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Abstract. Grid computing is focusing more on resource sharing, cycle stealing, and other
modes of collaboration among dynamic and geographically distributed organizations. As a comple-
ment to the traditional data migration in client/server and distributed computing systems, moving
computations to proper locations for resource sharing becomes an effective alternative. The Grid’s
characteristics require computation migration schemes be able to fit the underlying dynamic and het-
erogeneous computing environments. Although no fully-functioned such system is available, current
migration systems have achieved partial success at different aspects. Major difficulties and issues are
identified, and thereafter possible solutions are proposed. Especially, a multi-grained computation
migration system, MigThread, is outlined to demonstrate the feasibility of moving computations in
Grid-like environments. Possible techniques are discussed to shed light on the system design of next
generation computation migration which is the essence to enable flexible resource sharing on the
Grid.
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1. Introduction. From cluster computing to internet computing and now Grid
computing, current computation technologies have focused more on collaboration,
data sharing, cycle stealing, and other modes of interaction among dynamic and
geographically distributed organizations [1]. At the heart of the Grid is the ability
to discover, allocate, and negotiate the use of system resources, such as a computer,
network, or storage system.

Resource management in traditional computing systems is a well-studied problem.
Resource managers exist in many computing environments and include bath sched-
ulers, task brokers, workflow engines, and operating systems. The representative
systems include Condor [2], LSF [3], LoadLeveler [4], and NQE [5] spread throughout
academia and business. However, all of them can only work smoothly within their
clusters and local organizations. What distinguishes resource management in the Grid
environment is the fact that the managed resources span administrative domains [6].
New protocols and APIs are required to collect local resource managers together and
enable them work well in Grid environments. The Globus Toolkit’s Grid Resource
Allocation Manager (GRAM) is representative of first-generation Grid resource man-
agement systems [7] which interfaces to local resource managers and relies on them
to provide actual functions. Once all local resource managers become Grid-enabled,
such as Condor-G [8], resource utilization can be arranged Grid-wide.

However, most resource management systems can only handle batch jobs. First,
they detect available local or remote resources. And then a certain computation job
is assigned to a selected resource. Normally the job will stay at the resource location
until it finishes the execution. This is a typical static scheduling scenario. On the
Grid, the ability of re-arranging running computation jobs is on demand since such
dynamic rescheduling can exploit newly detected resources efficiently at runtime, espe-
cially for those long-running scientific applications. Computation mobility can enable
job reconfiguration on the fly to fit dynamically changing Grid environments. In
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fact, job/computation migration improves both application performance and system
resource utilization efficiency. It has become indispensable for load balancing, load
sharing, fault tolerance and data locality improvement.

Load balancing concerns even distribution of workload over multiple processors to
improve whole parallel computations’ performance. For scientific applications, compu-
tations are partitioned into multiple tasks running on different processors/computers.
In addition to different computing powers, multiple users and multiple programs share
the computation resources in the non-dedicated computing environments, such as
Grids. For parallel applications, load imbalanced scenario occurs frequently even
though the workload was distributed evenly before. Therefore, dynamically and pe-
riodically adjusting workload distribution is required to make sure that all running
tasks at different locations will finish their execution at the virtually same time, min-
imizing the idling time. Such load reconfiguration needs to migrate tasks from one
location to another.

From the system’s point of view, load sharing will typically increase the through-
put of Grids. Studies have indicated that a large fraction of workstations could be
unused for a large fraction of time [9]. Grid computing seeks to exploit otherwise
idle workstations and PCs to create powerful distributed computing systems with
global reach and supercomputer capabilities [10]. With the migration capability, a
systematic scattering of computations across processors which allows heavily loaded
processors to efficiently balance their load with lightly loaded processors gives the
executing Grid an opportunity to achieve a better overall throughput.

Sharing resources includes two approaches: moving data to computation or mov-
ing computation to data. Current applications favor data migration as in FTP, web,
and Distributed Shared Memory (DSM) systems. However, when computation sizes
are much smaller than data sizes, code or computation migration might be more effi-
cient. Communication frequency and volume will be minimized by converting remote
accesses into local ones. In data intensive computing, when client-server and RPC
infrastructure are not available, computation migration is an effective alternate to
access massive remote data.

In this book chapter, computation migration issues and techniques are identi-
fied to shed light on the deployment of migration packages in Grids. The remainder
of chapter is organized as follows: Section 2 introduces different computation mi-
gration strategies. In Section 3, migration system’s design issues and technologies
are described in details. Section 4 is the case study of a multi-grained computation
migration package, MigThread, which is the prototype implementation of a resource
utilization system in Grids. Finally, the conclusions and future work are presented in
Section 5.

