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Last time… 
•  Superscalar suffers from the sequential nature of the 

ISA 
•  VLIW instructions consists of multiple operations 
•  Techniques such as loop unrolling, software 

pipelining, and trace scheduling gives an opportunity 
to extract ILP necessary in VLIW 
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Rotating Register Files 

Problems: Scheduled loops require lots of registers,  
                Lots of duplicated code in prolog, epilog 

Solution: Allocate new set of registers for each loop iteration 
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Rotating Register File 

P0 
P1 
P2 
P3 
P4 
P5 
P6 
P7 

RRB=3 

+ R1 

Rotating Register Base (RRB) register points to base 
of current register set.  Value added on to logical 
register specifier to give physical register number.  
Usually, split into rotating and non-rotating 
registers. 
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Rotating Register File 
(Previous Loop Example) 

bloop sd f9, () fadd f5, f4, ... ld f1, () 

Three cycle load latency 
encoded as difference of 3 
in register specifier 
number (f4 - f1 = 3) 

Four cycle fadd latency 
encoded as difference of 4 
in register specifier 
number (f9 – f5 = 4) 

bloop sd P17, () fadd P13, P12, ld P9, () RRB=8 

bloop sd P16, () fadd P12, P11, ld P8, () RRB=7 

bloop sd P15, () fadd P11, P10, ld P7, () RRB=6 

bloop sd P14, () fadd P10, P9, ld P6, () RRB=5 

bloop sd P13, () fadd P9, P8, ld P5, () RRB=4 

bloop sd P12, () fadd P8, P7, ld P4, () RRB=3 

bloop sd P11, () fadd P7, P6, ld P3, () RRB=2 

bloop sd P10, () fadd P6, P5, ld P2, () RRB=1 
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Cydra-5: 
Memory Latency Register (MLR) 

Problem: Loads have variable latency 
Solution: Let software choose desired memory latency 

•  Compiler schedules code for maximum load-use 
distance 

•  Software sets MLR to latency that matches code 
schedule  

•  Hardware ensures that loads take exactly MLR cycles 
to return values into processor pipeline 

– Hardware buffers loads that return early 
– Hardware stalls processor if loads return late 
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Multithreading 
•  Difficult to continue to extract instruction-level 

parallelism (ILP) or data-level parallelism (DLP) from 
a single sequential thread of control 

•  Many workloads can make use of thread-level 
parallelism (TLP) 
– TLP from multiprogramming (run independent 

sequential jobs) 
– TLP from multithreaded applications (run one job 

faster using parallel threads) 
•  Multithreading uses TLP to improve utilization of a 

single processor 
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Pipeline Hazards 

•  Each instruction may depend on the next 

LW r1, 0(r2) 
LW r5, 12(r1) 
ADDI r5, r5, #12 
SW 12(r1), r5 

F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 
F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 

What is usually done to cope with this? 
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Multithreading 

How can we guarantee no dependencies between 
instructions in a pipeline? 

-- One way is to interleave execution of instructions from 
different program threads on same pipeline 

F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 
T2: ADD r7, r1, r4 
T3: XORI r5, r4, #12 
T4: SW 0(r7),  r5 
T1: LW r5, 12(r1) 

t9 

F D X M W 
F D X M W 

F D X M W 
F D X M W 

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file 
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CDC 6600 Peripheral Processors 
(Cray, 1964) 

•  First multithreaded hardware 
•  10 “virtual” I/O processors 
•  Fixed interleave on simple pipeline 
•  Pipeline has 100ns cycle time 
•  Each virtual processor executes one instruction every 1000ns 
•  Accumulator-based instruction set to reduce processor state 
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Simple Multithreaded Pipeline 

• Have to carry thread select down pipeline to ensure correct state bits 
read/written at each pipe stage 

• Appears to software (including OS) as multiple, albeit slower, CPUs 

+1 

2 Thread 
select 

PC 
1 PC 

1 PC 
1 PC 

1 
I$ IR GPR1 GPR1 GPR1 GPR1 

X 

Y 

2 

D$ 
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Multithreading Costs 

•  Each thread requires its own user state 
–  PC 
–  GPRs 

•  Also, needs its own system state 
–  virtual memory page table base register 
–  exception handling registers 

