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Last time… 
•  Implementations for semaphores 

–  Test&set 
–  Compare&swap 
–  Load-reserve & store-conditional 

•  Sequential consistency vs. weaker consistencies 
–  Agreement between hardware and software 
–  For weaker consistency models, hardware provides extra 

instructions for software to implement stronger guarantees, e.g., 
memory fences 
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Mutual Exclusion Using Load/Store  

A protocol based on two shared variables c1 and c2.  
Initially, both c1 and c2 are 0 (not busy) 

What is wrong? 

Process 1 
 ... 
c1=1; 

L:  if c2=1 then go to L 
  < critical section> 
c1=0; 

Process 2 
 ... 
c2=1; 

L:  if c1=1 then go to L 
  < critical section> 
c2=0; 
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Mutual Exclusion: second attempt 

To avoid deadlock, let a process give up the reservation  
(i.e. Process 1 sets c1 to 0) while waiting. 

•  Deadlock is not possible but with a low probability  
  a livelock may occur. 

•  An unlucky process may never get to enter the  
  critical section  ⇒ 	

 	

 	

starvation 

Process 1 
 ... 

L:  c1=1; 
if c2=1 then  

 { c1=0; go to L} 
  < critical section> 
c1=0 

Process 2 
 ... 

L:  c2=1; 
if c1=1 then  

 { c2=0; go to L} 
  < critical section> 
c2=0 
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A Protocol for Mutual Exclusion 
T. Dekker, 1966 

Process 1 
... 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

A protocol based on 3 shared variables c1, c2 and turn.  
Initially, both c1 and c2 are 0 (not busy) 

•  turn = i ensures that only process i can wait  
•  variables c1 and c2 ensure mutual exclusion 

 Solution for n processes was given by Dijkstra  
           and is quite tricky! 

Process 2 
... 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 
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Analysis of Dekker’s Algorithm 
...   Process 1 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

...   Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 
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...   Process 1 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

...   Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 

S
ce

n
ar

io
 2

 



C 2 

CSE 490/590, Spring 2011 
7 

N-process Mutual Exclusion 
Lamport’s Bakery Algorithm 

Process i 

choosing[i] = 1; 
num[i] = max(num[0], …, num[N-1]) + 1; 
choosing[i] = 0; 

for(j = 0; j < N; j++)  { 
while( choosing[j] ); 
while( num[j] && 
            ( ( num[j] < num[i] ) || 
               ( num[j] == num[i] &&  j < i ) ) ); 

} 

num[i] = 0; 

Initially num[j] = 0, for all j 
Entry Code 

Exit Code 
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CSE 490/590 Administrivia 
•  CSE Graduate Conference on Friday, 4/15 @ 145 

Student Union 
–  No class 

•  Keyboards available for pickup at my office 
•  Updated project 2 with more clarifications & grading 

criteria 

CSE 490/590, Spring 2011 
9 

Memory Coherence in SMPs 

Suppose CPU-1 updates A to 200.   
  write-back:  memory and cache-2 have stale values 
  write-through:  cache-2 has a stale value 

Do these stale values matter? 
What is the view of shared memory for programming? 

cache-1 A  100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A  100 

memory A  100 
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Write-back Caches & SC 

•  T1 is executed  

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST X, 1 
  ST Y,11 

cache-2 cache-1 memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

•  cache-1 writes back Y 
  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

  X = 1 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

•  cache-1 writes back X 

  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

•  T2 executed 

  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

  X= 1 
  Y=11 

  Y =11 
  Y’=11  
  X = 0 
  X’= 0  

•  cache-2 writes back  
   X’ & Y’ in
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nt
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Write-through Caches & SC 
cache-2 
  Y =  
  Y’=  
  X = 0 
  X’=   

memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

cache-1 
  X= 0 
  Y=10 

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST X, 1 
  ST Y,11 

Write-through caches don’t preserve 
sequential consistency either 

•  T1 executed 
  Y =  
  Y’=  
  X = 0 
  X’=   

  X = 1 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

•  T2 executed   Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

  X= 1 
  Y=11 
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Cache Coherence vs. 
Memory Consistency 
•  A cache coherence protocol ensures that all writes by 

one processor are eventually visible to other 
processors 

–  i.e., updates are not lost 

•  A memory consistency model gives the rules on 
when a write by one processor can be observed by a 
read on another 

–  Equivalently, what values can be seen by a load 

•  A cache coherence protocol is not enough to ensure 
sequential consistency 

–  But if sequentially consistent, then caches must be coherent 

•  Combination of cache coherence protocol plus 
processor memory reorder buffer implements a given 
machine’s memory consistency model 

12 
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Maintaining Cache Coherence 

Hardware support is required such that 
•  only one processor at a time has write  
  permission for a location 
•  no processor can load a stale copy of  
  the location after a write 

⇒  cache coherence protocols 
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Warmup: Parallel I/O 

 (DMA stands for Direct Memory Access, means the I/O device 
can read/write memory autonomous from the CPU) 

Either Cache or DMA can 
be the Bus Master and 
effect transfers 

 DISK 

 DMA 

Physical 
Memory 

Proc.  

R/W  

Data (D) Cache 

Address (A) 

A 
D 

R/W  

Page transfers 
occur while the 
Processor is running 

Memory 
   Bus 
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Problems with Parallel I/O 

Memory      Disk: Physical memory may be 
                              stale if cache copy is dirty 

Disk     Memory:  Cache may hold stale data and not 
   see memory writes  

 DISK 

 DMA 

Physical 
Memory 

Proc. 
Cache 

Memory 
   Bus 

Cached portions 
       of page 

 DMA transfers 
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