2. Computation Mobility. The notion of computation mobility concerns that
a computation starting at some network node may continue execution at some other
network node in Grids. It involves much more than just moving code. In fact, it
moves both code and execution contexts. How to construct and reload the execution
contexts at runtime is the essence of computation mobility.

Sometimes data is bound closely with computations. Then, data mobility might
imply computation mobility by moving both data and computations. In fact, this
indicates the data-computes rule: computation works only on its own data.

Another similar notation is control mobility: a thread of control originating at
some network node continues execution at some other network node, and then comes
back. This is the scenario in the Remote Procedure Call (RPC) model [11]. No code
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is moved in this process, just control although data mobility is also involved.

Systems with computation mobility are classified by the granularity and location
of the execution context or its replica. A variety of research activities have been
reported in the literature.

2.1. Process Migration. A process is an operating system abstraction repre-
senting an instance of a running computer program. Each process contains its own
address space, program counter, stack, and heaps. Processes can spawn child pro-
cesses and work together. However, this multi-process programming paradigm is not
a popular approach anymore because of the heavy-weight context switch between pro-
cesses. Most of the time, a process represents the whole computing unit no matter it
is a sequential computation or a complete parallel computation.

Process migration concerns migrating the running program from one location to
another for a typical “all or nothing” scenario. Since the process is the computing
unit, it is often called coarse-grained computation migration. The representative
systems with process migration functionality include Mosix [12], Sprite [13], Mach
[14], V system [15], Condor [20], Tui [21], Process Introspection [22], MigThread [23],
and SNOW [24].

The major issue in process migration is how to fetch the accurate process state.
To obtain the original state in operation systems, kernel is normally modified since no
proper system calls are provided. Also, the portability is a major issue since process
states are operating system abstractions. This prevents most process migration sys-
tems from being used widespread on the Grid. The alternative is to duplicate process
states in user space. Moving states up to higher levels enables the heterogeneous
migration. Most recent system put their focus on this [23, 21, 24].

2.2. Thread Migration. Threads (lightweight processes) are flows of control in
running programs. One process might contain multiple threads which share the same
address space including text and data segments. However, each thread may have its
own stack and heap. Threads can represent a mount of computations and be treated
as a computing unit. Then, a process can be further decomposed into multiple smaller
computing tasks in the format of threads.

Thread migration enables fine-grained computation adjustment in parallel com-
puting. As multi-threading becomes a popular programming practice, thread migra-
tion is increasingly important in fine-tuning the high performance computing or Grid
computing to fit dynamic and non-dedicated environments. Different threads can be
migrated to utilize different resources for load balancing and load sharing. The core
of thread migration is about how to transfer thread state and necessary data in local
heap to the destination.

Current thread migration research focuses on updating internal self-referential
pointers in stacks and heaps. The first approach uses language and compiler support
to maintain enough type information and identify pointers as in MigThread [23] and
Arachne [26]. The second approach requires scanning the stacks at run-time to detect
and translate the possible pointers dynamically. The representative implementation
of this is Ariadne[27]. Since some pointers in stack cannot possibly be detected (as
pointed out by [31]), the resumed execution can be incorrect. The third approach is
most popular, and necessitates the partitioning of the address space and reservation
of unique virtual address for the stack of each thread so that the internal pointers
maintain the same values. A common solution is to preallocate memory space for
threads on all machines and restrict each thread to migrate to its corresponding
location on other machines. This “iso-address” solution requires large address space
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and is not scalable since there are limitations on stacks and heaps [31]. Such systems
include Amber [28], UPVM system [29], PM2 [30], Millipede [31], Nomad system [32]
and the one proposed by Cronk et. al. [33].

Based on the location of definition, threads can be classified as kernel, user, and
language level threads. Kernel level threads exist in operating systems and can be
scheduled onto processors directly. User level threads are defined and schedule by
libraries in user space. Language level threads are defined in language. For example,
Java thread is defined in Java language and implemented in Java Virtual Machine
(JVM). According to the thread type, migration systems have to fetch thread states
from different places and port them to different platforms. Up to now, only MigThread
[23] and Jessica2 [51] support heterogeneous thread migration. MigThread achieves
this by defining its own data conversion scheme whereas Jessica2 relies on modified
JVMs.

2.3. Checkpointing. Checkpointing provides the backbone for rollback recov-
ery (fault-tolerance), playback debugging, and job swapping. Checkpointing is the
saving of computation state, usually to stable storage, so that it may be reconstructed
later in time. Therefore, the major difference between migration and checkpointing
is the medium: memory-to-memory vs. memory-to-file transfer. Checkpointing may
apply most migration strategies. Dr. James Plank conducted a research project at
the University of Tennessee to develop architecture-independent checkpointing (AIC)
for Java programs [34]. It modifies JVM “Kaffe” using the mark and sweep code for
garbage collector to save the state of each object.

