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Last time… 
•  Dynamic RAM (DRAM) is main form of main memory 

storage in use today 
–  Holds values on small capacitors, need refreshing (hence dynamic) 
–  Slow multi-step access: precharge, read row, read column 

•  Static RAM (SRAM) is faster but more expensive 
–  Used to build on-chip memory for caches 

•  Cache holds small set of values in fast memory 
(SRAM) close to processor 

–  Need to develop search scheme to find values in cache, and 
replacement policy to make space for newly accessed locations 

•  Caches exploit two forms of predictability in memory 
reference streams 

–  Temporal locality, same location likely to be accessed again soon 
–  Spatial locality, neighboring location likely to be accessed soon 
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Some Basics (Again) 
•  Block: the unit of access/storage in cache 
•  Word: the unit of access by CPU 
•  A block contains multiple words. 

–  Why multiple words? 

•  On cache miss, 
–  Memory access 
–  Cache block (re)placement 
–  Why keep it? 

•  Five things to decide 
–  After fetching a block from the memory, where do we place it inside 

the cache? 
–  If the line is taken or the cache is full already, which block to evict? 
–  How many words per block? 
–  How big? 
–  What happens on write? 
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Placement Policy 
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Direct-Mapped Cache 
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2-Way Set-Associative Cache 

  Tag Data Block   V 

 = 

Block 
Offset 

  Tag Index 

 t  k 

 b 

HIT 

  Tag Data Block   V 

Data 
Word 
or Byte 

 = 

 t 



C 2 

CSE 490/590, Spring 2011 

Fully Associative Cache 
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Replacement Policy 
In an associative cache, which block from a set 
should be evicted when the set becomes full? 

•  Random 

•  Least Recently Used (LRU) 
•  LRU cache state must be updated on every access 
•  true implementation only feasible for small sets (2-way) 
•  pseudo-LRU binary tree often used for 4-8 way 

•  First In, First Out (FIFO) a.k.a. Round-Robin 
•  used in highly associative caches 

•  Not Most Recently Used (NMRU) 
•  FIFO with exception for most recently used block or blocks 

This is a second-order effect.  Why? 
Replacement only happens on misses 
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Word3 Word0 Word1 Word2 

Block Size and Spatial Locality 

Larger block size has distinct hardware advantages 
•  less tag overhead 
•  exploit fast burst transfers from DRAM 
•  exploit fast burst transfers over wide busses 

What are the disadvantages of increasing block size? 

block address              offsetb 

2b = block size a.k.a line size (in bytes) 

Split CPU 
address 

b bits 32-b bits 

Tag 

Block is unit of transfer between the cache and memory 

4 word block, 
b=2 

Fewer blocks => more conflicts.  Can waste bandwidth. 

CSE 490/590, Spring 2011 10 

CPU-Cache Interaction 
(5-stage pipeline) 
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Improving Cache Performance 

Average memory access time = 
  Hit time + Miss rate x Miss penalty 

To improve performance: 
•  reduce the hit time 
•  reduce the miss rate 
•  reduce the miss penalty 

What is the simplest design strategy? 

Biggest cache that doesn’t increase hit time past 1-2 cycles 
(approx 8-32KB in modern technology) 
[ design issues more complex with out-of-order superscalar processors ] 
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Serial-versus-Parallel Cache and 
Memory access 

α is HIT RATIO: Fraction of references in cache 
1 - α is MISS RATIO: Remaining references 
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Average access time for parallel search:  α tcache + (1 - α) tmem 

•  Savings are usually small, tmem >> tcache, hit ratio α high 
• High bandwidth required for memory path  
•  Complexity of handling parallel paths can slow tcache  
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CSE 490/590 Administrivia 
•  Feedback on lectures 

–  If you have any feedback/concern, please send it along to me 
–  Thanks to those who already did 
–  Please ask questions if things are not clear 
–  Or you can simply scream, “TOO FAST!” 
–  Please utilize my office hours (I will change to sometime in the 

afternoon) 

•  Very important to attend 
–  Recitations this week & next week 

•  Quiz 1 
–  Fri, 2/11 
–  Closed book, in-class 
–  Includes lectures until last Monday (1/31) 
–  Review: Wed (2/9) 
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