤ 1 s ≤ R/2 a1 + a′1 ≥ d1

α1a1 + β1b1 + γc+ (1− α1 − β1 − γ)1.5R ≤ s b1 ≤ 1.5R R ≤ c ≤ 1.5R

α1 + β1 + γ ≤ 1 R ≤ 16/3 s ≤ 1

We prove that the above maximization problem has value at most 2.423.
Notice that decreasing a1 does not change E, since it is independent of a1. We can decrease a1 until

d1 = a1+a′1, which comes before a1 = 0 due to the constraint a′1 ≤ d1. Thus, we can assume a′1+a1 = d1.
We can also assume α1a1 + β1b1 + γc+ (1− α1 − β1 − γ)1.5R = s.

We first prove

Lemma 17. For fixed α, α1, a, a1, d1,

E1 ≤ d1 − α1a1 + (1− α1a1)
(
1 + 2.25e−3(1−α1a1)/16

)
Proof. We fix α, α1, a, a1, d1 and apply local adjustments on the other variables.

If c > R, we can decrease c and γ so that γc+ (1−α− β1 − γ)1.5R does not change. i.e, we decrease
c by ϵ and decrease γ by γ

1.5R−cϵ. The increment of E is e−α(1− α1 − β1) times

−(1− e−γ)ϵ+ e−γ γϵ

1.5R− c
((d1 + 3.25R)− (d1 + c)) ≥ (e−γ − 1 + 4.5γe−γ)ϵ ≥ 0

So, we can decease c to R, which comes before γ becomes 0. Thus,

E1 = d1 − α1a1 + β1b1 + (1− α1 − β1)(1 + 2.25e−γ)R

If b1 > 0 and b ̸= R, we decrease b1 by ϵ, decrease β1 by β1ϵ/(R− b1) and increase γ by βϵ/(R− b1)
so that β1 + γ and β1b1 + γc do not change. (If b1 > R, we increase β1 and decrease γ). The increment of
E1 will be

dE1 = −β1ϵ−
β1ϵ

R− b1
b1 +

β1ϵ

R− b1
(1 + 2.25e−γ)R− β1ϵ

R− b1
(1− α1 − β1)e

−γ2.25R

=
βϵ

R− b1

(
−(R− b1)− b1 + (1 + 2.25e−γ)R− 2.25(1− α1 − β1)e

−γR
)

=
βϵ

R− b1
2.25(α1 + β1)e

−γR ≥ 0

So, we can decrease b1 to 0 or R. If b1 = R, we can change decrease β1 and increase γ so that E1 will
only increase, until β1 = 0. In this case, we can assume b1 = 0. So, we always have b1 = 0.

E1 = d1 − α1a1 + (1− α1 − β1)(1 + 2.25e−γ)R

Now, if α1 + β1 + γ < 1, decrease β1 by ϵ, increase γ by 3ϵ, so that γR+(1−α1 − β1 − γ)1.5R does
not change. The increment of E1 will be

dE1 =
(
1 + 2.25e−γ

)
Rϵ− (1−α1 − β1)(2.25e

−γR× 3ϵ) = (1+ 2.25e−γ − 6.75(1−α1 − β1)e
−γ)Rϵ

Since α1a1 + γR+ (1− α1 − β1 − γ)1.5R = s ≤ R/2, we have α1 + β1 ≥ 1/2, α1 + β1 + γ ≥ 2/3.
Denoting z = α1 + β1, then 1/2 ≤ z ≤ 1 and γ ≥ 2/3− z.

dE1 =
(
1 + 2.25e−γ − 6.75(1− z)e−γ

)
Rϵ = (1− 4.5e−γ + 6.75ze−γ)

If z ≥ 2/3, then dE1 ≥ 0; otherwise,

dE1 ≥ (1− 2.25(2− 3z)e−(2/3−z))Rϵ ≥
(
1− 2.25× (2− 3× 1/2)e1/2−2/3

)
Rϵ

= (1− 1.125e−1/6)Rϵ ≥ 0

Thus, the above operation can only increase E1, even if we don’t have β ≥ 0. We now remove the
condition that β ≥ 0 and apply the operation until α1 + β1 + γ = 1. So, we have α1 + β1 + γ = 1 and
α1a1 + γR = s, s ≤ 1. Then, γ = (s− α1a1)/R and