Libckpt [35], PREACHES [36], Porch [37], CosMic [38], and other user-directed
checkpointing systems [39, 40] save process states into stable storage, such as mag-
netic disks. Memory exclusion technique has been employed effectively in incremental
checkpointing, where pages are not checkpointed when they are clean. In other words,
their values have not been altered since the previous checkpoint [41]. The next step,
“compiler-assisted checkpointing,” uses compiler/preprocessor to ensure correct mem-
ory exclusion calls for better performance [42].

For message passing and shared address space parallel computing applications,
CoCheck [43] and C? [44, 45] manage to get clear-cut checkpoints which can be treated
as computation states for migration. Hence, from the computation state’s point of
view, migration and checkpointing systems are exchangeable.

2.4. Virtual Machines. To enable code mobility in heterogeneous environ-
ments, Virtual Machine (VM) technique is widely used, for example in JVM [46],
PVM [47], and VMware [48]. It presents the image of a dedicated raw machine to
each user [49]. Virtual machines allow the configuration of an entire operating system
to be independent from that of the physical resource; it is possible to completely rep-
resent a VM “gust” machine by its virtual state and instantiate it in any VM “host”
[50]. Furthermore, VMs can be migrated to appropriate locations for resources. Most
of the time, this heavy-weighted operating system image might cause tremendous mi-
gration overhead. Those resources and devices not used in the current computation
should not be included in the image file. However, VMs always have difficulties to
distinguish which resources are useful or not. The safe way is to wrap up the whole
abstract view of the underlying physical machine. Then efficiency drops dramatically.

Although migrating VM itself is not a practical solution for run-time migration,
some process/thread migration systems, such as SNOW [24] and Jessica2 [51], work
on top of VMs to enable the migration in heterogeneous environments. VMs are used
to interpret computation states to hide low-level architecture variety. VMs play a role
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as data converter [24]. The second approach is to represent computation in VMs, i.e.,
computation states are in VMs. Since VMs provide uniform platforms, states can be
fetched in a unique way and heterogeneity issue is resolved smoothly [51].

2.5. Mobile Agents. An mobile agent is a software object and represents an
autonomous computation that can travel in a network to perform tasks on behalf of
its creator. It has the ability to interact with its execution environment, and to act
asynchronously and autonomously upon it. Mobile agents reduce the network load
and overcome the network latency. They travel with their code, data, and states.
The states determine what to do when they resume execution at their destinations.
The code is their object-oriented context, and most existing mobile agent systems,
including Telescript [52], IBM Aglets [53], Agent Tcl [54], and Neplet [55], implement
their agents in object-oriented languages such as Java and Telescript.

Mobile agents demand a different whole coding environment, including new lan-
guage constructs, programming styles, compilers, and execution platforms. Although
current mobile agent systems are intended for general applications and have demon-
strated some progress in internet/mobile computing, it is still not clear how they
will perform for computation-intensive and high performance computing applications
with object-oriented technology. And legacy systems will have to be re-written to
accommodate agents. Thus, this technique has not been accepted widely in high
performance/parallel computing.

3. Design Issues and Technologies. Different computation migration sys-
tems adopts variant approaches to pause computations, construct computation states,
transfer computations to destinations, and resume computations remotely. Although
these systems are designed and deployed in local clusters, they can be extended to
Grids easily by applying the Grid protocols and APIs. Grid resource managers do not
involve in the computation restructuring and transfer. All techniques used in clusters
are reusable. However, they need to be reshuffled properly to fit in the new Grid
infrastructure. The major obstacle preventing computation migration from achieving
widespread use is the complexity of adding transparent migration to systems origi-
nally designed to run stand-alone [56]. Transparency, applicability, and overheads are
the major concerns in system design.

3.1. Granularity. The term granularity refers the size of computation units
which can move around individually. Normally it indicates the flexibility of mobility
systems can provide.

When Virtual Machines” whole system images are dumped as migration units, all
computations over the VM will be transferred together and they cannot be distin-
guished explicitly. Sequential and parallel jobs are treated the same. This extreme
VM migration case is efficient only when all local jobs need to leave the current ma-
chine. User programs are untouched while mobility is available even in heterogeneous
environments. Application programmers are not aware of the migration, but high
overheads and inflexibility are obvious.

