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ABSTRACT

There has been much recent interest in adding support for
real-time capabilities to Android. Proposed architectures for
doing so fall into four broad categories, but only two sup-
port real-time Android applications. These two proposals
include a real-time garbage collector for real-time memory
management and a real-time operating system for real-time
scheduling and resource management. Although they pro-
vide the fundamental building blocks for real-time Android,
unfortunately such proposals are incomplete. In this paper
we examine the Android programming model, libraries, and
core systems services in the context of the Fiji real-time VM
coupled with the RT Linux and RTEMS real-time operat-
ing systems. We show that even with a real-time operating
system as well as real-time memory management, the pre-
dictability of core Android constructs is poor. To address
this limitation we propose a preliminary RTDroid design and
show its applicability to real-time systems.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:

Real-time and embedded systems

1. INTRODUCTION

Android’s open source nature has prompted its ubiquitous
adoption in various embedded system domains. Instead of
being built around the Java Virtual Machine (JVM), An-
droid uses the Dalvik Virtual Machine (DVM) [12]. Unlike
a JVM, DVM leverages register based [21] bytecode (called
DEX [2]) instead of Java bytecode. The DVM supports just-
in-time compilation (JIT) [10] to optimize for the target de-
ployment device. Android, itself, runs on top of a modified
Linux kernel and provides a framework layer for applications
to leverage. The framework layer is built from Linux kernel
functionality, third party libraries, as well as core Android
mechanisms. Applications targeting the Android system are
colloquially referred to as “apps.”
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Since its inception, there has been much interest in a real-
time Android variant; researchers have proposed four canon-
ical system architectures [15, 17] for extending Android with
real-time capabilities. These architectural models are illus-
trated in Fig. 1. The first proposed system architecture
(Fig. 1a) is built around a clean separation between Android
and real-time components, allowing for real-time applica-
tions to run directly on top of a real-time operating system
(RTOS). Although viable, this model prevents the creation
of real-time Android apps, instead opting for a system that
can run both Android apps and separate real-time appli-
cations. In addition, real-time applications are prevented
from leveraging the features offered by Android and cannot
include any Android related services or libraries. The next
approach (Fig. 1b) is similar to the first, but instead of swap-
ping the standard Linux kernel for an RTOS, it introduces a
real-time hypervisor at the bottommost layer, running An-
droid as a guest operating system in one partition and real-
time applications in another. This model suffers from the
same deficiencies of the first.

The last two models (Fig. 1c and Fig. 1d) permit the con-
struction of real-time Android apps by adding a secondary
VM with real-time capabilities or by extending DVM with
real-time support (alternatively, replacing DVM with a real-
time JVM) respectively. These two approaches provide the
ground work for predictability and determinism within the
Android system by replacing the standard Linux kernel with
an RTOS as well as introducing real-time features at the
VM level. Notably, these models support real-time Android
apps, the use of Android features, in addition to Android
services and libraries. The last two models, unfortunately,
provide little or no insight on how Android features, ser-
vices, and libraries can themselves be extended to support
execution of real-time Android apps.

In this paper, we demonstrate a new approach to achieving
real-time capabilities with the Android system. Our pro-
totype, called RTDroid, focuses on extending an existing
real-time JVM ! with Android constructs and leveraging
an off-the-shelf RTOS. We have identified critical changes
to the Android framework and core mechanisms necessary
to guarantee predictable runtime performance for apps that
leverage Android mechanisms and services. Specifically, the
contributions of this paper are:

e An investigation of the core Android components and
their suitability for real-time.

!Extending an RT JVM for Android requires DEX support;
we discuss this issue in Section 3.2.4.
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Figure 1: Proposed RT Android System Architectures. Shaded components represent additions or changes to the Android

architecture.

e An initial system implementation of core Android con-
structs and services, which provides real-time guaran-
tees for real-time threads. Our system is implemented
on top of the Fiji VM, but is both VM and RTOS
agnostic. Our current design focuses on supporting a
single real-time app, but its design can be generalized
to support multiple apps.

e A detailed evaluation study of our system leveraging
two separate RTOSes, RT Linux and RTEMS. Our
performance results indicate that previously proposed
models, without any changes to the framework layer,
cannot provide real-time guarantees if real-time threads
and/or tasks leverage Android’s core mechanisms and
services.

The rest of paper is organized as follows: in Section 2, we
provide two high-level motivating examples for RTDroid. In
Section 3 we outline Android details, specifically focusing
on the challenges of adding real-time capabilities. We de-
tail our solution in Section 4. Evaluation and experiments
are presented in Section 5. We discuss related work and
conclusions in Section 6 and Section 7 respectively.