E1 = d1 − α1a1 − γR(1 + 2.25e−(s−α1a1)/R) ≤ d1 − α1a1 + (s− α1a1)(1 + 2.25e−3(s−α1a1)/16)

Let z = s − α1a1 and thus 0 ≤ z ≤ 1. z(1 + 2.25e−3z/16) is an increasing function of z; indeed, the
derivative of the function to z is (1 + 2.25e−3z/16)− 2.25ze−3z/16 × 3/16 ≥ 0. Thus

E1 ≤ d1 − α1a1 + (1− α1a1)(1 + 2.25e−3(1−α1a1)/16)

This concludes the proof.

It suffices to solve the following optimization problem :

max E = (1− e−α)a+ e−α
(
d1 − α1a1 + (1− α1a1)

(
1 + 2.25e−3(1−α1a1)/16

))
s.t.

αa− α1a1 + (1− α)d1 ≤ 1 2 ≤ d1 ≤ 4 α+ α1 ≤ 1 a1 ≤ d1

where the first constraint is from αa+ α1a
′
1 + (1− α− α1)d1 ≤ 1 and a′1 = d1 − a1.

We can increase a until αa− α1a1 + (1− α)d1 = 1.
If we decrease a by (1− α)ϵ and increase d by αϵ, the increment of E is

dE = −(1− e−α)(1− α)ϵ+ e−ααϵ = (e−α + α− 1)ϵ ≥ 0

We can apply the operation until a = 0 or d1 = 4. We have two cases :

1. a = 0.
In this case, a1 = ((1− α)d1 − 1)/α1 and thus 1− α1a1 = 2− (1− α)d1. So,

E = e−α(1 + αd1) + e−α(2− (1− α)d1)(1 + 2.25e−3(2−(1−α)d1)/16)

subject to (1− α)d1 ≥ 1, 2 ≤ d1 ≤ 4, α ≤ 1, (1− α− α1)d1 ≤ 1.
If we increase α by ϵ, the increment of E will be

dE = −e−αϵ
(
1 + αd1 + (2− (1− α)d1)

(
1 + 2.25e−3(2−(1−α)d1)/16

))
+ e−αd1ϵ

+ e−α
(
d1ϵ
(
1 + 2.25e−3(2−(1−α)d1)/16

)
− (2− (1− α)d1)(27/64)e

−3(2−(1−α)d1)/16ϵ
)

≥ −e−αϵ(1 + αd1 + 1 + 2.25e−3/16) + e−αd1ϵ+ e−α(d1ϵ(1 + 2.25e−3/16)− (27/64)e−3/16ϵ)

= e−αϵ
(
−2− 2.25e−3/16 + (2 + 2.25e−3/16 − α)d1 − (27/64)e−3/16

)
≥ e−αϵ

(
−2− 2.25e−3/16 + (2 + 2.25e−3/16 − 1)× 2− (27/64)e−3/16

)
≥ 1.8e−3/16e−αϵ ≥ 0

So, we can increase α until (1− α)d1 = 1, i.e d1 = 1/(1− α), 1/2 ≤ α ≤ 3/4. So,

E = e−α

(
1 +

α

1− α

)
+ e−α(1 + 2.25e−3/16) = e−α

(
1

1− α
+ 1 + 2.25e−3/16

)
dE

dα
= e−α

(
1

(1− α)2
− 1

1− α
− 1− 2.25e−3/16

)
There is a α ∈ [1/2, 3/4] such that the differential is 0, but it corresponds to a local minimum. So,

E ≤ max

{
e−1/2

(
1

1− 1/2
+ 1 + 2.25e−3/16

)
, e−3/4

(
1

1− 3/4
+ 1 + 2.25e−3/16

)}
< 3.243

2. d1 = 4.
In this case, a = (1− 4(1− α) + α1a1)/α.

