
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Multithreading II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Multithreading executes instructions from different

threads
•  Coarse-grained multithreading switches threads on

cache misses
•  Most of the OoO superscalar units are idle.

CSE 490/590, Spring 2011
3

Superscalar Machine Efficiency

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

CSE 490/590, Spring 2011
4

Vertical Multithreading

•  What is the effect of cycle-by-cycle interleaving?

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

CSE 490/590, Spring 2011
5

Chip Multiprocessing (CMP)

•  What is the effect of splitting into multiple processors?

Issue width

Time

CSE 490/590, Spring 2011
6

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

•  Interleave multiple threads to multiple issue slots with
no restrictions

Issue width

Time

C 2

CSE 490/590, Spring 2011
7

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

•  Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

•  Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

•  OOO instruction window already has most of the
circuitry required to schedule from multiple threads

•  Any single thread can utilize whole machine

CSE 490/590, Spring 2011
8

IBM Power 4
Single-threaded predecessor to
Power 5. 8 execution units in!
out-of-order engine, each may!
issue an instruction each cycle.!

CSE 490/590, Spring 2011
9

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

CSE 490/590, Spring 2011
10

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

CSE 490/590, Spring 2011
11

Changes in Power 5 to support SMT
•  Increased associativity of L1 instruction cache and the

instruction address translation buffers
•  Added per thread load and store queues
•  Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
•  Added separate instruction prefetch and buffering per

thread
•  Increased the number of virtual registers from 152 to 240
•  Increased the size of several issue queues
•  The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support

CSE 490/590, Spring 2011 12

CSE 490/590 Administrivia
•  Quiz 2 (next Friday 4/8): After midterm until next

Monday

C 3

CSE 490/590, Spring 2011
13

Pentium-4 Hyperthreading (2002)

•  First commercial SMT design (2-way SMT)
–  Hyperthreading == SMT

•  Logical processors share nearly all resources of the physical
processor

–  Caches, execution units, branch predictors
•  Die area overhead of hyperthreading ~ 5%
•  When one logical processor is stalled, the other can make

progress
–  No logical processor can use all entries in queues when two threads are active

•  Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

•  Hyperthreading dropped on OoO P6 based followons to
Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with
Nehalem generation machines in 2008.

•  Intel Atom (in-order x86 core) has two-way vertical multithreading

CSE 490/590, Spring 2011
14

Initial Performance of SMT
•  Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate
–  Pentium 4 is dual threaded SMT
–  SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

•  Running on Pentium 4 each of 26 SPEC benchmarks
paired with every other (262 runs) speed-ups from 0.90
to 1.58; average was 1.20

•  Power 5, 8-processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

•  Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

–  Most gained some
–  Fl.Pt. apps had most cache conflicts and least gains

CSE 490/590, Spring 2011
15

SMT adaptation to parallelism type
For regions with high thread level
parallelism (TLP) entire machine
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread level
parallelism (TLP) entire machine
width is available for instruction level
parallelism (ILP)

CSE 490/590, Spring 2011
16

Icount Choosing Policy

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

CSE 490/590, Spring 2011
17

Summary: Multithreaded Categories

Tim
e (

pr
oc

es
so

r c
yc

le)
 Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

CSE 490/590, Spring 2011 18

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

•  VAX : 25%/year 1978 to 1986
•  RISC + x86: 52%/year 1986 to 2002
•  RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006	

3X

C 4

CSE 490/590, Spring 2011
19

Parallel Processing:
Déjà vu all over again?

“… today’s processors … are nearing an impasse as technologies approach the
speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

•  Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

•  “We are dedicating all of our future product development to multicore designs.
… This is a sea change in computing”

Paul Otellini, President, Intel (2005)
•  All microprocessor companies switch to MP (2X CPUs / 2 yrs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

Manufacturer/Year	
 AMD/’09	
 Intel/’09	
 IBM/’09	
 Sun/’09	

Processors/chip	
 6	
 8	
 8	
 16	

Threads/Processor	
 1	
 2	
 4	
 8	

Threads/chip	
 6	
 16	
 32	
 128	

CSE 490/590, Spring 2011 20

symmetric
•  All memory is equally far
 away from all processors
•  Any processor can do any I/O
 (set up a DMA transfer)

Symmetric Multiprocessors

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

CSE 490/590, Spring 2011 21

Synchronization

The need for synchronization arises
whenever
there are concurrent processes in a system

 (even in a uniprocessor system)

Producer-Consumer: A consumer process
must wait until the producer process has
produced data

Mutual Exclusion: Ensure that only one
process uses a resource at a given time

producer

consumer

Shared
Resource

P1 P2

CSE 490/590, Spring 2011 22

A Producer-Consumer Example

The program is written assuming
instructions are executed in order.

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

Problems?

CSE 490/590, Spring 2011 23

A Producer-Consumer Example
continued

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
 2, 3, 4, 1
 4, 1, 2, 3

1

2

3

4

CSE 490/590, Spring 2011 24

Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

C 5

CSE 490/590, Spring 2011 25

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

