MapReduce and Beyond

Steve Ko
Trivia Quiz: What’s Common?

Data-intensive computing with MapReduce!
What is MapReduce?

- A system for processing large amounts of data
- Introduced by Google in 2004
- Inspired by map & reduce in Lisp
- OpenSource implementation: Hadoop by Yahoo!
- Used by many, many companies
Background: Map & Reduce in Lisp

• Sum of squares of a list (in Lisp)
 • `(map square '(1 2 3 4))
 – Output: (1 4 9 16)
 [processes each record individually]
Background: Map & Reduce in Lisp

- Sum of squares of a list (in Lisp)

- `(reduce + '(1 4 9 16))`
 - `(+ 16 (+ 9 (+ 4 1)))`
 - Output: 30

[processes set of all records in a batch]
Background: Map & Reduce in Lisp

• Map
 – processes each record individually

• Reduce
 – processes (combines) set of all records in a batch
What Google People Have Noticed

• Keyword search

 Map Find a keyword in each web page *individually*, and if it is found, return the URL of the web page

 Reduce Combine all results (URLs) and return it

• Count of the # of occurrences of each word

 Map Count the # of occurrences in each web page *individually*, and return the list of `<word, #>`

 Reduce For each word, sum up (combine) the count

• Notice the similarities?
What Google People Have Noticed

• Lots of storage + compute cycles nearby

• Opportunity
 – Files are distributed already! (GFS)
 – A machine can processes its own web pages (map)
Google MapReduce

• Took the concept from Lisp, and applied to large-scale data-processing
• Takes two functions from a programmer \((map\) and \(reduce\)), and performs three steps
 • Map
 – Runs \(map\) for each file individually in parallel
 • Shuffle
 – Collects the output from all \(map\) executions
 – Transforms the \(map\) output into the \(reduce\) input
 – Divides the \(map\) output into chunks
 • Reduce
 – Runs \(reduce\) (using a \(map\) output chunk as the input) in parallel
Programmer’s Point of View

• Programmer writes two functions – *map()* and *reduce()*

• The programming interface is fixed
 – map (in_key, in_value) ->
 list of (out_key, intermediate_value)
 – reduce (out_key, list of intermediate_value) ->
 (out_key, out_value)

• Caution: not exactly the same as Lisp
Inverted Indexing Example

• Word -> list of web pages containing the word

Input: web pages

Output: word-> urls

every ->
 http://m-w.com/...
 http://answers.....
 ...
its ->
 http://itsa.org/....
 http://youtube...
 ...

Map

• Interface
 – Input: \(<\text{in_key}, \text{in_value}>\) pair => \(<\text{url}, \text{content}>\)
 – Output: list of intermediate \(<\text{key}, \text{value}>\) pairs => list of \(<\text{word}, \text{url}>\>

key = \text{http://url0.com}
value = “every happy family is alike.”

key = \text{http://url1.com}
value = “every unhappy family is unhappy in its own way.”

Map Input: \(<\text{url}, \text{content}>\>

Map Output: list of \(<\text{word}, \text{url}>\>
Shuffle

• MapReduce system
 – Collects outputs from all map executions
 – Groups all intermediate values by the same key

Map Output: list of <word, url>

Reduce Input: <word, list of urls>
Reduce

• Interface

 – Input: <out_key, list of intermediate_value>
 – Output: <out_key, out_value>

 Reduce Input: <word, list of urls>
 Reduce Output: <word, string of urls>
Execution Overview

Map phase

Intermediate:

| k1:v | k1:v | k2:v | k1:v | k3:v | k4:v | k4:v | k5:v | k4:v | k1:v | k3:v |

Shuffle phase

Group by Key

Reduce phase

Grouped:

| k1:v,v,v,v | k2:v | k3:v,v | k4:v,v,v | k5:v |

Output
Implementing MapReduce

- Externally for **user**
 - Write a map function, and a reduce function
 - Submit a job; wait for result
 - No need to know anything about the environment
 (Google: 4000 servers + 48000 disks, many failures)

- Internally for **MapReduce system designer**
 - Run map in parallel
 - Shuffle: combine map results to produce reduce input
 - Run reduce in parallel
 - Deal with failures
Execution Overview

- **Input Files**: Sent to map tasks.
- **Map workers**: Process input files and generate intermediate keys.
- **Master**: Coordinates map tasks.
- **Intermediate keys**: Partitioned into reduce tasks.
- **Reduce workers**: Process intermediate keys and produce output.
- **Output**: Final results.
Task Assignment

Worker pull
1. Worker signals idle
2. Master assigns task
3. Task retrieves data
4. Task executes
Fault-tolerance: re-execution

Master

Input Splits

Map workers

Reduce workers

Output

Re-execute on failure
Machines share roles

- So far, logical view of cluster
- In reality
 - Each cluster machine stores data
 - And runs MapReduce workers
- Lots of storage + compute cycles nearby
MapReduce Summary

• Programming paradigm for data-intensive computing
• Simple to program (for programmers)
• Distributed & parallel execution model
• The framework automates many tedious tasks (machine selection, failure handling, etc.)
Hadoop Demo
Beyond MapReduce

- As a programming model
 - Limited: only Map and Reduce
 - Improvements: Pig, Dryad, Hive, Sawzall, Map-Reduce-Merge, etc.

