CSE 490/590 Computer Architecture

Virtual Memory |

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last time...

« Dynamic address translation

— Base and bound registers

— Memory fragmentation problem
« Paged memory

— Pages form an entire program

— Uses page tables
* Demand paging

— Hardware-assisted page swapping

~

CSE 490/590, Spring 2011

Modern Virtual Memory Systems

lllusion of a large, private, uniform store

Protection & Privacy 0s

several users, each with their private
address space and one or more
shared address spaces

page table = name space Swapping
tore

user;

Demand Paging Primary
Provides the ability to run programs Memory
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on ] PA
each memory reference —| Mapping [—

CSE 490/590, Spring 2011 3

Linear Page Table

« Page Table Entry (PTE) Page Table Data Page
contains: ;gm
— Abit to indicate if a page exists I DPN
— PPN (physical page number) for PPN
Data word

a memory-resident page
— DPN (disk page number) for a
page on the disk

— Status bits for protection and
usage
» OS sets the Page Table
Base Register whenever
active user process
changes

% o
PN /
PPN
PPN
DPN
DPN
VPN

PT Base Registed VPN Offset

Virtual address

CSE 490/590, Spring 2011 4

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:
= 220 PTEs, i.e, 4 MB page table per user
= 4 GB of swap needed to back up full virtual address
space

Larger pages?
« Internal fragmentation (Not all memory in page is used)
« Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
« Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace” ?

CSE 490/590, Spring 2011 5

Hierarchical Page Table

Virtual Address
31 2221 1211 0

10-bit  10-bit
L1 index L2 index

Root of the Current = =
Page Table %, |
e
(Processor Level 1
Register) Page Table
Level 2
Page Tables

page in primary memory
page in secondary memory

PTE of a nonexistent page

Data Pages

CSE 490/590, Spring 2011 6

Physical Memory




Address Translation & Protection

Virtual Address [Virtual Page No. (VPN)  [offset |
Kernel/User Mode

Read/Write

Exception?
Physical Address |[Physical Page No. (PPN) | offset |

» Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

CSE 490/590, Spring 2011 7

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB

TLB hit = Single Cycle Translation
TLB miss = Page-Table Walk to refill

virtual address VPN offse

o

VR WI[D| tag PPN (VPN = virtual page number)

(PPN = physical page number)
! ' ]
hit?  physical address [ ppN___ offset

CSE 490/590, Spring 2011 8

TLB Designs

» Typically 32-128 entries, usually fully associative

— Each entry maps a large page, hence less spatial locality across pages
= more likely that two entries conflict

— Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative
— Larger systems sometimes have multi-level (L1 and L2) TLBs

» Random or FIFO replacement policy

+ No process information in TLB?

» TLB Reach: Size of largest virtual address space that
can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach= 64 entries * 4 KB = 256 KB (if contiguous) ?

CSE 490/590, Spring 2011 9

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the

TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

CSE 490/590, Spring 2011 10

CSE 490/590 Administrivia

* Midterm on Friday, 3/4

* Project 1 deadline: Friday, 3/11
* Quiz 1 will be distributed today
* HW will be out this week

» Office hours: Tue 3pm — 6pm

CSE 490/590, Spring 2011 1

Translation for Page Tables

« Can references to page tables cause TLB misses?
« Can this go on forever?

User PTE Base

User Page Table
(in virtual space)

System PTE Base
System Page Table
(in physical space)

Data Pages
CSE 490/590, Spring 2011 12

Ny



Hierarchical Page Table Walk:

SPARC v8
Virtual Address |Index il | Index 2 | Index 3 | Offset
3] 23 17 11 0
Context | Context Table
Table
Register L1 Table
Context root ptr
Register L2 Table
gy AN L3 Table
PTP
PTE
31 11
Physical Address | PPN [ offset |

MMU does this table walk in hardware on a TLB miss
CSE 490/590, Spring 2011 13

Address Translation:
putting it all together
Virtuall Address

@3 hardware
@@ hardware or software
[] software

b

page is ) .
& memory € memory denied permitted

Protection Physical

Fault Address
(to cache)
Where? SEGFAULT
CSE 490/590, Spring 2011 14

Address Translation:
putting it all together

Virtual Address
|

= hardware
@@ hardware or software
[] software

Restart instruction

the| page is . .
& memory € memory denied permitted
Page Fault Protection Physical
(OS loads page)

Fault Address
(to cache)
SEGFAULT
CSE 490/590, Spring 2011 15

Address Translation in CPU Pipeline

Inst | | Inst. Decode Data | | Data

TLB | | Cache TLB Cache

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

« Software handlers need restartable exception on page fault or
protection violation

* Handling a TLB miss needs a hardware or software mechanism to
refill TLB

« Need mechanisms to cope with the additional latency of a TLB:
— slow down the clock
— pipeline the TLB and cache access
— virtual address caches
— parallel TLB/cache access
CSE 490/590, Spring 2011 16

Acknowledgements

« These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)

* And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

« MIT material derived from course 6.823
* UCB material derived from course CS252

CSE 490/590, Spring 2011 17

W



