
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

ILP I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Scoreboard

– Data structure that keeps track of dependencies among
instructions

•  In-order limitations

– Out-of-order alone cannot solve

•  Register renaming

– Overcoming the restriction caused by the # of registers

CSE 490/590, Spring 2011 3

Instruction-level Parallelism via Renaming
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

3 4

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware? yes!

CSE 490/590, Spring 2011 4

Register Renaming

•  Decode does register renaming and adds instructions to
the issue stage reorder buffer (ROB)

 ⇒ renaming makes WAR or WAW hazards impossible

•  Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.
	
 	
⇒ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

CSE 490/590, Spring 2011 5

Dataflow Execution

Instruction slot is candidate for execution when:
•  It holds a valid instruction (“use” bit is set)
•  It has not already started execution (“exec” bit is clear)
•  Both operands are available (p1 and p2 are set)

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

CSE 490/590, Spring 2011 6

Renaming & Out-of-order Issue
An example

•  When are tags in sources
 replaced by data?

•  When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1
 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4
 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0
 3 1 0 MUL 1 v2 1 v1

C 2

CSE 490/590, Spring 2011 7

Data-Driven Execution
Renaming
table &
reg file

Reorder
buffer

Load
 Unit

FU FU Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

•  Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also associates tag with register in regfile
•  When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

CSE 490/590, Spring 2011 8

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly
• “exec” bit is set when instruction begins execution
• When an instruction completes its “use” bit is marked free
•  ptr2 is incremented only if the “use” bit is marked free

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

CSE 490/590, Spring 2011 9

IBM 360/91 Floating-Point Unit
R. M. Tomasulo, 1967

Mult

1

1
2
3
4
5
6

load
buffers
(from
memory)

1
2
3
4

Adder

1
2
3

Floating-
Point
Reg

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute
instruction
templates
by
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data 2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data

CSE 490/590, Spring 2011 10

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.

 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Control transfers

CSE 490/590, Spring 2011 11

CSE 490/590 Administrivia

•  No office hours this week
– Appointment via email if needed
– Project-related questions fastest: Safwan or

Jangyoung
•  Guest Lecture by Prof. Kris Schindler on Wed
•  Guest lecture by Prof. Tevfik Kosar on Fri

CSE 490/590, Spring 2011 12

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

•  the effect of all instructions up to and including Ii is
 totally complete
•  no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

C 3

CSE 490/590, Spring 2011 13

Effect on Interrupts
Out-of-order Completion

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6
 restore f2 restore f10

Consider interrupts

Precise interrupts are difficult to implement at high speed
 - want to start execution of later instructions before
 exception checks finished on earlier instructions

CSE 490/590, Spring 2011 14

Exception Handling
(In-Order Five-Stage Pipeline)

•  Hold exception flags in pipeline until commit point (M stage)
•  Exceptions in earlier pipe stages override later exceptions
•  Inject external interrupts at commit point (override others)
•  If exception at commit: update Cause and EPC registers, kill
 all stages, inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcode Overflow

Data Addr
Except

PC Address
Exceptions

Kill
Writeback

Select
Handler
PC

Commit
Point

CSE 490/590, Spring 2011 15

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units.
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Result
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

CSE 490/590, Spring 2011 16

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