- As a runtime system
 - Better scheduling (e.g., LATE scheduler)
 - Better fault handling (e.g., ISS)
 - Pipelining (e.g., HOP)
 - Etc.
Making Cloud Intermediate Data Fault-Tolerant

Steve Ko* (Princeton University), Imranul Hoque (UIUC), Brian Cho (UIUC), and Indranil Gupta (UIUC)

* work done at UIUC
Our Position

• Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
Our Position

• Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 – Dataflow programming frameworks
Our Position

• Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 – Dataflow programming frameworks
 – The importance of intermediate data
Our Position

• Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 – Dataflow programming frameworks
 – The importance of intermediate data
 – ISS (Intermediate Storage System)
• Not to be confused with,
 International Space Station
 IBM Internet Security Systems
Dataflow Programming Frameworks

• Runtime systems that execute dataflow programs
 – MapReduce (Hadoop), Pig, Hive, etc.
 – Gaining popularity for massive-scale data processing
 – Distributed and parallel execution on clusters

• A dataflow program consists of
 – Multi-stage computation
 – Communication patterns between stages
Example 1: MapReduce

- Two-stage computation with all-to-all comm.
 - Google introduced, Yahoo! open-sourced (Hadoop)
 - Two functions – Map and Reduce – supplied by a programmer
 - Massively parallel execution of Map and Reduce

Stage 1: Map

Shuffle (all-to-all)

Stage 2: Reduce
Example 2: Pig and Hive

- Multi-stage with either all-to-all or 1-to-1
Usage

• Google (MapReduce)
 – Indexing: a chain of 24 MapReduce jobs
 – ~200K jobs processing 50PB/month (in 2006)
• Yahoo! (Hadoop + Pig)
 – WebMap: a chain of 100 MapReduce jobs
• Facebook (Hadoop + Hive)
 – ~300TB total, adding 2TB/day (in 2008)
 – 3K jobs processing 55TB/day
• Amazon
 – Elastic MapReduce service (pay-as-you-go)
• Academic clouds
 – Google-IBM Cluster at UW (Hadoop service)
 – CCT at UIUC (Hadoop & Pig service)
One Common Characteristic

• Intermediate data
 – Intermediate data? data between stages

• Similarities to traditional intermediate data [Bak91, Vog99]
 – E.g., .o files
 – Critical to produce the final output
 – Short-lived, written-once and read-once, & used-immediately
 – Computational barrier
One Common Characteristic

• Computational Barrier
Why Important?

• Large-scale: possibly very large amount of intermediate data
• Barrier: Loss of intermediate data
=> the task can’t proceed
Failure Stats

- 5 average worker deaths per MapReduce job (Google in 2006)
- One disk failure in every run of a 6-hour MapReduce job with 4000 machines (Google in 2008)
- 50 machine failures out of 20K machine cluster (Yahoo! in 2009)
Hadoop Failure Injection Experiment

- Emulab setting
 - 20 machines sorting 36GB
 - 4 LANs and a core switch (all 100 Mbps)
- 1 failure after Map
 - Re-execution of Map-Shuffle-Reduce
- ~33% increase in completion time
Re-Generation for Multi-Stage

- Cascaded re-execution: expensive
Importance of Intermediate Data

• Why?
 – (Potentially) a lot of data
 – When lost, very costly

• Current systems handle it themselves.
 – Re-generate when lost: can lead to expensive cascaded re-execution

• We believe that the storage can provide a better solution than the dataflow programming frameworks
Our Position

• Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 ✓ Dataflow programming frameworks
 ✓ The importance of intermediate data
 – ISS (Intermediate Storage System)
 • Why storage?
 • Challenges
 • Solution hypotheses
 • Hypotheses validation
Why Storage?

- Replication stops cascaded re-execution

Stage 1: Map

Stage 2: Reduce

Stage 3: Map

Stage 4: Reduce
So, Are We Done?