2. MOTIVATION

This section presents two broad use cases as well as ex-
amples of their concrete deployments to motivate the design
and utility of RTDroid. We envision RTDroid being lever-
aged in two distinct ways: 1) to run a single real-time app on
either specialized embedded hardware or a mobile device and
2) to run real-time apps along with existing non-real-time
apps in a mixed-criticality environment. The former case is
the primary contribution of this paper, but important de-
sign considerations must be made to support the latter in
the same system. As such, we discuss salient implemen-
tation details for supporting multiple real-time apps along
with non-real-time apps.

2.1 Single Real-Time App

As Android becomes increasingly popular, researchers have
begun to explore its use as a platform for safety- and mission-
critical apps. For example, the UK has launched a satellite
equipped with a regular control system as well as a smart-
phone (Google Nexus One) [7]. The goal of the satellite is
to experiment with transferring control from the standard
control system to the mobile device itself.

The medical device industry has expended significant re-
sources in exploring Android as a future platform [5, 8, 9,
1]. They report that Android is well suited for envisioned
applications, such as remote patient monitoring devices in-
cluding cardio monitors and glucose analyzers, because such
applications require support for wireless connectivity as well
as good user interface design. Other proposed applications
include fall and gate monitoring for the elderly and patients
undergoing rehabilitation.

In all of these scenarios, Android is used as a platform to
run a single real-time app. The underlying hardware can
be a traditional embedded board or a mobile device. As
we detail in Section 3, the benefit of using Android in these
scenarios is the rich APIs and libraries that exist on Android.
It supports connectivity through Wi-Fi, Bluetooth, 3G, and
4G; it provides native support for various sensors such as
GPS, accelerometer, camera, and gyroscope; and it fosters
an intuitive user interface design through a touch screen and
gestures. Control and medical apps typically require these
functionalities and their development can be streamlined as
well as standardized through the Android APIs and libraries.

2.2 Mixed-Criticality

In addition to supporting a single real-time app, we en-
vision allowing a mobile device to run multiple real-time
apps along with regular apps through the use of a mixed-
criticality system. For medical monitoring, the same mobile
device that monitors its user’s medical conditions can be
used as a traditional smartphone. This reduces the number
of devices a user needs to carry. Similarly, if a user requires
multiple medical monitoring applications, they can be exe-
cuted on the same device.

Google reports that its Play Store currently has 700,000
apps available for Android 2. The ability to install and lever-
age these apps will greatly simplify the development and
maintenance of real-time apps. For example, any medical
monitoring device may be expected to send a report to the
patient’s doctor on a daily or weekly basis. Since there are
many apps that already provide such a functionality, e.g.,
Gmail that allows other apps to send emails through it, the
monitoring app can simply leverage one of those apps; this
reduces the complexity of development and maintenance of
real-time apps.

We note that supporting such mixed-criticality scenarios
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requires significant engineering effort to support download-
ing and installation of real-time apps, validation of newly in-
stalled apps with regard to the schedulability of other apps
present in the system, JITing DEX bytecode to specialize
for the target platform [10], access to I/O and hardware
sensors, and power management issues. Such challenges are
out of the scope of this paper. Instead, we focus on the core
Android constructs and system services that are used not
only for single-app scenarios, but also for multi-app scenar-
ios as those are essential to build Android compatibility as
we describe in the next section.

3. THE CASE FOR RTDROID

To support the scenarios discussed in the previous sec-
tion, we advocate a clean-slate design for RTDroid. We
start from the ground up, leveraging an established RTOS
(e.g., RT Linux [4, 14], RTEMS [6]) and an RT JVM (e.g.,
Fiji VM [19]). Upon this foundation we build Android com-
patibility. RTDroid provides a faithful illusion to an ex-
isting Android app running on our platform that it is ex-
ecuting on Android. This necessitates providing the same
set of Android APIs as well as preserving their semantics
for both regular Android apps and real-time apps. For real-
time apps, Android compatibility means that developers can
use standard Android APIs in addition to a small number of
additional APIs our platform provides to support real-time
features. These additional APIs provide limited RTSJ [13]
support without scoped memory.

This approach, however, does not mean that we can sim-
ply “port” the existing Android code to run on an RTOS
and an RT JVM. As a consequence, we do not have full
freedom to re-architect the underlying implementation of
all the APIs. The unique programming and runtime model
of Android requires careful consideration as to how we can
simultaneously support Android compatibility while provid-
ing real-time guarantees. In this section, we discuss why
this is the case by first presenting the benefits of our design,
then discussing the challenges in realizing our design within
the context of a concrete system.

