

Rotating Register File (Previous Loop Example)					
Three cycle load latency encoded as difference of 3 in register specifier number (f4 - f1 = 3)		Four cy encode in regis rumbe	ency lice of 4)		
ld f1, ()	fadd f5, f4,	sd f9, ()	bloop		
ld P9, ()	fadd P13, P12,	sd P17, ()	bloop	RRB=8	
ld P8, ()	fedd P12, P11,	sd P16, ()	bloop	RRB=7	
ld P7, ()	fadd P11, P10,	sd P15, ()	bloop	RRB=6	
ld P6, ()	fadd P10, P9,	sd P14, ()	bloop	RRB=5	
ld P5, ()	fadd P9, P8,	sd P13, ()	bloop	RRB=4	
ld P4, ()	fadd P8, P7,	sd P12, ()	bloop	RRB=3	
ld P3, ()	fadd P7, P6,	sd P11, ()	bloop	RRB=2	
ld P2, ()	fadd P6, P5,	sd P10, ()	bloop	RRB=1	
CSE 490/590, Spring 2011					5

- Difficult to continue to extract instruction-level parallelism (ILP) or data-level parallelism (DLP) from a single sequential thread of control
- Many workloads can make use of thread-level parallelism (TLP)
 - TLP from multiprogramming (run independent sequential jobs)
 - TLP from multithreaded applications (run one job faster using parallel threads)
- Multithreading uses TLP to improve utilization of a single processor

CSE 490/590, Spring 2011

Simultaneous Multithreading (SMT) for OoO Superscalars

- Techniques presented so far have all been "vertical" multithreading where each pipeline stage works on one thread at a time
- SMT uses fine-grain control already present inside an OoO superscalar to allow instructions from multiple threads to enter execution on same clock cycle. Gives better utilization of machine resources.

CSE 490/590, Spring 2011

21

23

- These slides heavily contain material developed and copyright by
 - Krste Asanovic (MIT/UCB)
 - David Patterson (UCB)
- And also by:
 Arvind (MIT)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
- MIT material derived from course 6.823
- UCB material derived from course CS252

CSE 490/590, Spring 2011