E =
1− e−α

α
(1− 4(1− α) + α1a1) + (4− α1a1)e

−α + e−α(1− α1a1)(1 + 2.25e−3(1−α1a1)/16)

subject to a1 ≤ 4, α1a1 ≥ (3− 4α), α+ α1 ≤ 1.
Notice that a1α1 appears as a whole in the right side hand. Decrease a1α1 by ϵ, the increment of E will
be

dE = −1− e−α

α
ϵ+ e−αϵ+ e−α(1 + 2.25e−3(1−α1a1)/16)ϵ− e−α(1− α1a1)(27/64)e

−3(1−α1a1)/16

≥ −1− e−α

α
ϵ+ e−α

(
2 + 1.8e−3(1−α1a1)/16

)
ϵ ≥ −1− e−α

α
ϵ+ 3e−αϵ

=
ϵ

α
(3αe−α + e−α − 1) ≥ ϵ

α
min

{
3× 0× e−0 + e−0 − 1, 3e−1 + e−1 − 1

}
≥ 0

So, we can assume α1a1 = max {0, 3− 4α}.
If α ≥ 3/4, then α1a1 = 0,

E =
1− e−α

α
(4α− 3) + e−α(4 + 1 + 2.25e−3/16) = 4− 3

1− e−α

α
+ e−α(1 + 2.25e−3/16)

≤ 4− 3
1− e−3/4

3/4
+ e−3/4(1 + 2.25e−3/16) = e−3/4(5 + 2.25e−3/16) < 3.243

If α ≤ 3/4, then α1a1 = 3− 4α.

E = (1 + 4α)e−α + e−α(4α− 2)(1 + 2.25e−3(4α−2)/16)

≤ (1 + 4× 3/4)e−3/4 + e−3/4(4× 3/4− 2)(1 + 2.25e−3(4×3/4−2)/16) = e−3/4(5 + 2.25e−3/16)

< 3.243

D.2 Optimization problem (2)

PROBLEM (2)

max E =

{
(1− e−α)a+ e−αα1a

′
1 + T a ≤ a′1

α1a
′
1 + (1− e−α)(1− α1)a+ T a′1 ≤ a

T = e−α(1− α1)d1 + e−α (β1b1 + 3.25(1− α1 − β1)R)

s.t.

α+ α1 = 1 αa+ α1a
′
1 = 1 α1 + β1 ≤ 1 α1a1 + β1b1 + (1− α1 − β1)R ≤ 1

d1 ≤ 2 a′1 + a1 ≥ d1 b1 ≤ 1.5R d1 + a ≥ R

We prove that the above optimization problem has value 3.25.
Notice that

E = min
{
(1− e−αa+ e−αα1a

′
1, α1a

′
1 + (1− e−α)(1− α1)a

}
+ T

That is, when a ≤ a′1, the first quantity is smaller and when a > a′1, the second quantity is smaller.

W.L.O.G, we can assume b1 = 0. Indeed, if b1 ≥ R, we can decrease β to 0 and since b1 ≤ 1.5R ≤
3.25R, the value of the objective function can only increase. So, assume b1 ≤ R. In this case, we can
decrease b1 by ϵ and β1 by β1ϵ/(R− b1), the increment of E is e−α times

−β1ϵ−
β1ϵ

R− b1
b1 +

β1ϵ

R− b1
3.25R =

β1ϵ

R− b1
(−R+ b1 − b1 + 3.25R) = 2.25

β1ϵ

R− b1
R ≥ 0

Thus, we can assume b1 = 0. T = e−α(1− α1)d1 + 3.25e−α(1− α1 − β1)R.
Since (1 − α1 − β1)R appears as a whole, we can decrease β1 and decrease R so that (1 − α1 − β1)

does not change. The operation does not make any constraint invalid. Thus, we can assume β1 = 0.
Up to now, the problem becomes

max E =

{
(1− e−α)a+ e−αα1a

′
1 + T a ≤ a′1

α1a
′
1 + (1− e−α)(1− α1)a+ T a′1 ≤ a

T = e−α(1− α1)d1 + 3.25e−α(1− α1)R, s.t.

α+ α1 = 1 αa+ α1a
′
1 = 1 α1a1 + (1− α1)R ≤ 1

d1 ≤ 2 a′1 + a1 ≥ d1 d1 + a ≥ R

We first solve the problem for d1 = 2.

Lemma 18. If d1 = 2, E ≤ 3.185.