3.1 Benefits

There are three major benefits of our clean-slate design.
First, by using an RTOS and an RT JVM, we can rely on
the sound design decisions already made and implemented
to support real-time capabilities in these systems. For ex-
ample, our RTDroid prototype uses Fiji VM [19], which
is designed to support real-time Java programs from the
ground up. Fiji VM already provides real-time function-
ality through static compiler checks, real-time garbage col-
lection [20], synchronization, threading, etc. and crucially
provides mixed-criticality support necessary for executing
multiple applications within a single VM. We note, however,
that RTDroid’s design is VM independent.

The second benefit of our architecture is the flexibility of
adjusting the runtime model for each use case discussed in
Section 2. Using an RTOS and an RT JVM provides the
freedom to control the runtime model. For example, we can
leverage the RTEMS [6] runtime model, where one process
compiled together with the kernel with full utility of all the
resources of the underlying hardware, for single app deploy-
ment. Using this runtime model is not currently possible
with Android, as Android requires most system services to
run as separate processes (Section 3.2.3 provides more de-

tails). Simply modifying DVM or the OS is not enough to
augment Android’s runtime model; the framework layer it-
self must be changed. Since the Fiji VM has mixed crit-
icality support, we can execute system services either as
threads within a single-app deployment, or as separate Java
programs executing in a partition of a single multi-VM in-
stance.

The third benefit of our architecture is the streamlining
of real-time app development. Developers can leverage the
rich APIs and libraries already implemented and support for
various hardware components. Unlike other mobile OSes,
Android excels in supporting a wide variety of hardware
with different CPUs, memory capacities, screen sizes, and
sensors. Thus, Android APIs make it easier to write a sin-
gle app that can run on different hardware. In addition,
Android APIs allow a developer to use all hardware compo-
nents available on a mobile device, such as: a touch screen,
Wi-Fi, GPS, Bluetooth, telephony, accelerometer, camera,
etc. Thus, Android compatibility can reduce the complexity
of real-time app development.

3.2 Challenges

Providing Android compatibility means that we provide
a faithful illusion that an app is running on Android, i.e.,
we should be able to take an existing Android app and run
it on our platform. In addition, a developer should be able
to use Android APIs in a real-time app. This is where our
main challenge lies; due to the unique programming and
runtime model of Android, it requires careful consideration
as to how to preserve the semantics of the APIs while us-
ing an RT JVM and an RTOS. There are two main con-
cerns that Android introduces though its programming and
execution models: 1) Android leverages extensive usage of
callbacks — callbacks registered by high priority threads will
not necessarily be executed in the high priority thread itself
resulting in computation expressed in a high priority task
to potentially execute at lower priority and 2) core Android
constructs are not priority aware, most use FIFO ordering
for processing.

More specifically, we need to consider the following four
aspects essential to Android to achieve our goal of providing
Android compatibility: 1) supporting the four main com-
ponents of Android that an app implements, 2) handling
Android constructs that an app can use, 3) handling An-
droid system services, and 4) supporting Android’s byte-
code format, DEX. Two of the challenges—challenges 1 and
4—are not necessarily research directions, but rather engi-
neering tasks. The other two challenges require more careful
consideration. In the rest of this section, we discuss these
challenges at a high level. In Section 4, we take two specific
examples that illustrate these challenges and discuss how we
address them within the implementation of RTDroid.

3.2.1 Supporting Android’s Four Main Components

The Android programming model provides four main com-
ponents for constructing apps—Activity, Service, Broad-
castReceiver, and ContentProvider—which are essentially
abstract Java classes that define callbacks that an app im-
plements. An Android app needs to extend and implement
at least one of these four classes to run on Android. Thus,
supporting these four main components exactly the way An-
droid does is critical to providing Android compatibility.
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Figure 2: The State Transition for Activity.

Briefly speaking ®, an Activity class controls the UI of
an app. A Service class implements tasks that run in the
background, e.g., playing background music for an app. A
BroadcastReceiver class can receive and react to broad-
cast messages sent by other apps or the Android platform;
for example, Android sends out a “low battery” broadcast
message to alert apps that the mobile device is running low
on battery. Lastly, an app can have a DB-like storage by
implementing a ContentProvider class.

