CSE 704 Data Center Computing
Intro

Steve Ko
Administrative Information

• Organizer: Steve Ko
• Ph.D., 2009, UIUC
• Interest: distributed systems, networking, and operating systems
• Office: 210 Bell
• Office hours: Wed 12pm – 3pm
• Email: stevko@buffalo.edu
Seminar Overview

• Data Center Computing
 – Computing activities that utilize data centers
 – An attempt to look at the whole spectrum
 – “What technologies do you use when you access a Web service?”

• Components
 – Front-end, processing, storage, networking, and virtualization
Seminar Credits

• 1 Credit
 – Reading papers
 – Writing reviews
 – Presenting one paper (or two)
 – Participating in discussions

• 3 Credits
 – Additional research project
 – Cannot be used for your master’s project
 – Meet me after class
Reading Papers

• 24 papers, 2 papers per week
• Recommended reading: "How to Read a Paper" by S. Keshav (only 2 pages!)
• “A three-pass approach”
Reading Papers

• First-pass
 – Read the title, abstract, and intro
 – Read the titles of all sections and subsections
 – Read the conclusion
 – Goal: five C’s
 • Category: which category is this paper in?
 • Context: related papers?
 • Correctness (on the assumptions)
 • Contributions
 • Clarity
Reading Papers

• Second-pass
 – Read with greater care, but still ignore details (e.g., proofs)
 – Jot down key points, ideas, background readings, etc.

• Third-pass
 – Virtually re-create the paper
 – Put down the paper, start from the same assumptions, and re-create the work.
Writing Reviews

• Format
 – What is the research problem?
 • Do you agree that it’s a problem? Why or why not?
 – What are the main approaches/ideas? Strengths and weaknesses?
 – Other comments
 • E.g., what you liked, what you didn’t understand, possible future work, compare & contrast with other papers, hidden assumptions, etc.

• Don’t need to be long
Presentation

• Prepare PowerPoint slides
• Lead a discussion for an hour (presentation + questions/answers/discussions)
• Incorporate others’ comments (e.g., what people didn’t understand well)
• Schedule a time with me for a practice run
• You can use other people’s slides
 – Make sure you acknowledge them
Assignment for Today

• Email me whether or not you’re going to stay
• If you decide to stay, do the rest
• Look through the schedule
• Pick two papers you’d like to present
 – 1st choice & 2nd choice
 – FCFS
 – Exception: OpenFlow & NOX (from “Networking – 1” on 10/6) should be presented together with some demo
• Email me your choices
Topics Overview

• What makes these possible?
Topics Overview

Internet

Facebook

Google

Amazon
Data Centers
Data Centers

• Hundreds of locations in the US
Inside

• Servers in racks
 – Usually ~40 blades per rack
 – ToR (Top-of-Rack) switch

• Incredible amounts of engineering efforts
 – Power, cooling, etc.
Inside

- Network
Inside

• 3-tier for Web services
Topics Overview

• What makes these possible?
Components

• Front-end Web browsers
• File and storage systems
• Data processing frameworks
• Networking
• Virtualization
• Maybe not an exhaustive list, but a good set...
Front-End Web Browsers

• Why Web browsers?
 – Practically, they are the OSes in the current generation of computing

• They run applications
 – Maps, email clients, etc. (AJAX programs) have hundreds of thousands of LOC
 – All traditional OS problems exist
 • Protection, reliability, privacy, performance, etc.

• Exciting new area of research
A Glimpse into the Issues

• How much do you trust javascripts?
A Glimpse into the Issues

• SOP (Single-Origin Policy)

 http://integrator.com/

 <script
 src="http://provider.com/p.js">
 </script>

• How do you control the level of trust?
File and Storage Systems
Facebook Statistics

• 13 M users update their statuses at least once each day
• 2.5 M users become fans of Pages each day
• 700 M new photos per month
• 4 M new videos per month
• 15 M pieces of content shared per month
• 2 M new events per month
• 19 M active groups
File and Storage Systems

• How do you store?
• How do you not lose?
• How do you provide good access latency?
• How do you maintain?
• …
Data Processing Frameworks

• Google
 – 20+ billion web pages
 • ~20KB each = 400 TB
 – ~ 4 months just to read the data
 – And growing...
 • 1999 vs. 2009: ~ 100X

• Yahoo!
 – US Library of Congress every day (20TB/day)
 – 2 billion photos
 – 2 billion mail + messenger sent per day
 – And growing...
Data Processing Frameworks

• How do you process this large amounts of data?
 – Page rank, ad click statistics, search query trend, user profiling, etc.
• Again, ~ 4 months to read the data
Virtualization

• VMM: a piece of software that exposes hardware interfaces (ISA, I/O, etc.)
Virtualization

• Many data centers are virtualized
 – Ease of management (start, stop, migrate, etc.)
 – Consolidation (multiplexing one physical machine)

• How did we get here?
Networking

• Obviously, we need a network...
• But, what kind?
Networking Issues

• Oversubscription
• Management
• TCP performance
• Etc.
Assignment for Today

• Email me whether or not you’re going to stay
• If you decide to stay, do the rest
• Look through the schedule
• Pick two papers you’d like to present
 – 1st choice & 2nd choice
 – FCFS
 – Exception: OpenFlow & NOX (from “Networking – 1” on 10/6) should be presented together with some demo
• Email me your choices