From operating systems’ point of view, processes are the basic computation ab-
straction. All sequential computations contain just single processes. In parallel com-
puting, the overall jobs need to be decomposed into multiple tasks. In multi-process
parallel applications such as those using MPI (Message Passing Interface), tasks are
assigned to processes for parallel execution. In such cases, processes are treated
as partial computations. Compared to VM migration, process migration shows its
advantages by reducing overheads significantly and manipulating individual or even
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parts of applications. Some parallel applications can be reconfigured on the fly. Dif-
ferent implementations of process migration provide various transparency levels to
programmers.

To reduce the heavy inter-process context switch overhead, many modern parallel
computing applications adopt multi-threading technique. Each process may contain
multiple threads to share the same address space. Former multi-processed applications
can be replaced by multi-threaded counterparts. Or former processes are partitioned
further into more local threads to achieve finer task decomposition. More parallelism
will be exploited and performance will be improved as well. Sequential applications
can be viewed as single-thread instances while parallel ones consist of multiple threads.
Once threads are used as computation units, thread migration can move sequential
jobs and entire or partial parallel jobs. Since process migration treats multi-threaded
applications as a whole, it will either move the whole computation or activate no
migration. Such “all-or-nothing” scenarios do not exist in thread migration. How-
ever, some thread libraries are invisible to operating systems so that the difficulty of
implementing thread migration is higher than process migration.

Charm++ [57], Emerald [25], and other mobile agent systems provide mechanisms
at languages level to migrate the user defined objects/agents. The sizes of computa-
tion units vary according to the applications. However, new languages and compilers
expose everything to programmers and legacy systems have to be re-deployed. Trans-
parency is the major drawback in this approach.

Granularity selection is based on applications. To achieve high transparency
and low overhead, thread migration seems the good candidate for legacy and high
performance computing applications whereas mobile agents performs well in mobile
and internet computing.

3.2. Implementation Levels. Migration systems can be implemented at dif-
ferent levels as shown in Fig. 3.1. Different approaches demonstrate various results
of transparency and flexibility.

3.2.1. Kernel Level. Kernel-level approach is only adopted by process migra-
tion since other computation unit definitions are out of the control scope of operating
systems. For example, threads are classified as kernel, user, and language threads.
Kernel can only detect kernel threads. However, applications can only use user threads
(defined in user libraries) or language threads like Java thread. In process state im-
age, kernel cannot tell which portion belongs to high-level threads. Then migrating
threads becomes impossible.

Process migration functionality has been implemented in some distributed or net-
worked operating systems, such as MOSIX [12], Sprite [13], Mach [14], Accent [16], V
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[15], Locus [17], and OSF1 AS TNC [18]. These operating systems can access process
state efficiently and support preemptive migration at virtually any point. Thus, they
provide good transparency and flexibility to end users. However, this approach brings
much complexity into kernels and process images cannot be shared between different
operating systems. Therefore, the single system image requirement forces both source
and destination nodes to be under control of the same operating systems, and such
model is unacceptable in common distributed systems. Some systems such as MOSIX,
Sprite and Mach migrate the whole process images whereas others like Accent and
V Kernel apply “Copy-On-Reference” and “precopying” techniques to shorten the
process freeze time. The Beowulf Distributed Process Space (BProc) [19] is set of
kernel modifications, utilities and libraries which allows a user to start processes on
other machines in a Beowulf-style cluster as well. Heterogeneity is the drawback of
this approach since process images can only remain unchanged in the same operat-
ing system environment. On the Grid, computation resources spread across multiple
administrative domains. Same operating systems and versions cannot be guaranteed.

3.2.2. Virtual Machine Level. VM-level migration is good at supporting het-
erogeneity. Virtual machines provide abstract operating system which is independent
from the physical resources. Computation can migrate across different platforms.
Because of heavy-weight computation image and coarse-grained migration unit defi-
nition, VM migration is not widespread used. Only if computations are decomposed
at levels above VM, could the system performance be promising.

3.2.3. User Level. The user-level migration reduces the complexity in modify-
ing kernels. Normally user libraries are used and linked to the application at compile
time. Only process migration can adopt this approach and computation state image
is constructed through library calls. The migration time is typically a function of the
address space size, since the eager data transfer scheme is deployed. Condor [2] and
Libckpt [35] are good examples of this approach. No kernel modification is required
and this approach can achieve almost the same result as kernel-level migration. Since
system calls are invoked in library calls to fetch process images from the kernel, user-
level migration still only works on homogeneous platforms. The only big progress is
to eliminate kernel modification.