- No!
- Challenge: minimal interference
 - Network is heavily utilized during Shuffle.
 - Replication requires network transmission too, and needs to replicate a large amount.
 - Minimizing interference is critical for the overall job completion time.
- HDFS (Hadoop Distributed File System): much interference
Default HDFS Interference

- Replication of Map and Reduce outputs (2 copies in total)
Background Transport Protocols

• TCP-Nice [Ven02] & TCP-LP [Kuz06]
 – Support background & foreground flows

• Pros
 – Background flows do not interfere with foreground flows (functionality)

• Cons
 – Designed for wide-area Internet
 – Application-agnostic
 – Not a comprehensive solution: not designed for data center replication

• Can do better!
Our Position

• Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 ✓ Dataflow programming frameworks
 ✓ The importance of intermediate data
 – ISS (Intermediate Storage System)
 ✓ Why storage?
 ✓ Challenges
 • Solution hypotheses
 • Hypotheses validation
Three Hypotheses

1. Asynchronous replication can help.
 – HDFS replication works synchronously.

2. The replication process can exploit the inherent bandwidth heterogeneity of data centers (next).

3. Data selection can help (later).
Bandwidth Heterogeneity

- Data center topology: hierarchical
 - Top-of-the-rack switches (under-utilized)
 - Shared core switch (fully-utilized)
Data Selection

• Only replicate locally-consumed data
Three Hypotheses

1. Asynchronous replication can help.
2. The replication process can exploit the inherent bandwidth heterogeneity of data centers.
3. Data selection can help.

• The question is not if, but how much.
• If effective, these become techniques.
Experimental Setting

• Emulab with 80 machines
 – 4 X 1 LAN with 20 machines
 – 4 X 100Mbps top-of-the-rack switch
 – 1 X 1Gbps core switch
 – Various configurations give similar results.

• Input data: 2GB/machine, random-generation

• Workload: sort

• 5 runs
 – Std. dev. ~ 100 sec.: small compared to the overall completion time

• 2 replicas of Map outputs in total
Asynchronous Replication

• Modification for asynchronous replication
 – With an increasing level of interference

• Four levels of interference
 – Hadoop: original, no replication, no interference
 – Read: disk read, no network transfer, no actual replication
 – Read-Send: disk read & network send, no actual replication
 – Rep.: full replication
Asynchronous Replication

- Network utilization makes the difference
- Both Map & Shuffle get affected
 - Some Maps need to read remotely
Three Hypotheses (Validation)

✓ Asynchronous replication can help, but still can’t eliminate the interference.

• The replication process can exploit the inherent bandwidth heterogeneity of data centers.

• Data selection can help.
Rack-Level Replication

- Rack-level replication is effective.
 - Only 20~30 rack failures per year, mostly planned (Google 2008)
Three Hypotheses (Validation)

✓ Asynchronous replication can help, but still can’t eliminate the interference
✓ The rack-level replication can reduce the interference significantly.
• Data selection can help.
Locally-Consumed Data Replication

- It significantly reduces the amount of replication.

![Completion Time Chart](chart.png)
Three Hypotheses (Validation)

✓ Asynchronous replication can help, but still can’t eliminate the interference
✓ The rack-level replication can reduce the interference significantly.
✓ Data selection can reduce the interference significantly.
ISS Design Overview

• Implements asynchronous rack-level selective replication (all three hypotheses)

• Replaces the Shuffle phase
 – MapReduce does not implement Shuffle.
 – Map tasks write intermediate data to ISS, and Reduce tasks read intermediate data from ISS.

• Extends HDFS (next)
ISS Design Overview

• Extends HDFS
 – iss_create()
 – iss_open()
 – iss_write()
 – iss_read()
 – iss_close()

• Map tasks
 – iss_create() => iss_write() => iss_close()

• Reduce tasks
 – iss_open() => iss_read() => iss_close()
Performance under Failure

• 5 scenarios
 – Hadoop (no rep) with one permanent machine failure
 – Hadoop (reduce rep=2) with one permanent machine failure
 – ISS (map & reduce rep=2) with one permanent machine failure
 – Hadoop (no rep) with one transient failure
 – ISS (map & reduce rep=2) with one transient failure
Summary of Results

• Comparison to no failure Hadoop
 – One failure ISS: 18% increase in completion time
 – One failure Hadoop: 59% increase

• One failure Hadoop vs. One failure ISS
 – 45% speedup
Performance under Failure

- Hadoop (rep=1) with one machine failure
Performance under Failure

• Hadoop (rep=2) with one machine failure
Performance under Failure

- ISS with one machine failure
Performance under Failure

- Hadoop (rep=1) with one transient failure
Performance under Failure

- ISS-Hadoop with one transient failure

![Graph showing performance under failure with tasks and time axes]
Replication Completion Time

- Replication completes before Reduce
 - ‘+’ indicates replication time for each block
Summary

• Our position
 – Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
• Problem: cascaded re-execution
• Requirements
 – Intermediate data availability (scale and dynamism)
 – Interference minimization (efficiency)
• Asynchronous replication can help, but still can’t eliminate the interference
• The rack-level replication can reduce the interference significantly.
• Data selection can reduce the interference significantly.
• Hadoop & Hadoop + ISS show comparable completion times.
References