
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Multithreading I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Superscalar suffers from the sequential nature of the

ISA
•  VLIW instructions consists of multiple operations
•  Techniques such as loop unrolling, software

pipelining, and trace scheduling gives an opportunity
to extract ILP necessary in VLIW

CSE 490/590, Spring 2011 3

Rotating Register Files

Problems: Scheduled loops require lots of registers,
 Lots of duplicated code in prolog, epilog

Solution: Allocate new set of registers for each loop iteration

CSE 490/590, Spring 2011 4

Rotating Register File

P0
P1
P2
P3
P4
P5
P6
P7

RRB=3

+ R1

Rotating Register Base (RRB) register points to base
of current register set. Value added on to logical
register specifier to give physical register number.
Usually, split into rotating and non-rotating
registers.

CSE 490/590, Spring 2011 5

Rotating Register File
(Previous Loop Example)

bloop sd f9, () fadd f5, f4, ... ld f1, ()

Three cycle load latency
encoded as difference of 3
in register specifier
number (f4 - f1 = 3)

Four cycle fadd latency
encoded as difference of 4
in register specifier
number (f9 – f5 = 4)

bloop sd P17, () fadd P13, P12, ld P9, () RRB=8

bloop sd P16, () fadd P12, P11, ld P8, () RRB=7

bloop sd P15, () fadd P11, P10, ld P7, () RRB=6

bloop sd P14, () fadd P10, P9, ld P6, () RRB=5

bloop sd P13, () fadd P9, P8, ld P5, () RRB=4

bloop sd P12, () fadd P8, P7, ld P4, () RRB=3

bloop sd P11, () fadd P7, P6, ld P3, () RRB=2

bloop sd P10, () fadd P6, P5, ld P2, () RRB=1
CSE 490/590, Spring 2011 6

Cydra-5:
Memory Latency Register (MLR)

Problem: Loads have variable latency
Solution: Let software choose desired memory latency

•  Compiler schedules code for maximum load-use
distance

•  Software sets MLR to latency that matches code
schedule

•  Hardware ensures that loads take exactly MLR cycles
to return values into processor pipeline

– Hardware buffers loads that return early
– Hardware stalls processor if loads return late

C 2

CSE 490/590, Spring 2011

Multithreading
•  Difficult to continue to extract instruction-level

parallelism (ILP) or data-level parallelism (DLP) from
a single sequential thread of control

•  Many workloads can make use of thread-level
parallelism (TLP)
– TLP from multiprogramming (run independent

sequential jobs)
– TLP from multithreaded applications (run one job

faster using parallel threads)
•  Multithreading uses TLP to improve utilization of a

single processor

CSE 490/590, Spring 2011 8

Pipeline Hazards

•  Each instruction may depend on the next

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D
F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

What is usually done to cope with this?

CSE 490/590, Spring 2011 9

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

-- One way is to interleave execution of instructions from
different program threads on same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

CSE 490/590, Spring 2011 10

CDC 6600 Peripheral Processors
(Cray, 1964)

•  First multithreaded hardware
•  10 “virtual” I/O processors
•  Fixed interleave on simple pipeline
•  Pipeline has 100ns cycle time
•  Each virtual processor executes one instruction every 1000ns
•  Accumulator-based instruction set to reduce processor state

CSE 490/590, Spring 2011 11

Simple Multithreaded Pipeline

• Have to carry thread select down pipeline to ensure correct state bits
read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread
select

PC
1 PC

1 PC
1 PC

1
I$ IR GPR1 GPR1 GPR1 GPR1

X

Y

2

D$

CSE 490/590, Spring 2011 12

Multithreading Costs

•  Each thread requires its own user state
–  PC
–  GPRs

•  Also, needs its own system state
–  virtual memory page table base register
–  exception handling registers

•  Other overheads:
–  Additional cache/TLB conflicts from competing threads
–  (or add larger cache/TLB capacity)
– More OS overhead to schedule more threads (where do all

these threads come from?)

C 3

CSE 490/590, Spring 2011 13

Thread Scheduling Policies

•  Fixed interleave (CDC 6600 PPUs, 1964)
–  Each of N threads executes one instruction every N cycles
–  If thread not ready to go in its slot, insert pipeline bubble

•  Software-controlled interleave (TI ASC PPUs, 1971)
–  OS allocates S pipeline slots amongst N threads
–  Hardware performs fixed interleave over S slots, executing whichever

thread is in that slot

•  Hardware-controlled thread scheduling (HEP, 1982)
–  Hardware keeps track of which threads are ready to go
–  Picks next thread to execute based on hardware priority scheme

CSE 490/590, Spring 2011 14

CSE 490/590 Administrivia
•  HW2 & midterm solution out
•  Quiz 2 (next Friday 4/8): After midterm until next

Monday

CSE 490/590, Spring 2011 15

Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
–  120 threads per processor
–  10 MHz clock rate
–  Up to 8 processors
–  precursor to Tera MTA (Multithreaded Architecture)

CSE 490/590, Spring 2011 16

Tera MTA (1990-)

•  Up to 256 processors
•  Up to 128 active threads per processor
•  Processors and memory modules

populate a sparse 3D torus
interconnection fabric

•  Flat, shared main memory
–  No data cache
–  Sustains one main memory access per cycle

per processor
•  GaAs logic in prototype, 1KW/processor

@ 260MHz
–  Second version CMOS, MTA-2, 50W/processor
–  New version, XMT, fits into AMD Opteron socket,

runs at 500MHz

CSE 490/590, Spring 2011 17

MTA Pipeline

A

W

C

W

M

Inst Fetch

M
em

or
y

Po
ol

Retry Pool

Interconnection Network

W
rit

e
Po

ol

W

Memory pipeline

Issue Pool
•  Every cycle, one
VLIW instruction from
one active thread is
launched into pipeline

•  Instruction pipeline is
21 cycles long

•  Memory operations
incur ~150 cycles of
latency

CSE 490/590, Spring 2011 18

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications
with large data sets and low locality

– No data cache
– Many parallel threads needed to hide large memory latency

Other applications are more cache friendly
–  Few pipeline bubbles if cache mostly has hits
–  Just add a few threads to hide occasional cache miss

latencies
–  Swap threads on cache misses

C 4

CSE 490/590, Spring 2011 19

MIT Alewife (1990)

• Modified SPARC chips
–  register windows hold different thread

contexts

• Up to four threads per node
• Thread switch on local cache miss

CSE 490/590, Spring 2011 20

IBM PowerPC RS64-IV (2000)

•  Commercial coarse-grain multithreading CPU
•  Based on PowerPC with quad-issue in-order five-

stage pipeline
•  Each physical CPU supports two virtual CPUs
•  On L2 cache miss, pipeline is flushed and execution

switches to second thread
–  short pipeline minimizes flush penalty (4 cycles), small

compared to memory access latency
–  flush pipeline to simplify exception handling

CSE 490/590, Spring 2011 21

Simultaneous Multithreading (SMT)
for OoO Superscalars

•  Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on
one thread at a time

•  SMT uses fine-grain control already present inside an
OoO superscalar to allow instructions from multiple
threads to enter execution on same clock cycle.
Gives better utilization of machine resources.

CSE 490/590, Spring 2011 22

For most apps, most execution units
lie idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,"
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995."

For an 8-way
superscalar.!

CSE 490/590, Spring 2011 23

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