Proof. For the above optimization problem, we remove the condition d1 + a ≥ R and relax the objective
function to E = (1 − e−α)a + e−αα1a

′
1 + T . The two operations can only increase the value of E,

(recall that E was min {(1− e−α)a+ e−αα1a
′
1, α1a

′
1 + (1− e−α)(1− α1a1)a} + T). We can increase

R until α1a1 + (1 − α1)R = 1. Thus T = 2e−α(1 − α1) + 3.25e−α(1 − α1a1). We decrease a1 until
a1 = max {0, 2− a′1}.

1. If a1 = 2− a′1.

E = (1− e−α)a+ e−αα1a
′
1 + 2e−α(1− α1) + 3.25e−α(1− α1a1)

= (1− e−α)a+ 2e−α − e−αα1a1 + 3.25e−α(1− α1a1)

subject to
α+ α1 = 1, αa+ α1(2− a1) = 1, α1a1 ≤ 1, a1 ≤ 2

The maximum point falls into 1 of the following 3 cases :
(a) a = 1/α, a1 = 2

E = (1− e−α)/α+ 2e−α − 2α1e
−α + 3.25e−α(1− 2α1)

=
1− e−α

α
+ e−α(8.5α− 3.25) ≤ 1 + 4.25e−1 < 2.57

(b) a = 0, a1 = 2− 1/α1, α1 ≥ 1/2

E = 2e−α − 2α1e
−α + e−α + 3.25e−α(2− 2α1) = e−α(1 + 8.5α) ≤ e−1/2(1 + 8.5× 1/2) < 3.185

(c) a = (1− 2α1)/α, a1 = 0, α1 ≤ 1/2

E = (1− e−α)(2− 1/α) + 2e−α + 3.25e−α = 2− (1− e−α)/α+ 3.25e−α

≤ 2− (1− e−1/2)/(1/2) + 3.25e−1/2 < 5.25e−1/2 < 3.185

2. a1 = 0 and a′1 > 2.

E = (1− e−α)a+ e−αα1a
′
1 + 2e−α(1− α1) + 3.25e−α

subject to
α+ α1 = 1, αa+ α1a

′
1 = 1, a′1 > 2

Increase a by α1ϵ and decrease a′1 by αϵ, the increment of E will be

dE = (1− e−α)α1ϵ− e−αα1αϵ = α1ϵ(1− e−α − e−αα) ≥ 0

Thus, we can increase a and decrease a′1 until we hit the open boundary a′1 > 2.

So, we already considered the case d1 = 2 and we can change the condition d1 ≤ 2 to d1 < 2.
The optimization problem now is :

max E =

{
(1− e−α)a+ e−αα1a

′
1 + T a ≤ a′1

α1a
′
1 + (1− e−α)(1− α1)a+ T a′1 ≤ a

T = e−α(1− α1)d1 + 3.25e−α(1− α1)R, s.t.

α+ α1 = 1 αa+ α1a
′
1 = 1 α1a1 + (1− α1)R ≤ 1

d1 < 2 a′1 + a1 ≥ d1 d1 + a ≥ R

We can decrease a1 until a1 = max {0, d1 − a1}. This will not violate any constraint above, and does
not change the objective function, since it is independent of a1. If a1 = 0 and a′1 > d1, we can increase d1
until a′1 = d1 or we hit the open boundary d1 = 2.

Thus, we can assume we have a1 + a′1 = d1.
Up to now, the objective function becomes

max E =

{
(1− e−α)a+ e−αα1(d1 − a1) + T a ≤ d1 − a1

α1(d1 − a1) + (1− e−α)(1− α1)a+ T d1 − a1 < a

where T = e−α(1− α1)d1 + 3.25e−α(1− α1)R, s.t.

α+ α1 = 1 αa+ α1(d1 − a1) = 1 a1 ≤ d1 < 2 α1a1 + (1− α1)R ≤ 1 d1 + a ≥ R

If α1a1 + (1 − α1)R < 1, we can increase d1, a1 and R at the same rate. It is easy to see that this can
only increase E. We can do this until α1a1 + (1− α1)R = 1 or we hit the open boundary d = 2.

So, R = (1− α1a1)/(1− α1) and T = e−α(1− α1)d1 + 3.25e−α(1− α1a1).
Depending the whether a ≤ d1 − a1, we have 2 cases.

