Recap

- Please make an effort to come to every class.
- Please do the work yourself and get permissions for other sources. Also, acknowledge them.
- Please check if you have the background by doing PA1 all by yourself.
- This course will expect:
 - Good work ethics
 - Independence
 - Respect for others
- This course is about:
 - Introducing common problems that arise when building a distributed system
 - Discussing algorithms, architectures, and abstractions that solve those problems
 - Practicing how to adapt those algorithms and concepts

Today and Next

- A brief overview of the Internet
- Two things
 - The design philosophy of the Internet (“The Design Philosophy of the DARPA Internet Protocols” by David Clark): today
 - Transport & application layers: next lecture
- Obviously can’t replace a networking course; this should be just a recap for you.
- Why teach these?
 - Because I want to ;-)
 - If there’s no network, there’s no distributed system.
 - Not just that; the design of the Internet is a great example of designing a solid distributed system.

What Is the Internet?

- 1969

What Is the Internet?

- Now

A network of networks
- The fundamental goal of the original designers: interconnecting different networks by designing common protocols
Detour: What is a Protocol?

- Example: making an appointment

 - Well...I think we need a better way...

Detour: What Is a Protocol?

- An agreement between entities in communication
 - Two things: 1) syntax, 2) semantics
- Syntax
 - What language?
 - What's the time format? Granularity?
 - Etc.
- Semantics
 - If broken into pieces, how do you reassemble?
 - If a msg gets lost, what do you do?
 - If you get a msg, what do you do?
 - Etc.

Returning back: What Is the Internet?

- A network of networks
- The fundamental goal of the original designers: interconnecting different networks by designing common protocols

CSE 486/586 Administrivia

- PA 1 is out. Please try it yourself.
 - We’re deciding API 19 vs. API 21. Stay tuned.
- Please use Piazza; all announcements will go there.
 - Signup link: http://piazza.com/buffalo/spring2016/cse486586
 - Anonymous/private posting: generally questions are beneficial to the whole class; please consider posting it publicly first.
 - All announcements will be posted there.
- Please come to my office during the office hours!
 - Give feedback about the class, ask questions, etc.
- Use good coding styles.
 - Use the Android code style guideline posted on Piazza.
- After-class questions
 - Will answer them outside. There’s a class right after this one.

Building the Internet

- Why care?
 - Now: you might be just doing what’s given to you.
 - Later: you will likely define what you want to do and do it.
- Internet as a case study of a distributed system
 - Put a designer’s hat on for a moment.
- Questions to think about:
 - Why? i.e., why do we want to connect computers?
 - What is the ideal outcome? i.e., what do we want?
 - How do we do that?
Why and What

- **Why**
 - "The whole can be greater than the sum of its parts"

- **What**
 - Internet communication must continue despite loss of networks or gateways.
 - The Internet must support multiple types of communications services.
 - The Internet architecture must accommodate a variety of networks.
 - The Internet architecture must permit distributed management of its resources.
 - The Internet architecture must be cost effective.
 - The Internet architecture must permit host attachment with a low level of effort.
 - The resources used in the Internet architecture must be accountable.

How to Interconnect?

- There were many types of networks based on various physical media.
 - Coax, radio, satellite, etc.

- The original designers wanted to interconnect those somehow.

- A potential solution
 - Designing a “multi-media” network (e.g., via physical signal translator for various physical media)

- Solution chosen?
 - Hint: “All problems in computer science can be solved by another level of indirection.” — David Wheeler
 - Connecting by layering with packet switching
 - (We will not cover packet switching vs. circuit switching)

Layering: A Modular Approach

- Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above

- Interface between layers defines interaction
 - Hides implementation details
 - Layers can change without disturbing other layers

- "The" computer science approach
 - ISA, OS, networking...

Challenges in Layering

- **What to put on top of physical networks?**

- Assumption (for the sake of the discussion):
 - Packet switching (a conversation is divided into smaller units called packets).

- Basic things for enabling a conversation between remote hosts:
 - Addressing (where do I send a msg?)
 - Routing (how do I reach that address?)

- Most importantly, survivability
 - Protection of a conversation as long as there’s a physical path between entities communicating and they are alive.

- What are some of the threats that disrupt a conversation?
 - Packet loss, out-of-order delivery, duplicate packets, etc.

We Must Ask Ourselves...

- In a conversation, there are two components involved
 - Hosts
 - Network

- So, one more question: where do we want to put the functionalities? More specifically, what would be a good network/host division of labor?

- Addressing and routing?
 - Yeah, probably in the network

- What about conversation protection mechanisms?
 - The network or hosts?

Summary

- The Internet
 - A network of networks
 - A case study as a distributed system

- Protocol
 - An agreement between multiple parties
 - Syntax & semantics

- Design a system
 - Why, what, and how

- The Internet
 - Connecting by layering
Acknowledgements

- These slides contain material developed and copyrighted by
 - Indranil Gupta at UIUC
 - Mike Freedman and Jen Rexford at Princeton