Each of these four main component classes defines call-
backs that an app can implement. The Android platform
invokes one of these callbacks at an appropriate time de-
pending on what state the app is in. For example, an Ac-
tivity class defines a number of callbacks such as onCre-
ate, onStart, onResume, onPause, onStop, etc. When an
app starts for the first time, the Android platform invokes
onCreate and onStart in that order. When an app goes
out of focus (e.g., when the user pushes the home button
or the app switcher button), the platform invokes onPause.
When an app returns to the foreground, the platform in-
vokes onResume. Fig. 2 shows a simplified state transition
diagram for an Activity. Likewise, all other main compo-
nent classes define a set of callbacks as entry points to an
app. In order to provide Android compatibility, our plat-
form needs to preserve the same execution flows of all the
main components.

3.2.2  Supporting Android Constructs

Android provides a set of constructs that facilitate com-
munication between different entities, e.g., threads, main
components, and processes. There are four such constructs—
Handler, Looper, Binder, and Messenger. Since any typical
Android app uses these constructs, it is critical for us to
support these constructs properly in a real-time context.

We first briefly describe how these constructs work on
Android as this is necessary to understand the challenges
for supporting these constructs. First, Looper and Handler
jointly enable inter-thread communication. If two threads
need to communicate, the receiving thread should first im-
plement Handler’s abstract callback method handleMessage
and instantiate it. Then it should share this Handler object
with the sending thread, which uses Handler’s sendMessage
or other similar methods to send a message. Internally,
Looper bridges a sendMessage call to its corresponding han-
dleMessage call; it maintains a message queue that stores
all messages sent by sendMessage and dispatches those mes-
sages to its Handler by calling handleMessage. Fig. 3 illus-
trates the use of Looper and Handler.

Binder is the IPC mechanism of Android that allows dif-
ferent components and processes to communicate. Its usage
is similar to a typical IPC mechanism; a process can expose

3 Android Developers website has more detailed informa-
tion (http://developer.android.com/guide/components/
fundamentals.html).
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Figure 3: An Example of Looper and Handler. In the exam-
ple, the client thread is sending a message to the processing
thread. Both threads share the Handler object. The pro-
cessing thread has a Looper and a message queue.

some or all of its methods through Binder, which takes care
of all aspects of communication such as marshalling and un-
marshalling. Messenger is another IPC mechanism easier to
use than Binder; however, it is not a separate construct as
the underlying implementation uses Binder and Handler.

There are three reasons why a typical Android app uses
these constructs. First, any Android app that implements
more than one of four main components discussed in Sec-
tion 3.2.1 needs to use either Binder or Messenger for inter-
component communication. Second, Android does not allow
any long-running operations to run on its Activity thread
since the Activity thread manipulates the Ul and long-
running operations can render the Ul unresponsive. Thus, a
typical Android app creates multiple threads to handle long-
running operations and leverages Looper and Handler for
inter-thread communication. Third, Android’s system ser-
vices run as separate processes (as we detail in Section 3.2.3)
and accessing these services also requires the use of Binder.

Among the constructs, the joint use of Looper and Han-
dler is the ideal first choice to explore the design space in
our platform; this is because these constructs are used in all
three types of cross-entity communication, either directly
(for inter-thread communication) or indirectly (for inter-
component or inter-process communication through the use
of Messenger).

Since Looper and Handler jointly handle messages, it raises
a question for real-time apps when there are multiple threads
with different priorities sending messages simultaneously. In
Android, there are two ways that Looper and Handler pro-
cess messages sent to their thread. By default, Looper and
Handler process messages in the order in which they were
received. Additionally, a sending thread can specify a mes-
sage processing time, in which case Looper and Handler will
process the message at the specified time. In both cases,
however, the processing of a message is done regardless of
the priority of the sending thread or the receiving thread.
Consider if multiple user-defined threads send messages to
another thread leveraging Looper and Handler. If a real-
time thread sends a message through a Handler, its mes-
sage will not be processed until the Looper dispatches every
other message in the queue regardless of the sender’s priority
as seen in Fig. 4. The situation is exacerbated by the fact
that Android can re-arrange messages in a message queue if
there are messages with specific processing times. For ex-
ample, suppose that there are a number of messages sent by
non-real-time threads in a queue received before a message
sent by a real-time thread. While processing those messages,
any number of low-priority threads can send messages with
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specific times. If those times come before finishing the pro-
cessing of non-real-time messages, the real-time message will
get delayed further by non-real-time messages.

As a concrete example, consider a health monitoring app
that communicates over Bluetooth with a nearby caretaker’s
device for alert information. Assume a real-time thread is
relying on another thread for sending an emergency response
request over Bluetooth in the instance it detects a fall. To
communicate with this networking thread, a thread must
access the networking thread’s Handler object. However, if
other non-real-time tasks also leverage the same network-
ing thread, they can delay the sending of the emergency
response request for an amount of time required to process
the pending messages. Typically, to handle a message sent
to the networking thread requires creation of a packet and
the transmission of the packet.

