
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Snoopy Caches I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Implementations for semaphores

–  Test&set
–  Compare&swap
–  Load-reserve & store-conditional

•  Sequential consistency vs. weaker consistencies
–  Agreement between hardware and software
–  For weaker consistency models, hardware provides extra

instructions for software to implement stronger guarantees, e.g.,
memory fences

CSE 490/590, Spring 2011
3

Mutual Exclusion Using Load/Store

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
 ...
c1=1;

L: if c2=1 then go to L
 < critical section>
c1=0;

Process 2
 ...
c2=1;

L: if c1=1 then go to L
 < critical section>
c2=0;

CSE 490/590, Spring 2011
4

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

•  Deadlock is not possible but with a low probability
 a livelock may occur.

•  An unlucky process may never get to enter the
 critical section ⇒ 	

 	

 	

starvation

Process 1
 ...

L: c1=1;
if c2=1 then

 { c1=0; go to L}
 < critical section>
c1=0

Process 2
 ...

L: c2=1;
if c1=1 then

 { c2=0; go to L}
 < critical section>
c2=0

CSE 490/590, Spring 2011
5

A Protocol for Mutual Exclusion
T. Dekker, 1966

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

•  turn = i ensures that only process i can wait
•  variables c1 and c2 ensure mutual exclusion

 Solution for n processes was given by Dijkstra
 and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

CSE 490/590, Spring 2011
6

Analysis of Dekker’s Algorithm
... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
ce

n
ar

io
 1

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
ce

n
ar

io
 2

C 2

CSE 490/590, Spring 2011
7

N-process Mutual Exclusion
Lamport’s Bakery Algorithm

Process i

choosing[i] = 1;
num[i] = max(num[0], …, num[N-1]) + 1;
choosing[i] = 0;

for(j = 0; j < N; j++) {
while(choosing[j]);
while(num[j] &&
 ((num[j] < num[i]) ||
 (num[j] == num[i] && j < i)));

}

num[i] = 0;

Initially num[j] = 0, for all j
Entry Code

Exit Code

CSE 490/590, Spring 2011 8

CSE 490/590 Administrivia
•  CSE Graduate Conference on Friday, 4/15 @ 145

Student Union
–  No class

•  Keyboards available for pickup at my office
•  Updated project 2 with more clarifications & grading

criteria

CSE 490/590, Spring 2011
9

Memory Coherence in SMPs

Suppose CPU-1 updates A to 200.
 write-back: memory and cache-2 have stale values
 write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

CSE 490/590, Spring 2011
10

Write-back Caches & SC

•  T1 is executed

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST X, 1
 ST Y,11

cache-2 cache-1 memory
 X = 0
 Y =10
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

•  cache-1 writes back Y
 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

•  cache-1 writes back X

 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

•  T2 executed

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

 Y =11
 Y’=11
 X = 0
 X’= 0

•  cache-2 writes back
 X’ & Y’ in

co
ns
is
te
nt

CSE 490/590, Spring 2011
11

Write-through Caches & SC
cache-2
 Y =
 Y’=
 X = 0
 X’=

memory
 X = 0
 Y =10
 X’=
 Y’=

cache-1
 X= 0
 Y=10

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST X, 1
 ST Y,11

Write-through caches don’t preserve
sequential consistency either

•  T1 executed
 Y =
 Y’=
 X = 0
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

•  T2 executed Y = 11
 Y’= 11
 X = 0
 X’= 0

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

CSE 490/590, Spring 2011

Cache Coherence vs.
Memory Consistency
•  A cache coherence protocol ensures that all writes by

one processor are eventually visible to other
processors

–  i.e., updates are not lost

•  A memory consistency model gives the rules on
when a write by one processor can be observed by a
read on another

–  Equivalently, what values can be seen by a load

•  A cache coherence protocol is not enough to ensure
sequential consistency

–  But if sequentially consistent, then caches must be coherent

•  Combination of cache coherence protocol plus
processor memory reorder buffer implements a given
machine’s memory consistency model

12

C 3

CSE 490/590, Spring 2011
13

Maintaining Cache Coherence

Hardware support is required such that
•  only one processor at a time has write
 permission for a location
•  no processor can load a stale copy of
 the location after a write

⇒ cache coherence protocols

CSE 490/590, Spring 2011
14

Warmup: Parallel I/O

 (DMA stands for Direct Memory Access, means the I/O device
can read/write memory autonomous from the CPU)

Either Cache or DMA can
be the Bus Master and
effect transfers

 DISK

 DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A
D

R/W

Page transfers
occur while the
Processor is running

Memory
 Bus

CSE 490/590, Spring 2011
15

Problems with Parallel I/O

Memory Disk: Physical memory may be
 stale if cache copy is dirty

Disk Memory: Cache may hold stale data and not
 see memory writes

 DISK

 DMA

Physical
Memory

Proc.
Cache

Memory
 Bus

Cached portions
 of page

 DMA transfers

CSE 490/590, Spring 2011 16

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

