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Last time… 
•  Register renaming 

– Overcoming the restriction caused by the # of registers 
– Reorder buffer & renaming table 

•  Precise interrupts 
–  It must appear as if an interrupt has occurred in-between 

two instructions 
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Precise Interrupts 

It must appear as if an interrupt is taken between 
two instructions  (say Ii and Ii+1) 

•  the effect of all instructions up to and including Ii is 
   totally complete 
•  no effect of any instruction after Ii has taken place 

The interrupt handler either aborts the program or  
restarts it at Ii+1 . 
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Fetch: Instruction bits retrieved 
from cache. 

Phases of Instruction Execution 

I-cache 

Fetch 
Buffer 

Issue 
Buffer 

Func. 
Units 

Arch. 
State 

Execute: Instructions and operands sent to 
execution units.  
When execution completes, all results and 
exception flags are available. 

Decode: Instructions placed in appropriate 
issue (aka “dispatch”) stage buffer 

Result 
Buffer Commit: Instruction irrevocably updates 

architectural state (aka “graduation” or 
“completion”). 

PC 
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In-Order Commit for Precise Exceptions 

•  Instructions fetched and decoded into instruction 
  reorder buffer in-order 
•  Execution is out-of-order ( ⇒ out-of-order completion) 
•  Commit (write-back to architectural state, i.e., regfile & 
  memory, is in-order 

Temporary storage needed to hold results before commit             
(shadow registers and store buffers) 

Fetch Decode 

Execute 

Commit Reorder Buffer 

In-order In-order Out-of-order 

Kill 
Kill Kill 

Exception? Inject handler PC 
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Extensions for Precise Exceptions 

Reorder buffer 

ptr2 
next to 
commit 

ptr1 
next 

available 

•  add <pd, dest, data, cause> fields in the instruction template 
•  commit instructions to reg file and memory in program  
  order ⇒ buffers can be maintained circularly 
•  on exception, clear reorder buffer by resetting ptr1=ptr2 

 (stores must wait for commit before updating memory) 

Inst#  use  exec   op    p1     src1  p2  src2     pd  dest     data  cause 
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Rollback and Renaming 

Register file does not contain renaming tags any more. 
How does the decode stage find the tag of a source register? 

Search the “dest” field in the reorder buffer 

Register File 
(now holds only 
committed state) 

Reorder 
buffer 

Load 
 Unit 

FU FU FU Store 
 Unit 

< t, result > 

t1 
t2 
. 
. 
tn 

Ins#  use  exec   op   p1    src1   p2    src2    pd  dest     data 

Commit 
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Renaming Table 
Register 

File 

Reorder  
buffer 

Load 
 Unit 

FU FU FU Store 
 Unit 

< t, result > 

t1 
t2 
. 
. 
tn 

Ins#  use  exec   op   p1    src1   p2    src2    pd  dest     data 

Commit 

Rename  
Table 

Renaming table is a cache to speed up register name look up. 
It needs to be cleared after each exception taken.  
When else are valid bits cleared?  Control transfers 

r1  t v 
r2  

tag 
valid bit 
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I-cache 

Fetch 
Buffer 

Issue 
Buffer 

Func. 
Units 

Arch. 
State 

Execute 

Decode 

Result 
Buffer Commit 

PC 

Fetch 

Branch 
executed 

Next fetch 
started 

Modern processors may have 
> 10 pipeline stages between 
next PC calculation and branch 
resolution ! 

Control Flow Penalty 
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Instruction   Taken known?  Target known? 

J 

JR 

BEQZ/BNEZ 

MIPS Branches and Jumps 

Each instruction fetch depends on one or two pieces 
of information from the preceding instruction: 

 1) Is the preceding instruction a taken branch? 

 2) If so, what is the target address? 

After Inst. Decode 

After Inst. Decode After Inst. Decode 

After Inst. Decode After Reg. Fetch 

After Reg. Fetch* 

*Assuming zero detect on register read 
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Branch Penalties in Modern Pipelines 

A  PC Generation/Mux 
P  Instruction Fetch Stage 1 
F  Instruction Fetch Stage 2 
B  Branch Address Calc/Begin Decode 
I  Complete Decode 
J  Steer Instructions to Functional units 
R  Register File Read 
E  Integer Execute 

Remainder of execute pipeline  
(+ another 6 stages) 

UltraSPARC-III instruction fetch pipeline stages 
(in-order issue, 4-way superscalar, 750MHz, 2000) 

Branch 
Target 
Address 
Known 

Branch 
Direction & 
Jump 
Register 
Target 
Known 
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Reducing Control Flow Penalty  
Software solutions 

•  Eliminate branches - loop unrolling  
 Increases the run length  

•  Reduce resolution time - instruction scheduling  
 Compute the branch condition as early  
 as possible (of limited value) 

Hardware solutions 
•  Find something else to do - delay slots   

 Replaces pipeline bubbles with useful work 
 (requires software cooperation) 

•  Speculate - branch prediction 
Speculative execution of instructions beyond 
the branch 
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CSE 490/590 Administrivia 

•  Project 1 & midterm grading mostly done 
– Will distribute on Wed 
– Regrading -> Jangyoung 

•  Project 2 
– Start early! 
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Branch Prediction 
Motivation: 

Branch penalties limit performance of deeply pipelined 
processors 

Modern branch predictors have high accuracy 
(>95%) and can reduce branch penalties significantly 

Required hardware support: 
Prediction structures:  

•  Branch history tables, branch target buffers, etc. 

Mispredict recovery mechanisms: 
•  Keep result computation separate from commit  
•  Kill instructions following branch in pipeline 
•  Restore state to state following branch 
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Static Branch Prediction 
Overall probability a branch is taken is ~60-70% but: 

ISA can attach preferred direction semantics to branches, 
e.g., Motorola MC88110 

bne0 (preferred  taken)   beq0 (not taken) 

ISA can allow arbitrary choice of statically predicted direction, 
e.g., HP PA-RISC, Intel IA-64 
      typically reported as ~80% accurate 

JZ 

JZ 
backward 
90% 

forward 
50% 
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Dynamic Branch Prediction 
learning based on past behavior 

Temporal correlation 
The way a branch resolves may be a good 
predictor of the way it will resolve at the next 
execution 

Spatial correlation  
Several branches may resolve in a highly 
correlated manner (a preferred path of 
execution) 
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•  Assume 2 BP bits per instruction 
•  Change the prediction after two consecutive mistakes! 

¬take 
wrong 

taken 
¬ taken 

taken 

taken 

taken 
¬take 
right 

take 
right 

take 
wrong 

¬ taken 

¬ taken ¬ taken 

BP state:   
 (predict take/¬take) x (last prediction right/wrong) 

Branch Prediction Bits 
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Branch History Table 

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions 

0 0 Fetch PC 

Branch? Target PC 

+ 

I-Cache 

Opcode offset 
Instruction 

k 

BHT Index 

2k-entry 
BHT, 
2 bits/entry 

Taken/¬Taken? 
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