
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

ILP II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Register renaming

– Overcoming the restriction caused by the # of registers
– Reorder buffer & renaming table

•  Precise interrupts
–  It must appear as if an interrupt has occurred in-between

two instructions

CSE 490/590, Spring 2011 3

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

•  the effect of all instructions up to and including Ii is
 totally complete
•  no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

CSE 490/590, Spring 2011 4

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units.
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Result
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

CSE 490/590, Spring 2011 5

In-Order Commit for Precise Exceptions

•  Instructions fetched and decoded into instruction
 reorder buffer in-order
•  Execution is out-of-order (⇒ out-of-order completion)
•  Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

CSE 490/590, Spring 2011 6

Extensions for Precise Exceptions

Reorder buffer

ptr2
next to
commit

ptr1
next

available

•  add <pd, dest, data, cause> fields in the instruction template
•  commit instructions to reg file and memory in program
 order ⇒ buffers can be maintained circularly
•  on exception, clear reorder buffer by resetting ptr1=ptr2

 (stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

C 2

CSE 490/590, Spring 2011 7

Rollback and Renaming

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

CSE 490/590, Spring 2011 8

Renaming Table
Register

File

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v
r2

tag
valid bit

CSE 490/590, Spring 2011 9

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

CSE 490/590, Spring 2011 10

Instruction Taken known? Target known?

J

JR

BEQZ/BNEZ

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces
of information from the preceding instruction:

 1) Is the preceding instruction a taken branch?

 2) If so, what is the target address?

After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

After Reg. Fetch*

*Assuming zero detect on register read

CSE 490/590, Spring 2011 11

Branch Penalties in Modern Pipelines

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

CSE 490/590, Spring 2011 12

Reducing Control Flow Penalty
Software solutions

•  Eliminate branches - loop unrolling
 Increases the run length

•  Reduce resolution time - instruction scheduling
 Compute the branch condition as early
 as possible (of limited value)

Hardware solutions
•  Find something else to do - delay slots

 Replaces pipeline bubbles with useful work
 (requires software cooperation)

•  Speculate - branch prediction
Speculative execution of instructions beyond
the branch

C 3

CSE 490/590, Spring 2011 13

CSE 490/590 Administrivia

•  Project 1 & midterm grading mostly done
– Will distribute on Wed
– Regrading -> Jangyoung

•  Project 2
– Start early!

CSE 490/590, Spring 2011 14

Branch Prediction
Motivation:

Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

•  Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
•  Keep result computation separate from commit
•  Kill instructions following branch in pipeline
•  Restore state to state following branch

CSE 490/590, Spring 2011 15

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
 typically reported as ~80% accurate

JZ

JZ
backward
90%

forward
50%

CSE 490/590, Spring 2011 16

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

CSE 490/590, Spring 2011 17

•  Assume 2 BP bits per instruction
•  Change the prediction after two consecutive mistakes!

¬take
wrong

taken
¬ taken

taken

taken

taken
¬take
right

take
right

take
wrong

¬ taken

¬ taken ¬ taken

BP state:
 (predict take/¬take) x (last prediction right/wrong)

Branch Prediction Bits

CSE 490/590, Spring 2011 18

Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

C 4

CSE 490/590, Spring 2011 19

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

