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Last time… 
•  Dynamic address translation 

– Base and bound registers 
– Memory fragmentation problem 

•  Paged memory 
– Pages form an entire program 
– Uses page tables 

•  Demand paging 
– Hardware-assisted page swapping 
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Modern Virtual Memory Systems 
 Illusion of a large, private, uniform store 

Protection & Privacy 
several users, each with their private 
address space and one or more 
shared address spaces 

  page table ≡ name space 

Demand Paging 
Provides the ability to run programs 
larger than the primary memory 

Hides differences in machine 
configurations 

   
The price is address translation on  
each memory reference 
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Linear Page Table 
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•  Page Table Entry (PTE) 
contains: 
–  A bit to indicate if a page exists 
–  PPN (physical page number) for 

a memory-resident page 
–  DPN (disk page number) for a 

page on the disk 
–  Status bits for protection and 

usage 
•  OS sets the Page Table 

Base Register whenever 
active user process 
changes 
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Size of Linear Page Table 
With 32-bit addresses, 4-KB pages & 4-byte PTEs: 

⇒   220 PTEs, i.e, 4 MB page table per user 
⇒  4 GB of swap needed to back up full virtual address 

   space 

Larger pages? 
•  Internal fragmentation (Not all memory in page is used) 
•  Larger page fault penalty (more time to read from disk) 

What about 64-bit virtual address space??? 
•  Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

                          What is the “saving grace” ?  
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Hierarchical Page Table 
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Address Translation & Protection 

•  Every instruction and data access needs address  
  translation and protection checks 

A good VM design needs to be fast (~ one cycle) and 
space efficient 

Physical Address 

Virtual Address 

Address 
Translation 

Virtual Page No. (VPN) offset 

Physical Page No. (PPN) offset 

Protection 
Check 

Exception? 

Kernel/User Mode 

Read/Write 
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Translation Lookaside Buffers 

Address translation is very expensive! 
In a two-level page table, each reference 
becomes several memory accesses 

Solution: Cache translations in TLB 
  TLB hit  ⇒ Single Cycle Translation 
       TLB miss  ⇒ Page-Table Walk to refill  

VPN          offset 

V R W D    tag        PPN 

physical address PPN       offset 

virtual address 

hit? 

(VPN = virtual page number) 

(PPN = physical page number) 
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TLB Designs 
•  Typically 32-128 entries, usually fully associative 

–  Each entry maps a large page, hence less spatial locality across pages 
 more likely that two entries conflict 

–  Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative 
–  Larger systems sometimes have multi-level (L1 and L2) TLBs 

•  Random or FIFO replacement policy 

•  No process information in TLB? 

•  TLB Reach: Size of largest virtual address space that 
can be simultaneously mapped by TLB 

Example: 64 TLB entries, 4KB pages, one page per entry 

TLB Reach = _____________________________________________? 64 entries * 4 KB = 256 KB (if contiguous) 
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Handling a TLB Miss 

Software (MIPS, Alpha) 
TLB miss causes an exception and the operating system 
walks the page tables and reloads TLB. A privileged 
“untranslated”  addressing mode used for walk 

Hardware (SPARC v8, x86, PowerPC) 
A memory management unit (MMU) walks the page 
tables and reloads the TLB 

If a missing (data or PT) page is encountered during the 
TLB reloading, MMU gives up and signals a Page-Fault 
exception for the original instruction   
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CSE 490/590 Administrivia 
•  Midterm on Friday, 3/4 
•  Project 1 deadline: Friday, 3/11 
•  Quiz 1 will be distributed today 
•  HW will be out this week 
•  Office hours: Tue 3pm – 6pm 
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Translation for Page Tables 
•  Can references to page tables cause TLB misses? 
•  Can this go on forever? 

User Page Table 
(in virtual space) 

Data Pages 

User PTE Base 

System Page Table 
(in physical space) 

System PTE Base 
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Hierarchical Page Table Walk: 
SPARC v8 

31          11          
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MMU does this table walk in hardware on a TLB miss 
CSE 490/590, Spring 2011 14 

Address Translation: 
putting it all together 
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Address Translation: 
putting it all together 

Virtual Address 

TLB 
Lookup 

Page Table 
Walk 

Update TLB Page Fault 
(OS loads page) 

Protection 
Check 

Physical 
Address 
(to cache) 

miss hit 

       the  page is  
∉ memory           ∈ memory denied permitted 

Protection 
Fault 

hardware 
hardware or software 
software 

SEGFAULT 

Restart instruction 
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Address Translation in CPU Pipeline 

• Software handlers need restartable exception on page fault or 
protection violation 

• Handling a TLB miss needs a hardware or software mechanism to 
refill TLB  

• Need mechanisms to cope with the additional latency of a TLB: 
–    slow down the clock 
–    pipeline the TLB and cache access 
–    virtual address caches 
–    parallel TLB/cache access 
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TLB miss? Page Fault? 
Protection violation? 

TLB miss? Page Fault? 
Protection violation? 
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