
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Cache II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Dynamic RAM (DRAM) is main form of main memory

storage in use today
–  Holds values on small capacitors, need refreshing (hence dynamic)
–  Slow multi-step access: precharge, read row, read column

•  Static RAM (SRAM) is faster but more expensive
–  Used to build on-chip memory for caches

•  Cache holds small set of values in fast memory
(SRAM) close to processor

–  Need to develop search scheme to find values in cache, and
replacement policy to make space for newly accessed locations

•  Caches exploit two forms of predictability in memory
reference streams

–  Temporal locality, same location likely to be accessed again soon
–  Spatial locality, neighboring location likely to be accessed soon

CSE 490/590, Spring 2011

Some Basics (Again)
•  Block: the unit of access/storage in cache
•  Word: the unit of access by CPU
•  A block contains multiple words.

–  Why multiple words?

•  On cache miss,
–  Memory access
–  Cache block (re)placement
–  Why keep it?

•  Five things to decide
–  After fetching a block from the memory, where do we place it inside

the cache?
–  If the line is taken or the cache is full already, which block to evict?
–  How many words per block?
–  How big?
–  What happens on write?

3 CSE 490/590, Spring 2011 4

Placement Policy

0 1 2 3 4 5 6 7 0 1 2 3 Set Number

Cache

 Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

CSE 490/590, Spring 2011

Direct-Mapped Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k b

 t

HIT Data Word or Byte

 2k

lines

CSE 490/590, Spring 2011

2-Way Set-Associative Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k

 b

HIT

 Tag Data Block V

Data
Word
or Byte

 =

 t

C 2

CSE 490/590, Spring 2011

Fully Associative Cache

 Tag Data Block V

 =

B
lo

ck

O
ff
se

t

Ta

g

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

CSE 490/590, Spring 2011 8

Replacement Policy
In an associative cache, which block from a set
should be evicted when the set becomes full?

•  Random

•  Least Recently Used (LRU)
•  LRU cache state must be updated on every access
•  true implementation only feasible for small sets (2-way)
•  pseudo-LRU binary tree often used for 4-8 way

•  First In, First Out (FIFO) a.k.a. Round-Robin
•  used in highly associative caches

•  Not Most Recently Used (NMRU)
•  FIFO with exception for most recently used block or blocks

This is a second-order effect. Why?
Replacement only happens on misses

CSE 490/590, Spring 2011 9

Word3 Word0 Word1 Word2

Block Size and Spatial Locality

Larger block size has distinct hardware advantages
•  less tag overhead
•  exploit fast burst transfers from DRAM
•  exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits 32-b bits

Tag

Block is unit of transfer between the cache and memory

4 word block,
b=2

Fewer blocks => more conflicts. Can waste bandwidth.

CSE 490/590, Spring 2011 10

CPU-Cache Interaction
(5-stage pipeline)

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

nop

hit?
PCen

Decode,
Register
Fetch

wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

Y Y ALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

CSE 490/590, Spring 2011 11

Improving Cache Performance

Average memory access time =
 Hit time + Miss rate x Miss penalty

To improve performance:
•  reduce the hit time
•  reduce the miss rate
•  reduce the miss penalty

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles
(approx 8-32KB in modern technology)
[design issues more complex with out-of-order superscalar processors]

CSE 490/590, Spring 2011

Serial-versus-Parallel Cache and
Memory access

α is HIT RATIO: Fraction of references in cache
1 - α is MISS RATIO: Remaining references

CACHE Processor
Main
Memory

Addr Addr

Data Data

Average access time for serial search: tcache + (1 - α) tmem

CACHE Processor
Main
Memory

Addr

Data Data

Average access time for parallel search: α tcache + (1 - α) tmem

•  Savings are usually small, tmem >> tcache, hit ratio α high
• High bandwidth required for memory path
•  Complexity of handling parallel paths can slow tcache

C 3

CSE 490/590, Spring 2011 13

CSE 490/590 Administrivia
•  Feedback on lectures

–  If you have any feedback/concern, please send it along to me
–  Thanks to those who already did
–  Please ask questions if things are not clear
–  Or you can simply scream, “TOO FAST!”
–  Please utilize my office hours (I will change to sometime in the

afternoon)

•  Very important to attend
–  Recitations this week & next week

•  Quiz 1
–  Fri, 2/11
–  Closed book, in-class
–  Includes lectures until last Monday (1/31)
–  Review: Wed (2/9)

CSE 490/590, Spring 2011 14

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

