CSE 486/586 Distributed Systems
Reliable Multicast --- 2

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Last Time

» How do a group of processes communicate?
* Multicast

— One-to-many: “Local” broadcast within a group g of
processes

* What are the issues?
— Processes crash (we assume crash-stop)
— Messages get delayed
* B-multicast
* R-Multicast
— Properties: integrity, agreement, validity
» Ordering
— Why do we care about ordering?

CSE 486/586, Spring 2013

~

Recap: Ordering
+Totally ordered T
T1°:, dy '(r):_ ered messages (1\ | 1+,

*FIFO-related messages F,
and F,.

«Causally related messages Fy
—_
Cyand C; ?
F, Fs

«Total ordering does not
imply causal ordering.

« Causal ordering implies Time
FIFO ordering c
_

« Causal ordering does not . ?
imply total ordering. € | I
« Hybrid mode: causal-total
ordering, FIFO-total |
ordering. P, P, P,

CSE 486/586, Spring 2013 3

Example: FIFO Multicast
(do NOT be confused with vector timestamps)

“Accept” = Deliver

Physical Time

[dolo] Sequence Vector

CSE 486/586, Spring 2013 4

Totally Ordered Multicast

« Using a sequencer
— One dedicated “sequencer” that orders all messages
— Everyone else follows.

* ISIS system

— Similar to having a sequencer, but the responsibility is
distributed to each sender.

CSE 486/586, Spring 2013 5

Total Ordering Using a Sequencer

Sequencer = Leader process

1. Algorithm for group member p
On initialization: r, := 0;
To TO-multicast message m to group g

B-multicast(g { sequencer(g)}, <m, i>); i unique message id
On B-deliver(<m, i>) with g = group(m)

Place <m, i> in hold-back queue;
On B-deliver(m,,,, = <“order”, i, S>) with g = group(m 4.,

wait until <m, i> in hold-back queue and § = r;

TO-deliver m; [/ (after deleting it from the hoﬁd-back queue)

re=8+1;

, H

2. Algorithm for sequencer of g
On initialization: 8¢ 0;

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <“order”, i, 5¢>);
s, =5, + 15

g g

CSE 486/586, Spring 2013 6

ISIS algorithm for total ordering

Py

eC 0 —
P(OvOE’ed 2 Pa
2

3 Agreed Seq

Py

Ps

CSE 486/586, Spring 2013 7

¥

ISIS algorithm for total ordering

« Sender multicasts message to everyone
« Reply with proposed priority (sequence no.)
— Larger than all observed agreed priorities
— Larger than any previously proposed (by self) priority
« Store message in priority queue
— Ordered by priority (proposed or agreed)
— Mark message as undeliverable
« Sender chooses agreed priority, re-multicasts message
with agreed priority
— Maximum of all proposed priorities
« Upon receiving agreed (final) priority
— Mark message as deliverable
— Deliver any deliverable messages at the front of priority queue
* Notice any (small) issue?

CSE 486/586, Spring 2013 8

CSE 486/586 Administrivia

* Please start PA2 if you haven't.

* AWS codes will be distributed on UBLearns.
— Will post setup instructions.
* Come talk to me!

CSE 486/586, Spring 2013 9

Problematic Scenario

« Two processes P1 & P2 at their initial state.
* P1sends M1 & P2 sends M2.

* P1 receives M1 (its own) and proposes 1. P2 does
the same for M2.

* P2 receives M1 (P1’s message) and proposes 2. P1
does the same for M2.

* P1 picks 2 for M1 & P2 also picks 2 for M2.
« Same sequence number for two different msgs.
f" * How do you want to solve this?

CSE 486/586, Spring 2013 10

Example: ISIS algorithm

Showing the process id only when necessary

EAr

CSE 486/586, Spring 2013 1

Proof of Total Order

» For a message m,, consider the first process p that
delivers m,

« Atp, when message m, is at head of priority queue and
has been marked deliverable, let m, be another message
that has not yet been delivered (i.e.; is on the same quéue
or has not been seen yet by p)

finalpriority(m,) >= Due to “max” operation at sender
proposedpriority(m,) >
finalpriority(m;)
» Suppose there is some other process p’ that delivers m,
before it delivers m,. Then at p’,
finalpriority(m1) >= Due to “max” operation at sender

o S
PropoSedprionity(My) > o ... e by ncreasing prorty
finalpriority(m,)

Since queue ordered by increasing priority

« a contradiction!

CSE 486/586, Spring 2013 12

Ny

Causally Ordered Multicast

« Each process keeps a vector clock.
— Each counter represents the number of messages received
from each of the other processes.

« When multicasting a message, the sender process
increments its own counter and attaches its vector
clock.

« Upon receiving a multicast message, the receiver
process waits until it can preserve causal ordering:

— It has delivered all the messages from the sender.

— It has delivered all the messages that the sender had
delivered before the multicast message.

CSE 486/586, Spring 2013

Causal Ordering

Algorithm for group member p; (i = 1,2..., N)
On initialization

VEI=0G = L2, N):
To CO-multicast message m to group g~ Processiso far

Vel = Vel + 1

B-multicast(g, < Vf, m>);

The number of group-g messages

from process j that have been seen at

On B-deliver(< V‘?, m>) from Pp with g = group(m)
place <V%, m*> in hold-back queue;
wait until ij[j] = V4[] + land Vf[k] <VELK] (k= j);
CO-deliver m; // after removing it from the hold-back queue
Vi1 = VG L

CSE 486/586, Spring 2013

Example: Causal Ordering Multicast

Accept

Accept
Buffered

Buffer,
missing

Physical Time

CSE 486/586, Spring 2013

Summary

« Two multicast algorithms for total ordering
— Sequencer
- 18IS

« Multicast for causal ordering
— Uses vector timestamps

CSE 486/586, Spring 2013

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2013

(&%)

