
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Virtual Memory II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Virtual memory organization

– Linear page table
– Hierarchical page table

•  Page-table walk
– Software or hardware

•  TLB
– Caches address translations

CSE 490/590, Spring 2011 3

Virtual Address Caches

•  one-step process in case of a hit (+)
•  cache needs to be flushed on a context switch unless address

space identifiers (ASIDs) included in tags (-)
•  aliasing problems due to the sharing of pages (-)
•  maintaining cache coherence (-) (see later in course)

CPU Physical
Cache

TLB Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM) Virtual
Cache

PA
TLB

Primary
Memory

CSE 490/590, Spring 2011 4

Aliasing in Virtual-Address Caches

VA1

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible
to reads of other!

General Solution: Disallow aliases to coexist in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

VA2

Page Table

CSE 490/590, Spring 2011 5

Concurrent Access to TLB & Cache

Index L is available without consulting the TLB
⇒ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L + b = k, L + b < k, L + b > k

 VPN L b

TLB Direct-map Cache
2L

 blocks
2b-byte block

 PPN Page Offset

=
hit?

Data Physical Tag

Tag

VA

PA

Virtual
Index

k

CSE 490/590, Spring 2011 6

Virtual-Index Physical-Tag Caches:
Associative Organization

How does this scheme scale to larger caches?

 VPN a L = k-b b

TLB Direct-map
2L

 blocks

 PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L

 blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

C 2

CSE 490/590, Spring 2011 7

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

Can VA1 and VA2 both map to PA ?

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index

L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

CSE 490/590, Spring 2011 8

A solution via Second Level Cache

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction
Cache Unified L2

Cache

RF Memory

Memory

Memory

Memory

CSE 490/590, Spring 2011 9

Anti-Aliasing Using L2: MIPS R10000

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Direct-Mapped L2

PA a1 Data

PPN

 into L2 tag

•  Suppose VA1 and VA2 both map to PA and VA1
is already in L1, L2 (VA1 ≠ VA2)

•  After VA2 is resolved to PA, a collision will be
detected in L2.

•  VA1 will be purged from L1 and L2, and VA2 will
be loaded ⇒ no aliasing !

CSE 490/590, Spring 2011 10

Virtually-Addressed L1:
Anti-Aliasing using L2

 VPN Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

CSE 490/590, Spring 2011 11

Page Fault Handler
•  When the referenced page is not in DRAM:

– The missing page is located (or created)
– It is brought in from disk, and page table is updated

 Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

– If no free pages are left, a page is swapped out
 Pseudo-LRU replacement policy

•  Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS
– Untranslated addressing mode is essential to allow

kernel to access page tables

CSE 490/590, Spring 2011 12

A PTE in primary memory contains
 primary or secondary memory addresses

A PTE in secondary memory contains
 only secondary memory addresses

⇒ a page of a PT can be swapped out only
 if none its PTE’s point to pages in the
 primary memory

Why?__________________________________

Swapping a Page of a Page Table

C 3

CSE 490/590, Spring 2011 13

Virtual Memory Use Today - 1

•  Desktops/servers have full demand-paged virtual
memory

–  Portability between machines with different memory sizes
–  Protection between multiple users or multiple tasks
–  Share small physical memory among active tasks
–  Simplifies implementation of some OS features

•  Vector supercomputers have translation and protection
but not demand-paging

•  (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
–  Don’t waste expensive CPU time thrashing to disk (make jobs fit in

memory)
–  Mostly run in batch mode (run set of jobs that fits in memory)
–  Difficult to implement restartable vector instructions

CSE 490/590, Spring 2011 14

Virtual Memory Use Today - 2

•  Most embedded processors and DSPs provide physical
addressing only

–  Can’t afford area/speed/power budget for virtual memory support
–  Often there is no secondary storage to swap to!
–  Programs custom written for particular memory configuration in

product
–  Difficult to implement restartable instructions for exposed architectures

CSE 490/590, Spring 2011 15

CSE 490/590 Administrivia
•  Midterm on Friday, 3/4
•  Project 1 deadline: Friday, 3/11
•  Quiz 1 regrading Jangyoung
•  CSE machines are available for projects

–  Thin clients & SSH only for simulation
–  Linux & Windows machines @ 216 Bell for board

CSE 490/590, Spring 2011 16

Address Translation in CPU Pipeline

• Software handlers need restartable exception on page fault or
protection violation

• Handling a TLB miss needs a hardware or software mechanism to
refill TLB

• Need mechanisms to cope with the additional latency of a TLB:
–  slow down the clock
–  pipeline the TLB and cache access
–  virtual address caches
–  parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

CSE 490/590, Spring 2011 17

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

CSE 490/590, Spring 2011 18

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit ⇒ Single Cycle Translation
 TLB miss ⇒ Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

C 4

CSE 490/590, Spring 2011 19

Linear Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

•  Page Table Entry (PTE)
contains:
–  A bit to indicate if a page exists
–  PPN (physical page number) for

a memory-resident page
–  DPN (disk page number) for a

page on the disk
–  Status bits for protection and

usage
•  OS sets the Page Table

Base Register whenever
active user process
changes

CSE 490/590, Spring 2011 20

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

o
ry

CSE 490/590, Spring 2011 21

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

A program that tra
verses the

page table needs a “no

translation” addressing mode.

CSE 490/590, Spring 2011 22

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