3.2.3  Supporting System Services

Android mediates all access to its core system function-
alities through a set of system services. Just to name a
few, these services include ConnectivityManager that han-
dles network connection management; PowerManager that
controls power; LocationManager that controls location up-
dates through either GPS or nearby cell tower information;
and AlarmManager that provides a timer service. These sys-
tem services run as separate processes and the APIs for ac-
cessing these services use the Binder IPC. Fig. 5 shows an
example.

The presence and the access model of these system ser-
vices raises two questions that our platform needs to answer.

First, in our first use case of running a single real-time app,
there is no need to run system services as separate processes;
rather it is more favorable to run the app and the system
services as a single process to improve the overall efficiency
of the system. Then the question is how to re-design the
system service architecture in our platform in order to avoid
creating separate processes while preserving the underlying
behavior of Android.

The second question is how to mediate access to the sys-
tem services when multiple threads or processes with differ-
ent priorities access them simultaneously. Since it involves
multiple threads or processes, the question arises not only
in our first use case of a single real-time app but also in our
second use case of mixed criticality. The default policy for
Android is first-come, first-served, which does not consider
priorities as a parameter, hence not suitable in real-time
systems.

We explore the answers to the above two questions in Sec-
tion 4 with AlarmManager as an illustrative example. Alar-
mManager provides a system timer that triggers at specific
times; it receives timer registration requests from different
apps and sends a “timer triggered” message to each app when
its timer fires. Since it deals with both timing and message
delivery, it is the ideal first choice to explore the solution
space to answer the above two questions.

3.2.4  Supporting DEX

Android apps use DEX as their bytecode format, which is
different from typical Java bytecode [2]. Thus, in order to
run existing Android apps on our platform, we need to sup-
port DEX. Although this is not necessarily a research chal-
lenge, it is nevertheless a challenge to address. Since Fiji VM
only supports Java bytecode, our current prototype assumes
that the source code is available to re-compile. However,
there are other potential solutions; we can either implement
DEX support in Fiji VM or leverage existing tools that con-
vert DEX bytecode to Java bytecode, e.g., Dexpler [11] or
dex2jar [3]. Exploring these options is our future work.

4. ILLUSTRATIVE EXAMPLES

To discuss our current approach to adding real-time sup-
port to Android, we present two examples in this section.
The first example is the joint use of Looper and Handler
to illustrate how we support Android constructs. The sec-
ond example is AlarmManager to illustrate how we support
system services.

4.1 Looper and Handler

As mentioned in Section 3.2.2, Android’s implementation
for Looper and Handler simply processes incoming messages
either in the order of reception or at specified times. This
can create problematic scenarios for high priority threads
where their messages are delayed by messages sent by low
priority threads.

To address this problem, we make two design decisions to
support real-time. First, we assign a priority to each mes-
sage sent by a thread. We currently support two policies for
priority assignment. These policies are priority inheritance,
where a message inherits its sender’s priority, and priority
inheritance + specified where a sender can specify the mes-
sage’s priority in relation to other messages it has sent. We
are exploring other types of policies in order to provide guar-
antees depending on the context in which the Handler and
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Figure 6: An Example of Looper and Handler on RTDroid.
Each message has a priority and is stored in a priority queue.
Processing of messages is also done by priority. The example
shows one high-priority thread and multiple non-real-time
threads.

Looper are leveraged. For instance, we are investigating an
earliest deadline first processing scheme for soft-real-time Ul
updates. Fully exploring priority assignment policies is our
future work.

Our second design decision is to create multiple prior-
ity queues to store incoming messages according to their
priority. We then associate one Looper and Handler for
each queue to process each message according to its prior-
ity. Fig. 6 shows our new implementation for Looper and
Handler. Since we now process each message according to
its sender’s priority, messages sent by lower priority threads
do not delay the messages sent by higher priority threads.

Although our conceptual model leverages one thread per
priority level, the implementation of these constructs is backed
by a thread pool. We adopt a similar approach to imple-
menting efficient Asynchronous Event Handler (AEH) in
RTSJ, proposed by Kim et al. [16]. To provide memory
safety we limit the size of the queue. We are currently in-
vestigating which queue management schemes and size lim-
itations are appropriate for which service.

4.2 AlarmManager

The AlarmManager is an ideal candidate to discuss how
we address the following two questions for system services:
1) how to adapt Android’s multi-process architecture when
running a single real-time app, and 2) how to mediate access
to a system service from multiple threads with different pri-
orities. We first briefly overview how AlarmManager works
and discuss our approach.