1. a ≤ d1 − a1. In this case

E = (1− e−α)a+ e−αα1(d1 − a1) + e−α(1− α1)d1 + 3.25e−α(1− α1a1)

= (1− e−α)a+ e−α(d1 − α1a1) + 3.25e−α(1− α1a1)

Constraints are

α+ α1 = 1 αa+ α1(d1 − a1) = 1 a+ a1 ≤ d1 < 2, α1a1 ≤ 1,
1− α1a1
1− α1

≤ d1 + a

If we decrease d1 and a1 by ϵ, the increment of E will be

dE = e−α(−1 + α1 + 3.25α1) = e−α(4.25α1 − 1) = e−α(3.25− 4.25α)

We have two cases :
(a) α ≤ 3.25/4.25. We can decrease d1 and a1 at the same rate until a1 = 0 or 1−α1a1

1−α1
= d1 + a.

i. a1 = 0. In this case,
E = (1− e−α)a+ e−αd1 + 3.25e−α

subject to

α ≤ 3.25/4.25, αa+ (1− α)d1 = 1, a ≤ d1 < 2, 1 ≤ (d1 + a)α,

The second and the fourth constraints imply d1 = 0 or α ≥ 1/2. If d1 = 0 then a = 0, which
contradicts αa+ (1− α)d1 = 1. Thus, α ≥ 1/2.
For a fixed α, E is a linear function of a and d. Since e−α/(1 − α) ≥ (1 − e−α)/α, we can
decrease a and increase d1 so that αa + (1 − α)d1 does not change E only increases. E is
maximized when a = 0 and d = 1/(1− α). In this case,

E = e−α/(1− α) + 3.25e−α ≤ e−1/2/(1− 1/2) + 3.25e−1/2 = 5.25e−1/2 < 3.185

ii. 1−α1a1

1−α1
= d1 + a, a1 > 0. In this case,

a =
2− d1
2α

, a1 = d1 −
d1

2(1− α)
,

2− d1
2

≤ α < 1/2, d1 < 2

E = (1− e−α)
2− d1
2α

+ e−α(d1/2 + αd1) + 3.25e−α (1− (1/2− α)d1)

For a fixed α, we should either maximize d1 or minimize d1. Thus, either we hit the open
boundary d1 = 2 or d1 = 2−2α. So, we only consider d1 = 2−2α. In this case, 0 < α ≤ 1/2,
and

E = (1− e−α) + e−α(1− α+ 2α− 2α2) + 3.25e−α(1− (1/2− α)(2− 2α))

= 1 + e−αα(10.75− 8.5α)

The maximum is achieved at α = 1/2 and E ≤ 1 + 3.25e−1/2 < 2.972.
(b) α ≥ 3.25/4.25. We can increase d1 to a1 until we hit the open boundary d1 = 2.

2. a > d1 − a1

E = α1(d1 − a1) + (1− e−α)(1− α1)a+ e−α(1− α1)d1 + 3.25e−α(1− α1a1)

The constraints are

α+ α1 = 1, αa+ α1(d1 − a1) = 1, a1 ≤ d12,

α1a1 ≤ 1,
1− α1a1
1− α1

≤ d1 + a, a+ a1 > d1

Again, depending on the value of α, we may choose to decrease or increase d1 and a1.

(a) α ≤ 3.25/4.25. We can decrease d1 and a1 at the same rate until a1 = 0 or (1 − α1a1) =
(d1 + a)(1− α1).

i. a1 = 0. E = (1− α)d1 + (1− e−α)αa+ e−ααd1 + 3.25e−α subject to

αa+ (1− α)d1 = 1, d1 < 2, 1 ≤ (d1 + a)α, a > d1, α ≤ 3.25/4.25

By the first and the third constraint, either d1 = 0 or α ≥ 1/2.
If d1 = 0, a = 1/α, E = (1− e−α) + 3.25e−α = 1 + 2.25e−α ≤ 3.25.
Now, consider the case α ≥ 1/2. The third constraint is always true. For a fixed α, E is a linear
function of a and d1. We should either maximize d or maximize a. If we need to maximize d1,
we will hit the open boundary a = d1. So, suppose we need to maximize a. Thus, we have
d1 = 0 and a = 1/α, 0 ≤ α ≤ 3.25/4.25 and E = 1−e−α+3.25e−α = 1+2.25e−α ≤ 3.25.