•  Other overheads: 
–  Additional cache/TLB conflicts from competing threads 
–  (or add larger cache/TLB capacity) 
– More OS overhead to schedule more threads (where do all 

these threads come from?) 
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Thread Scheduling Policies 

•  Fixed interleave (CDC 6600 PPUs, 1964) 
–  Each of N threads executes one instruction every N cycles 
–  If thread not ready to go in its slot, insert pipeline bubble 

•  Software-controlled interleave (TI ASC PPUs, 1971) 
–  OS allocates S pipeline slots amongst N threads 
–  Hardware performs fixed interleave over S slots, executing whichever 

thread is in that slot 

•  Hardware-controlled thread scheduling (HEP, 1982) 
–  Hardware keeps track of which threads are ready to go 
–  Picks next thread to execute based on hardware priority scheme 
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CSE 490/590 Administrivia 
•  HW2 & midterm solution out 
•  Quiz 2 (next Friday 4/8): After midterm until next 

Monday 
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Denelcor HEP 
(Burton Smith, 1982) 

First commercial machine to use hardware threading in main CPU 
–  120 threads per processor 
–  10 MHz clock rate 
–  Up to 8 processors 
–  precursor to Tera MTA (Multithreaded Architecture) 
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Tera MTA (1990-) 

•  Up to 256 processors 
•  Up to 128 active threads per processor 
•  Processors and memory modules 

populate a sparse 3D torus 
interconnection fabric 

•  Flat, shared main memory 
–   No data cache 
–   Sustains one main memory access per cycle 

per processor 
•  GaAs logic in prototype, 1KW/processor 

@ 260MHz 
–  Second version CMOS, MTA-2, 50W/processor 
–  New version, XMT, fits into AMD Opteron socket, 

runs at 500MHz 
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MTA Pipeline 

A 

W 

C 

W 

M 

Inst Fetch 

M
em

or
y 

Po
ol

 

Retry Pool 

Interconnection Network 

W
rit

e 
Po

ol
 

W 

Memory pipeline 

Issue Pool 
•  Every cycle, one 
VLIW instruction from 
one active thread is 
launched into pipeline 

•  Instruction pipeline is 
21 cycles long 

•  Memory operations 
incur ~150 cycles of 
latency 
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Coarse-Grain Multithreading 

Tera MTA designed for supercomputing applications 
with large data sets and low locality 

– No data cache 
– Many parallel threads needed to hide large memory latency 

Other applications are more cache friendly 
–  Few pipeline bubbles if cache mostly has hits 
–  Just add a few threads to hide occasional cache miss 

latencies 
–  Swap threads on cache misses 
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MIT Alewife (1990) 

• Modified SPARC chips 
–  register windows hold different thread 

contexts 

• Up to four threads per node 
• Thread switch on local cache miss 
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IBM PowerPC RS64-IV (2000) 

•  Commercial coarse-grain multithreading CPU 
•  Based on PowerPC with quad-issue in-order five-

stage pipeline 
•  Each physical CPU supports two virtual CPUs 
•  On L2 cache miss, pipeline is flushed and execution 

switches to second thread 
–  short pipeline minimizes flush penalty (4 cycles), small 

compared to memory access latency 
–  flush pipeline to simplify exception handling 
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Simultaneous Multithreading (SMT) 
for OoO Superscalars 

•  Techniques presented so far have all been “vertical” 
multithreading where each pipeline stage works on 
one thread at a time 

•  SMT uses fine-grain control already present inside an 
OoO superscalar to allow instructions from multiple 
threads to enter execution on same clock cycle.  
Gives better utilization of machine resources. 
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For most apps, most execution units 
lie idle in an OoO superscalar 

From: Tullsen, Eggers, and Levy,"
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995."

For an 8-way 
superscalar.!
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