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Last time… 
•  Virtual memory organization 

– Linear page table 
– Hierarchical page table 

•  Page-table walk 
– Software or hardware 

•  TLB 
– Caches address translations 
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Virtual Address Caches 

•  one-step process in case of a hit (+) 
•  cache needs to be flushed on a context switch unless address 

space identifiers (ASIDs) included in tags (-) 
•  aliasing problems due to the sharing of pages (-) 
•  maintaining cache coherence (-)   (see later in course) 
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Aliasing in Virtual-Address Caches 

VA1 

Page Table 
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1st Copy of Data at PA 

2nd Copy of Data at PA 

Tag Data 

Two virtual pages share 
one physical page 

Virtual cache can have two 
copies of same physical data. 
Writes to one copy not visible 
to reads of other! 

General Solution:  Disallow aliases to coexist in cache 

Software (i.e., OS) solution for direct-mapped cache 

VAs of shared pages must agree in cache index bits; this 
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs) 
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Concurrent Access to TLB & Cache 

Index L is available without consulting the TLB 
⇒ cache and TLB accesses can begin simultaneously 

Tag comparison is made after both accesses are completed 

Cases: L + b = k,  L + b < k,  L + b > k 
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Virtual-Index Physical-Tag Caches: 
Associative Organization 

How does this scheme scale to larger caches? 
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After the PPN is known, 2a physical tags are compared 
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Concurrent Access to TLB & Large L1 
The problem with L1 > Page size 

Can VA1 and VA2 both map to PA ?  
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A solution via Second Level Cache 

Usually a  common L2 cache backs up both 
Instruction and Data L1 caches 

L2 is “inclusive” of both Instruction and Data caches 
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Anti-Aliasing Using L2: MIPS R10000 
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•  Suppose VA1 and VA2 both map to PA and VA1 
is already in L1, L2 (VA1 ≠ VA2) 

•  After VA2 is resolved to PA, a collision will be 
detected in L2. 

•  VA1 will be purged from L1 and L2, and VA2 will 
be loaded  ⇒ no aliasing !   
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Virtually-Addressed L1: 
Anti-Aliasing using L2 
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Physically-addressed L2 can also be 
used to avoid aliases in virtually-
addressed L1 
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Page Fault Handler 
•  When the referenced page is not in DRAM: 

– The missing page is located (or created) 
– It is brought in from disk, and page table is updated 

   Another job may be run on the CPU while the first job waits 
for the requested page to be read from disk 

– If no free pages are left, a page is swapped out 
   Pseudo-LRU replacement policy   

•  Since it takes a long time to transfer a page 
(msecs), page faults are handled completely in 
software by the OS 
– Untranslated addressing mode is essential to allow 

kernel to access page tables 
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A PTE in primary memory contains  
 primary or secondary memory addresses 

A PTE in secondary memory contains  
 only secondary memory addresses 

⇒  a page of a PT can be swapped out only 
      if none its PTE’s point to pages in the  
      primary memory 

Why?__________________________________ 

Swapping a Page of a Page Table 
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Virtual Memory Use Today - 1 

•  Desktops/servers have full demand-paged virtual 
memory 

–  Portability between machines with different memory sizes 
–  Protection between multiple users or multiple tasks 
–  Share small physical memory among active tasks 
–  Simplifies implementation of some OS features 

•  Vector supercomputers have translation and protection 
but not demand-paging 

•  (Older Crays: base&bound, Japanese & Cray X1/X2: pages) 
–  Don’t waste expensive CPU time thrashing to disk (make jobs fit in 

memory) 
–  Mostly run in batch mode (run set of jobs that fits in memory) 
–  Difficult to implement restartable vector instructions 
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Virtual Memory Use Today - 2 

•  Most embedded processors and DSPs provide physical 
addressing only 

–  Can’t afford area/speed/power budget for virtual memory support 
–  Often there is no secondary storage to swap to! 
–  Programs custom written for particular memory configuration in 

product 
–  Difficult to implement restartable instructions for exposed architectures 
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CSE 490/590 Administrivia 
•  Midterm on Friday, 3/4 
•  Project 1 deadline: Friday, 3/11 
•  Quiz 1 regrading  Jangyoung 
•  CSE machines are available for projects 

–  Thin clients & SSH only for simulation 
–  Linux & Windows machines @ 216 Bell for board 
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Address Translation in CPU Pipeline 

• Software handlers need restartable exception on page fault or 
protection violation 

• Handling a TLB miss needs a hardware or software mechanism to 
refill TLB  

• Need mechanisms to cope with the additional latency of a TLB: 
–    slow down the clock 
–    pipeline the TLB and cache access 
–    virtual address caches 
–    parallel TLB/cache access 
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Address Translation: 
putting it all together 
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Translation Lookaside Buffers 

Address translation is very expensive! 
In a two-level page table, each reference 
becomes several memory accesses 

Solution: Cache translations in TLB 
  TLB hit  ⇒ Single Cycle Translation 
       TLB miss  ⇒ Page-Table Walk to refill  

VPN          offset 

V R W D    tag        PPN 

physical address PPN       offset 

virtual address 

hit? 

(VPN = virtual page number) 

(PPN = physical page number) 
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Linear Page Table 
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•  Page Table Entry (PTE) 
contains: 
–  A bit to indicate if a page exists 
–  PPN (physical page number) for 

a memory-resident page 
–  DPN (disk page number) for a 

page on the disk 
–  Status bits for protection and 

usage 
•  OS sets the Page Table 

Base Register whenever 
active user process 
changes 
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Hierarchical Page Table 
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Hierarchical Page Table 
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A program that tra
verses the 

page table needs a “no 

translation” addressing mode. 
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