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Last time… 
•  Multithreading executes instructions from different 

threads 
•  Coarse-grained multithreading switches threads on 

cache misses 
•  Most of the OoO superscalar units are idle. 
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Superscalar Machine Efficiency 
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Vertical Multithreading 

•  What is the effect of cycle-by-cycle interleaving? 
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Chip Multiprocessing (CMP) 

•  What is the effect of splitting into multiple processors? 
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Ideal Superscalar Multithreading  
[Tullsen, Eggers, Levy, UW, 1995] 

•  Interleave multiple threads to multiple issue slots with 
no restrictions 

Issue width 

Time 
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O-o-O Simultaneous Multithreading 
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996] 

•  Add multiple contexts and fetch engines and allow 
instructions fetched from different threads to issue 
simultaneously 

•  Utilize wide out-of-order superscalar processor issue 
queue to find instructions to issue from multiple threads 

•  OOO instruction window already has most of the 
circuitry required to schedule from multiple threads 

•  Any single thread can utilize whole machine 
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IBM Power 4 
Single-threaded predecessor to 
Power 5.  8 execution units in!
out-of-order engine, each may!
issue an instruction each cycle.!
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Power 4 

Power 5 

2 fetch (PC), 
2 initial decodes 

2 commits 
(architected 
register sets) 
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Power 5 data flow ... 

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck  
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Changes in Power 5 to support SMT 
•  Increased associativity of L1 instruction cache and the 

instruction address translation buffers  
•  Added per thread load and store queues  
•  Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches 
•  Added separate instruction prefetch and buffering per 

thread 
•  Increased the number of virtual registers from 152 to 240 
•  Increased the size of several issue queues 
•  The Power5 core is about 24% larger than the Power4 core 

because of the addition of SMT support 
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CSE 490/590 Administrivia 
•  Quiz 2 (next Friday 4/8): After midterm until next 

Monday 
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Pentium-4 Hyperthreading (2002) 

•  First commercial SMT design (2-way SMT) 
–  Hyperthreading == SMT 

•  Logical processors share nearly all resources of the physical 
processor 

–  Caches, execution units, branch predictors 
•  Die area overhead of hyperthreading  ~ 5% 
•  When one logical processor is stalled, the other can make 

progress 
–  No logical processor can use all entries in queues when two threads are active 

•  Processor running only one active software thread runs at 
approximately same speed with or without hyperthreading 

•  Hyperthreading dropped on OoO P6 based followons  to 
Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with 
Nehalem generation machines in 2008. 

•  Intel Atom (in-order x86 core) has two-way vertical multithreading 
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Initial Performance of SMT 
•  Pentium 4 Extreme SMT yields 1.01 speedup for 

SPECint_rate benchmark and 1.07 for SPECfp_rate 
–  Pentium 4 is dual threaded SMT 
–  SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark 

•  Running on Pentium 4 each of 26 SPEC benchmarks 
paired with every other (262 runs) speed-ups from 0.90 
to 1.58; average was 1.20 

•  Power 5, 8-processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate 

•  Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41 

–  Most gained some 
–  Fl.Pt. apps had most cache conflicts and least gains 
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SMT adaptation to parallelism type  
For regions with high thread level 
parallelism (TLP) entire machine 
width is shared by all threads 

Issue width 

Time 

Issue width 

Time 

For regions with low thread level 
parallelism (TLP) entire machine 
width is available for instruction level 
parallelism (ILP) 
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Icount Choosing Policy 

Why does this enhance throughput? 

Fetch from thread with the least instructions in flight. 
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Summary: Multithreaded Categories 
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Uniprocessor Performance (SPECint) 

•  VAX          : 25%/year 1978 to 1986 
•  RISC + x86: 52%/year 1986 to 2002 
•  RISC + x86: ??%/year 2002 to present 

From Hennessy and Patterson, 
Computer Architecture: A Quantitative 
Approach, 4th edition, 2006	


3X 
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Parallel Processing: 
Déjà vu all over again? 

“… today’s processors … are nearing an impasse as technologies approach the 
speed of light..”  

David Mitchell, The Transputer: The Time Is Now (1989) 

•  Transputer had bad timing (Uniprocessor performance↑) 
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years 

•   “We are dedicating all of our future product development to multicore designs. 
… This is a sea change in computing”  

Paul Otellini, President, Intel (2005)  
•  All microprocessor companies switch to MP (2X CPUs / 2 yrs) 
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs 

Manufacturer/Year	
 AMD/’09	
 Intel/’09	
 IBM/’09	
 Sun/’09	

Processors/chip	
 6	
 8	
 8	
 16	

Threads/Processor	
 1	
 2	
 4	
 8	

Threads/chip	
 6	
 16	
 32	
 128	
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symmetric 
•  All memory is equally far  
  away from all processors 
•  Any processor can do any I/O 
  (set up a DMA transfer) 

Symmetric Multiprocessors 

Memory 
I/O controller 

Graphics 
output 

CPU-Memory bus 

bridge 

Processor 
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Processor 
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Synchronization 

The need for synchronization arises 
whenever  
there are concurrent processes in a system 

 (even in a uniprocessor system) 

Producer-Consumer: A consumer process  
must wait until the producer process has  
produced data 

Mutual Exclusion: Ensure that only one 
process uses a resource at a given time 

producer 

consumer 

Shared 
Resource 

P1 P2 
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A Producer-Consumer Example 

The program is written assuming 
instructions are executed in order.  

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Producer Consumer 
tail head 

  Rtail Rtail Rhead R 

Problems? 
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A Producer-Consumer Example 
continued 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Can the tail pointer get updated 
before the item x is stored? 

Programmer assumes that if 3 happens after 2, then 4 
happens after 1. 

Problem sequences are: 
  2, 3, 4, 1 
  4, 1, 2, 3 

1 

2 

3 

4 
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Sequential Consistency 
A Memory Model 

“ A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential  
order, and the operations of each individual processor 
appear in the order specified by the program” 

      Leslie Lamport 

Sequential Consistency =  
 arbitrary order-preserving interleaving 
 of memory references of sequential programs 

M 

P P P P P P 
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