
CSE 490/590 Computer Architecture
Homework 2

1. Suppose that you have the following out-of-order datapath with 1-cycle ALU, 2-cycle Mem, 3-cycle
Fadd, 5-cycle Fmul, no branch prediction, and in-order fetch and commit.

IF ID Commit 

ALU Mem 

Fadd 

Fmul 

Issue 

Consider the following sequence of instructions.

Instruction Number Instruction
I1 LD F4, 0 (R1)
I2 LD F3, 0 (R2)
I3 FADD F6, F3, F4
I4 FMUL F1, F6, F3
I5 LD F5, 0 (R3)
I6 FADD F2, F5, F4
I7 FMUL F5, F2, F5
I8 FADD F3, F1, F4
I9 FMUL F5, F3, F2
I10 FADD F6, F2, F4

Fill in the ROB and renaming table (next page).

Answer:

Note: Because of the commit stage, the ROB will also hold data (i.e., the answer table does not
show the complete picture of the ROB). In other words, we’re dealing with the ROB in slides 6-8 in
ilp2.pptx. Thus, the renaming table will only hold tags and not the actual data values.

1



Tag op dst src1 src2
T1 LD T1 R1 0
T2 LD T2 R2 0
T3 FADD T3 T2 T1
T4 FMUL T4 T3 T2
T5 LD T5 R3 0
T6 FADD T6 T5 T1
T7 FMUL T7 T6 T5
T8 FADD T8 T4 T1
T9 FMUL T9 T8 T6
T10 FADD T10 T6 T1

R1 R2 R3 F1 F2 F3 F4 F5 F6
I1 T1
I2 T2
I3 T3
I4 T4
I5 T5
I6 T6
I7 T7
I8 T8
I9 T9
I10 T10

2



2. Consider the following instructions. Assume that the initial values for R1, R2, and R3 are all 0.

loop:
SUBI R2, R1, 2
BNEZ R2, target1
ADDI R3, R3, 1

target1:
ADDI R1, R1, 1
SUBI R4, R1, 3
BNEZ R4, loop

(a) Explain what the code does.
Answer:

Pseudo-code:

if R1 == 2, then R3 = R3 + 1
R1 = R1 + 1
if R1 != 3, then next loop

Thus, the code loops three times (R1 == 0, 1, & 2), and it increment R3 by 1 in the last loop.

(b) Change the code to minimize the number of registers necessary.
Answer: R2 and R4 only hold temporary values, so we can use just one register.

loop:
SUBI R2, R1, 2
BNEZ R2, target1
ADDI R3, R3, 1

target1:
ADDI R1, R1, 1
SUBI R2, R1, 3
BNEZ R2, loop

(c) Assume that we have a 1-bit branch predictor that stores the result of the last branch and makes
the prediction based on the result, i.e., the prediction is “take” if the last branch was taken and
the other way round for “not take”. Show the results of all predictions throughout the execution.
Answer: Assume that we’re starting from “Not Take”. In total, the code loops three times, and
there are 6 branches.

Branch Prediction Actual Result
1st BNEZ (target1) Not Take Taken
2nd BNEZ (loop) Take Taken

3rd BNEZ (target1) Take Taken
4th BNEZ (loop) Take Taken

5th BNEZ (target1) Take Not Taken
6th BNEZ (loop) Not Take Not Taken

3



(d) Assume that we have one 2-bit branch predictor. Show the results of all predictions throughout
the execution.
Answer: Assume that we’re starting from “Not Take” & “Right”.

Branch Prediction Actual Result
1st BNEZ (target1) Not Take & Right Taken
2nd BNEZ (loop) Not Take & Wrong Taken

3rd BNEZ (target1) Take & Right Taken
4th BNEZ (loop) Take & Right Taken

5th BNEZ (target1) Take & Right Not Taken
6th BNEZ (loop) Take & Wrong Not Taken

(e) Assume that we have four 2-bit branch predictors per branch instruction as well as one 2-bit shift
register that stores the result of the last two branch instructions (i.e., we have a two-level branch
predictor). Show the results of all predictions throughout the execution.
Answer: Assume that we’re starting from “Not Take” & “Right” for predictors and “Not Taken”
& “Not Taken” for the global history. We use two tables, one table per branch instruction. Each
instruction has four predictors since there are four possible cases from the global history (the
tables below do not show these cases separately though). Thus, out of 4 branches, the 3rd and
5th branches share the same predictor; all others use different ones.

Branch History (Last Two) Prediction Actual Result
1st BNEZ (target1) Not Taken & Not Taken Not Take & Right Taken
3rd BNEZ (target1) Taken & Taken Not Take & Right Taken
5th BNEZ (target1) Taken & Taken Not Take & Wrong Not Taken

Branch History (Last Two) Prediction Actual Result
2nd BNEZ (loop) Not Taken & Taken Not Take & Right Taken
4th BNEZ (loop) Taken & Taken Not Take & Right Taken
6th BNEZ (loop) Taken & Not Taken Not Take & Right Not Taken

4



3. (Example on p.77) Consider the following code:

loop:
LD F0, 0(R1)
FADD F4, F0, F2
ST F4, 0(R1)
ADDI R1, R1, -8
BNE R1, R2 loop

Show how to unroll the loop so that there are four copies of the loop body, assuming that R1 - R2 is
initially a multiple of 32, which means that the number of loop iterations is a multiple of 4. Eliminate
any obviously redundant computations and do not reuse any of the registers.

Answer: Please refer to the textbook.

5



4. (Example on p.116) Suppose we have a VLIW that could issue two memory references, two FP
operations, and one integer operation or branch in every clock cycle. Show an unrolled version of
the loop x[i] = x[i] + s (see p.76 for the MIPS code) for such a processor. Unroll as many times as
necessary to eliminate any stalls. Ignore delayed branches.

Answer: Please refer to the textbook.

6



5. Suppose that you have a multithreading single-issue in-order datapath with 1-cycle ALU, 2-cycle
Mem, 3-cycle Fadd, 5-cycle Fmul, no branch prediction, and in-order fetch and commit. Consider the
following instructions:

loop:
LD F0, 0(R1)
FADD F3, F3, F2
ADDI R1, R1, -8
BNE F0, F2, loop

What is the minimum number of threads necessary to fully utilize the datapath for each of the follow-
ing strategies?

(a) Fixed switching: the CPU switches to a different thread every cycle in a round-robin fashion.
Answer: We need to fill in the pipeline bubbles with useful instructions. Thus, the general
strategy is to see the worst case scenario — see where the pipeline bubbles are and how many
cycles we are wasting because of the bubbles. That’s the minimum number of threads we need
to keep the pipeline busy.
In general, problems can be memory operations, control hazards, and data hazards. In our code
above, the problematic one is not BNE because we assume that there is no branch prediction. In
the worst case, during EX for the BNE, we might know that we need to insert pipeline bubbles
for IF and ID. Thus, we need at least 3 threads to replace the bubbles.

(b) Data-dependent switching: the CPU switches to a different thread when an instruction cannot
proceed due to a dependency.
Answer: The general strategy is the same. We consider the worst case and see how many threads
we need to fill in the possible bubbles.
There are two dependencies. One is between LD and ADDI on R1, and the other is LD and BNE
on F0. However, these dependencies do not lead to stalls in a simple pipeline. Thus, we are not
able to improve the performance even with more threads.

7


