

CSE 490/590, Spring 2011

- Added separate instruction prefetch and buffering per thread
- · Increased the number of virtual registers from 152 to 240
- · Increased the size of several issue queues
- The Power5 core is about 24% larger than the Power4 core because of the addition of SMT support

CSE 490/590, Spring 2011

11

- · First commercial SMT design (2-way SMT)
- Hyperthreading == SMT
 Logical processors share nearly all resources of the physical processor
- Caches, execution units, branch predictors Die area overhead of hyperthreading $\,\sim 5\%$
- When one logical processor is stalled, the other can make progress
- No logical processor can use all entries in queues when two threads are active
 Processor running only one active software thread runs at approximately same speed with or without hyperthreading
- Hyperthreading dropped on OoO P6 based followons to Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem generation machines in 2008.
- Intel Atom (in-order x86 core) has two-way vertical multithreading

CSE 490/590, Spring 2011

13

CSE 490/590, Spring 2011

14

Parallel Déjà vu	Process all over a	ing: again?			
" today's processo speed of light"	rs are nearin	g an impasse	as technologies	approach the	
 Transputer had bat Procrastination 	ad timing (Unipro n rewarded: 2X :	ocessor perfor seq. perf. / 1.5	rransputer: The mance↑) years	TIME IS NOW (19	09)
• "We are dedicatin This is a sea cl	ng all of our futu hange in compu	re product dev ting"	elopment to mu	lticore designs.	
 All microprocesso ⇒ Procrastination 	r companies sw n penalized: 2X	itch to MP (2X sequential per	Paul Otellini, Pr CPUs / 2 yrs) f. / 5 yrs	resident, Intel (20	05)
Manufacturer/Year	AMD/'09	Intel/'09	IBM/'09	Sun/'09	
Processors/chip	6	8	8	16	
Threads/Processor	1	2	4	8	
Threads/chin	6	16	32	128	

Consu

R_{head}

22

R

Acknowledgements

- These slides heavily contain material developed and copyright by
 Krste Asanovic (MIT/UCB)
 David Patterson (UCB)
- And also by:

 - Arvind (MIT)
 Joel Emer (Intel/MIT)
 James Hoe (CMU)
 - John Kubiatowicz (UCB)
- MIT material derived from course 6.823
- UCB material derived from course CS252

CSE 490/590, Spring 2011

25