Android’s implementation for AlarmManager involves alarm
registration and alarm delivery as shown in Fig. 7. When an
app registers an alarm, it makes an IPC call to AlarmMan-
ager with a message and a time. The message is associated
with a callback of the app which gets executed when the
message is delivered *. When the alarm triggers at the spec-
ified time, AlarmManager sends the message back to the app,
and the callback gets executed. In both the registration and
the delivery, Android provides no guarantee on when or in
what order the message is delivered.

Thus, we re-design both registration and delivery of alarms
to support predictability. For alarm registration, we use
red-black trees to maintain alarms as shown in Fig. 8; this
means that we can make the registration process predictable
based on the complexity of red-black tree operations, i.e.,
the longest path of a tree is no longer than twice the short-

4This is done by using Android’s Intent, though we do not
discuss the details here due to space considerations.

AlarmManager
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AlarmManager.set()

Timestamp
Message
BroadcastReceiver
onReceive() Message

Figure 7: An Example Flow of AlarmManager. An app uses
AlarmManager.set () to register an alarm. When the alarm
triggers, the AlarmManager sends a message back to the app,
and the app’s callback (BroadcastReceiver.onReceive() in
the example) gets executed.

App Thread Alarm Map
AlarmManager.set()
Timestamp
e e i W

Figure 8: The Implementation of Alarm Registration on RT-
Droid. The tree colored black at the top maintains times-
tamps; the trees colored gray are per-timestamp trees main-
taining actual alarm messages to be delivered.

est path of the tree. We use one red-black tree for storing
timestamps and pointers to per-timestamp red-black trees;
then we use these per-timestamp trees to order alarms with
the same timestamp by their sender’s priority. Thus, our
alarm registration process is essentially one insert operation
to the timestamp tree and another insert operation to a per-
timestamp tree. By organizing the alarms based on senders’
priorities, we guarantee that an alarm message for a low
priority thread does not delay an alarm message for a high
priority thread. Expired alarms are discarded. Note that
this ensure that low priority threads whose alarm registra-
tion rate exceeds the alarm delivery capacity of the system
cannot prevent a high priority alarm from being triggered.

For alarm delivery, we create an AlarmManager thread and
assign the highest priority for timely delivery of alarm mes-
sages. With this thread, we replace the multi-process mes-
sage passing architecture of the original AlarmManager with
RTSJ’s AEH. More specifically, the thread wakes up when-
ever an app inserts a new alarm to our red-black trees; then
it schedules an AEH at the specified time for the alarm.
We associate the app’s callback for the alarm message with
this AEH, so that we execute the callback exactly at the
time specified in the alarm. In practice, most Android apps
leverage only a few alarms. However, we are exploring an
alternative approach where we create one AEH per priority
level and leverage a thread pool.

S. EVALUATION AND RESULTS

To measure and validate our prototype of RTDroid, we
tested our implementation on two system level configura-
tions. The first configuration utilizes an Intel Core 2 Duo
1.86GHz Processor with 2GB of RAM running Linux patched
with RT Linux v.3.4.45. For precise timing measurements
we disabled one of the cores prior to running the experi-
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Figure 10: The cumulative distribution of latency for Android at 30 and 300 low priority threads configuration on Core 2 Duo

running RT Linux.

ments.

For the second configuration we leveraged a stock LEON3
embedded board manufactured by Gaisler. The experiments
were run on a GR-XC6S-LX75 LEON development board ®
running RTEMS version 4.9.2. The board’s Xilinx Spartan
6 Family FPGA was flashed with a LEON3 configuration
running at 50Mhz. The development board has an 8MB
flash PROM and 128MB of PC133 SDRAM.

In order to evaluate the performance of our approach, we
ran our experiments comparing two different configurations
of Looper and Handler. The first configuration (Android)
is a direct port of the stock Android Implementation and
mirrors the previously proposed system architectures given
in Fig. 1c and Fig. 1d. The second configuration (RTDroid)
is our proposed extension.

5.1 Experiments

To measure the effectiveness of our prototype, we con-
structed an experiment that leveraged Looper and Handler.
Since these are two of the core constructs for inter-thread,
inter-component, and inter-process communication, show-
ing the predictability of this construct is crucial. Our mi-
crobenchmark creates one real-time task with a 100ms pe-
riod that sends a high priority message. To measure the
predictability of the system, we calculate the latency of pro-

5 Additional board specification can be found at Gaisler’s
website: www.gaisler.com.

cessing this message. To do this, we take a timestamp in the
real-time thread prior to sending the message. This times-
tamp is the data encoded within the message. A second
timestamp is taken within the Looper responsible for pro-
cessing this message after the message has been received and
the appropriate callback invoked. The difference between
the timestamps is the messages latency. In addition, the
experiments include a number of low priority threads which
also leverage the same resource though the same Handler
object. These threads have a period of 10ms and send 10
messages during each period.