ii. 1− α1a1 = (d1 + a)(1− α1), a1 > 0. In this case,

E = α1(d1 − a1) + (1− e−α)(1− α1)a+ e−α(1− α1)d1 + 3.25e−α(1− α1a1)

The constraints are

α+ α1 = 1, αa+ α1(d1 − a1) = 1, 0 < a1 ≤ d1 < 2

α1a1 ≤ 1,
1− α1a1
1− α1

= d1 + a, a+ a1 > d1

So, we have

a =
2− d1
2α

, a1 = d1 −
d1

2(1− α)
, α < min

{
1/2,

2− d1
2

}
, d1 < 2

E =
d1
2

+ (1− e−α)
2− d1

2
+ e−ααd1 + 3.25e−α (1− (1/2− α)d1)

For a fixed α, we should either maximize d1 or minimize d1. If we want to maximize d1, we
will hit the open boundary α = (2 − d1)/2. If we want to minimize d1, we will have d1 = 0,
in which case E = 1− e−α + 3.25e−α = 1 + 2.25e−α ≤ 3.25.

(b) α > 3.25/4.25. We can increase d1 and a1 until we hit the open boundary d1 = 2.

D.3 Optimization problem 3

PROBLEM (3) max E = α1a
′
1 + β1(d1 + b1) + (1− α1 − β1)(a

′
2 + 1.25R) s.t.

αa+ α1a
′
1 + α2a

′
2 ≤ 1 α1a1 + β1b1 + (1− α1 − β1)R ≤ s a′2 +

1/2

1− α2
2.5R ≥ d1 + 3.25R

2/7 ≤ α2 ≤ 1/2 α+ α1 + α2 = 1 s ≤ min {R/2, 1}
b1 ≤ 1.5R

We want to show that E ≤ 3.5, and E ≤ 3.21 if α1 ≥ 0.1.
a′2 + 1.25R = a′2 + 2.5R− 1.25R ≥ a′2 +

1/2
1−α2

2.5R− 1.25R ≥ d1 + 3.25R− 1.25R = d1 + 2R.
If b1 ≥ R, we can decrease β until β = 0. If b1 < R, we can decrease b1 by ϵ and decrease β by

β1ϵ/(R− b1) until b1 = 0.
Thus, we can assume b1 = 0, β1 ≥ 1− α1 − (s− α1a1)/R. Then

E ≤ α1a
′
1 + (1− α1 − (s− α1a1)/R)d1 +

s− α1a1
R

(a′2 + 1.25R)

= α1a
′
1 + (1− α1)d1 +

s− α1a1
R

(a′2 − d1) + 1.25(s− α1a1)

≤ α1a
′
1 + (1− α1)d1 +

1

2
(a′2 − d1) + 1.25s

subject to

αa+ α1a
′
1 + α2a

′
2 ≤ 1 a′2 +

1/2

1− α2
5s ≥ d1 + 6.5s 2/7 ≤ α2 ≤ 1/2 α+ α1 + α2 = 1 s ≤ 1

If α1 ≥ 1/2, then decrease d1 to 0,

E ≤ α1a
′
1 +

1

2
a′2 + 1.25s ≤ α1a

′
1 + (1/2)a′2

α1a′1 + α2a′2
+ 1.25 ≤ 1/2

2/7
+ 1.25 = 3

If α1 ≤ 1/2, increase d1 until a′2 − d1 =
(
6.5− 5/2

1−α2

)
s.

E ≤ α1a
′
1 + (1− α1)d1 +

(
4.5− 5/4

1− α2

)
s

subject to α1a
′
1 + α2d1 + α2

(
6.5− 5/2

1−α2

)
s ≤ 1.

Comparing the ratio of the coefficients, we have

α1

α1
= 1;

1− α1

α2
≤ 3.5;

4.5− (5/4)/(1− α2)

α2(6.5− (5/2)(1− α2))
≤ 2.75

6/7
< 3.21

So E ≤ 3.5. If α1 ≥ 0.1, 1−α1

α2
≤ 3.15 and thus E ≤ 3.21.

