
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Virtual Memory I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Dynamic address translation

– Base and bound registers
– Memory fragmentation problem

•  Paged memory
– Pages form an entire program
– Uses page tables

•  Demand paging
– Hardware-assisted page swapping

CSE 490/590, Spring 2011 3

Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

 page table ≡ name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PA
Mapping

CSE 490/590, Spring 2011 4

Linear Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

•  Page Table Entry (PTE)
contains:
–  A bit to indicate if a page exists
–  PPN (physical page number) for

a memory-resident page
–  DPN (disk page number) for a

page on the disk
–  Status bits for protection and

usage
•  OS sets the Page Table

Base Register whenever
active user process
changes

CSE 490/590, Spring 2011 5

Size of Linear Page Table
With 32-bit addresses, 4-KB pages & 4-byte PTEs:

⇒  220 PTEs, i.e, 4 MB page table per user
⇒  4 GB of swap needed to back up full virtual address

 space

Larger pages?
•  Internal fragmentation (Not all memory in page is used)
•  Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
•  Even 1MB pages would require 244 8-byte PTEs (35 TB!)

 What is the “saving grace” ?
CSE 490/590, Spring 2011 6

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

o
ry

C 2

CSE 490/590, Spring 2011 7

Address Translation & Protection

•  Every instruction and data access needs address
 translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

CSE 490/590, Spring 2011 8

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit ⇒ Single Cycle Translation
 TLB miss ⇒ Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

CSE 490/590, Spring 2011 9

TLB Designs
•  Typically 32-128 entries, usually fully associative

–  Each entry maps a large page, hence less spatial locality across pages
 more likely that two entries conflict

–  Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative
–  Larger systems sometimes have multi-level (L1 and L2) TLBs

•  Random or FIFO replacement policy

•  No process information in TLB?

•  TLB Reach: Size of largest virtual address space that
can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = ___? 64 entries * 4 KB = 256 KB (if contiguous)

CSE 490/590, Spring 2011 10

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

CSE 490/590, Spring 2011 11

CSE 490/590 Administrivia
•  Midterm on Friday, 3/4
•  Project 1 deadline: Friday, 3/11
•  Quiz 1 will be distributed today
•  HW will be out this week
•  Office hours: Tue 3pm – 6pm

CSE 490/590, Spring 2011 12

Translation for Page Tables
•  Can references to page tables cause TLB misses?
•  Can this go on forever?

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

C 3

CSE 490/590, Spring 2011 13

Hierarchical Page Table Walk:
SPARC v8

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0
Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss
CSE 490/590, Spring 2011 14

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT Where?

CSE 490/590, Spring 2011 15

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

CSE 490/590, Spring 2011 16

Address Translation in CPU Pipeline

• Software handlers need restartable exception on page fault or
protection violation

• Handling a TLB miss needs a hardware or software mechanism to
refill TLB

• Need mechanisms to cope with the additional latency of a TLB:
–  slow down the clock
–  pipeline the TLB and cache access
–  virtual address caches
–  parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

CSE 490/590, Spring 2011 17

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