To measure the predictability of our constructs under a
loaded system, we increase the number of low priority threads.
We have executed each experiment for 40 seconds, corre-
sponding to 400 releases of the high priority thread, and
have a hard stop at 50 seconds. We measure latency only
for the high priority messages. We scale the number of low
priority threads up to the point where the total number of
messages sent by the low priority threads exceeds the abil-
ity to process those messages within the 40 second execu-
tion window. We have varied the number of low priority
threads in increments of 10 from 10-100 and in increments
of 100 from 100-300 when running the experiments on the
Intel Core 2 Duo running RT Linux. Considering memory
and other limitations of our resource constrained embedded
board, we have run the experiments increasing the low pri-
ority threads in increments of 5 from 5-30 when running on
the LEON3 board. Saturation of the message queue occurs
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at around 15 low priority threads. Besides the measurement
of high priority message, we also calculate the overall mes-
sage throughput to test the broken point for the both of the
Android and RTDroid in the same scenario.

The data is discussed both in aggregate as well as in-
trospecting a given run on each hardware platform. We
present three different types of plots: 1) the cumulative
distribution of the message processing latency for each re-
lease of the high priority thread with differing numbers of
low priority threads using the same Handler, 2) the raw
latency observed in handling messages from high priority
threads, and 3) the overall throughput of RTDroid com-
pared to Android. Raw data gathered from the experiments
as well as scripts to generate the graphs are available at:
http://RTDroid.cse.buffalo.edu.

5.2 Result Overview

We first present a summary of the results and show a
more detailed view in the following subsection. Fig. 9 and
Fig. 10 show the overall cumulative latency distribution. We
observe that the bounds of latency vary with increasing low
priority threads in Android, but stays relatively constant for
RTDroid; Fig. 9a and Fig. 9b show that all messages experi-
ence latency between 23us and 49us regardless of the num-
ber of threads on RTDroid. Moreover, the observed worst
case latency increases only by 9us even when the number
of threads is increased by an order of magnitude from 30 to
300. This increase is attributed to the fact that there is a
greater probability of context switching from a low priority

thread to the high priority thread and also the increased
contention on the scheduling queue with a higher number of
threads. On the Android configuration, we observe an inter-
esting phenomena. When the number of low priority threads
is relatively small with 30 threads in Fig. 10a, 60% of the
messages have similar latency to that of RTDroid, but there
is a high spike in latency in the last 10% of messages. Fur-
ther, the difference between the best latency and the worst
latency is almost two orders of magnitude. Once the num-
ber of low priority threads increases to 300 in Fig. 10b, the
latency distribution becomes almost linear with a very large
difference between the best case and the worst case latency.
This occurs because before the first release of the high prior-
ity thread, the queue is already saturated. We provide more
details of the phenomena in the following subsection.

5.3 Raw Latency

In the latency plots for Android implementation, we ob-
serve that message processing delays vary arbitrarily, with
increase in latency being greater than an order of magni-
tude in some cases (see Fig. 12). These plots clearly show
the lack of real-time processing guarantees. The bound on
latency is loose and there is no consistent or uniform latency
distribution. The raw timing numbers do provide an expla-
nation for the phenomena we observed in the Android case
when examining the cumulative distribution plots. Notice
that the initial messages have the greatest latency and this
decreases over time. What is occurring is that the low prior-
ity threads fill the message queue faster than the messages
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can be processed, causing large initial delays. Eventually
the processing thread catches up as the low priority threads
complete their workloads.

Compared to the Android implementation, RTDroid shows
significantly better consistency in terms of message delay
bounds. More than 90% of the messages experience the la-
tency between 22us and 50us with any number of threads,
with variance of around 20us from the lowest to the highest
latency for those messages in any given run. Further, the
largest latency variance is 26pus. This variance is attributed
to context switch costs and scheduling queue contention. We
have isolated these delays by profiling the execution times
of the threads themselves. For Android roughly 6% of mes-
sages have similar latencies to RTDroid, however there are
significant spikes in the remaining 40% of messages. The
standard deviation for Android is 1600us for a reasonably
loaded system and 2 % 107 us for an overloaded system (ad-
ditional plots are provided in the accompanying technical
report [22]).

5.4 Throughput

To measure the cost associated with our solution we com-
pared the throughput of the Android configuration to RT-
Droid given in Fig. 13. To calculate the throughput we mea-
sured the rate in which all messages, both from high and low
priority threads, are processed. We observe that for the two
configurations, the throughput is roughly equivalent with
low numbers of threads. This result is not unexpected as
the primary overhead in RTDroid is the use of a Handler
object by a thread with a priority that has not communi-
cated through this Handler before. In such situations, a
new queue and Looper thread are created for this priority.
We observe that the system can be pre-configured and these
resources allocated at boot time, but the current implemen-
tation does this dynamically. We also note that at around
100 low priority threads, we create enough contention on
the message queue and scheduling queue that throughput
decreases dramatically. Note, however, that even in extreme
cases of contention the latency of high priority thread’s mes-
sages is only increased by the cost of preempting the low pri-
ority thread. For the Android configuration, this dramatic
drop occurs before the RTDroid configuration at around 50
low priority threads. This happens because the high priority
thread introduces enough additional preemption to prevent
the low priority Looper from being starved by the low pri-
ority threads, which allows for additional throughput scala-

bility. Based on our experiences with Android applications
it is highly unusual for any app to leverage more than a
few threads that interact with a given component. As such,
these experiments serve to illustrate the maximum loads the
system can realistically handle. We expect the throughput
of the Android configuration to mirror that of RTDroid, if
additional threads were present in the system that did not
leverage the Handler, thereby increasing preemptions and
reducing overall per unit time contention on the message
queue.

5.5 LEON3

The LEONS results are summarized in Fig. 14, for the de-
fault RTEMS configuration leveraging 10 threads. We note
that the development board configuration can only report
timing results at a granularity of 400 us since it does not have
a timing register and the hardware clock frequency cannot
be adjusted. Based on the timing granularity, our LEON3
results mirror the results obtained on the Intel Core 2 Duo.

6. RELATED WORK

Recent work has performed prelimnary studies on the real-
time capabilities of Android. Maia et al. evaluated Android
for real-time and proposed the initial models for a high-level
architecture [17]. The study did not explore the Android
framework, services, IPC, nor core library implementations
for their suitability in a real-time context. We believe our
work further refines the proposed models.

The overall performace and predictability of DVM in a
real-time setting was first characterized by Oh et al. [18].
Their findings mirror our general observations on Android.
In many situations Android is quite performant. However,
the core system does not provide any guarantees, and the
worst case execution time is parameterized by other apps
and components in the system. Thus, to provide real-time
guarantees, we need to alter the core system constructs, the
libraries, and system services built from them.

Kalkov et al. [15] outline how to extend DVM to sup-
port real-time; they observed that DVM’s garbage collection
mechanism suspends all threads until it finishes garbage col-
lection. This design is obviously problematic for apps that
need predictability. The suggested solution is to introduce
new APIs that allow developers to free objects explicitly.
While this design decision does not require a re-design of
the whole Dalvik GC, relying on developers to achieve pre-
dictability adds a layer of complexity. Although, Kalkov et
al. proposed more modest changes to the Android system,
focusing on modifying DVM’s GC to provide real-time ca-
pabilities, they have not yet explored how different compo-
nents within a single app (or across multiple apps) interact
through Android’s core constructs. We have observed, that
the structure of many of Android’s core mechanisms, from
which many services and libraries are constructed, need to
be augmented to provide real-time guarantees. Indeed, An-
droid’s specialized programming model and execution pro-
vide many design and implementation challenges. We be-
lieve our implementation is synergistic to such proposals and
can be leveraged to provide predictability when apps lever-
age services, IPC, or the core Android constructs.

7. CONCLUSION AND FUTURE WORK
In this paper we have shown that replacing DVM with
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a RT JVM and Linux with an RTOS is insufficient to run
Android application with real-time guarantees. To address
this shortcoming of the proposed real-time Android models,
we presented RTDroid, an initial design of a real-time An-
droid system focusing on supporting a single real-time app.
We have designed RTDroid to be VM and RTOS agnostic
and with mixed-criticality in mind. We have validated our
design and prototype, showing RTDroid has good observed
predictability.

Our next step is about to adapt the solutions that we men-
tions in Section 4.2 to make the AlarmManager more efficient.
Then we will move toward a mixed-criticality execution envi-
ronment and expand our IPC and service support to provide
predictable, cross partition usage of the Android constructs.
In addition, we plan to explore the use of scoped memory for
providing tighter memory guarantees within core Android
constructs.
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