3.2.4. Application Level. The migration can also be implemented as part of
an application. Such an approach deliberately sacrifices transparency and reusability
although precompilers/preprocessors are usually required to improve transparency in
certain degree. Both process and thread migration can be implemented at this level.
The computation state can also move into user space to support migration in hetero-
geneous environments. The Tui system [21] provides heterogeneous process migration
by modifying the ACK (Amsterdam Compiler Kit). MigThread [23], SNOW [24],
Porch [37], PREACHES [36] and Process Introspection [22] support heterogeneous
process migration and apply source-to-source transformation to convert programs into
semantically equivalent source programs for saving and recovering state across binary
incompatible machines. MigThread supports thread migration as well. Jessica2 [51]
provides Java thread migration by modifying Java Virtual Machine (JVM) for Java
thread states. JVM is also useful for heterogeneous migration. However, JVM has to
be distributed before computations.

If the precompiler /preprocessor is strong enough to provide sufficient transparency
and granularity is reduced to threads, application-level migration will pose good po-
tential in Grids.
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3.2.5. Language Level. Flexible granularity makes the language-level migra-
tion attractive. At such a high level, flexibility and heterogeneity are guaranteed.
Programmers can define computation units as in mobile agent systems [52, 53, 54, 55].
Charm++ is a machine independent parallel programming system and requires a new
compiler [57]. Emerald is a programming language and an environment that sup-
ports mobile objects in a distributed environment [25]. New languages, compilers,
and programming styles turn into obstacles since programmers have to give up what
they have been familiar with for a long time to adopt the new replacements. Legacy
systems are left behind, and how to handle high performance computing is a research
topic.

3.3. Heterogeneity. Heterogeneity is one of basic factors that distinguish Grid
computing from traditional cluster computing. Migration systems which only work
on homogeneous platforms will face challenges in Grids. Both kernel-level and user-
level migration belongs to this category. While large overheads hassle VM migration,
application-level and language-level migration becomes the only choice.

Most heterogeneous language-level migration systems including mobile agents rely
on virtual machines to tolerate different platforms. Hybrid-level systems like Jessica2
[51] is also bonded with VM. Before a particular VM dominates Grid environments,
all these systems will not be widespread used.

Application-level approaches without VM place few assumption in heterogeneous
Grid environments. Normally they are equipped with their own solutions. The com-
putation state is represented in pure data format. In order to make these states
acceptable across various platforms, data conversion standards are usually adopted.

Most data conversion schemes, such as XDR (External Data Representation) [58],
adopt a canonical intermediate form strategy which provides an external representa-
tion for each data type. This approach requires the sender to convert data to canonical
form and the receiver to convert data from canonical form. Even if both the sender
and receiver are on the same machine, they still need to perform this symmetric con-
version on both ends. Obviously, computational overhead is high, especially for large
data chunks. XDR is one of the most popular representations in this group. It adopts
the untagged data representation approach (except for array lengths) and encodes
only the data instead of data types. Therefore, data types have to be determined by
application protocols. For each data type, there are corresponding routines for its
encoding and decoding. And each platform is only equipped with a set of conversion
routines against this machine-independent format.

Zhou and Geist [59] proposed an asymmetric data conversion technique, called
“receiver makes it right” (RMR), where the sender sends data in its own representation
and data conversion is performed only on the receiver side. Thus, the receiver should
be able to convert and accept data from all other machines. Just as in XDR, RMR
typically flattens complex data structure and associates packing/unpacking routines
with each basic data type. If there are n kinds of different machines, the number of
conversion routine groups will be (n? —n)/2. In theory, the RMR scheme will lead to
bloated code as n increases.

Both the above symmetric and asymmetric conversion strategies require flattening
complex data structures and associating packing/unpacking routines with each basic
data type because the padding patterns in aggregate types are a consequence of the
processor, operating system and compiler, and cannot be determined until run-time.
This data type flattening process incurs tremendous coding burden for programmers.

Some process migration systems can work in heterogeneous environment. Only
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MigThread [60] and Jessica2 [51] are known for supporting heterogeneous thread
migration. The Tui system [21] defined its own symmetric data conversion scheme.
SNOW [24] adopted XDR and Process Introspection [22] used RMR. MigThread
[23] proposed a ”plug-and-play” style data conversion scheme, called Coarse-Grain
Tagged “receiver makes it right” (CGT-RMR) [60], which is an asymmetric data
conversion method to perform data conversion only on the receiver side. This tagged
RMR version scheme can tackle data alignment and padding physically, convert data
structures as a whole, and eventually generate a lighter workload compared to existing
standards.

3.4. Migration Safety. Migration safety concerns precise state construction for
successful migration. VM migration uses VM abstraction to guarantee the correctness
of interpretation. Kernel-level and user-level migration only works on homogeneous
platforms and process state images are unchanged. Language-level migration systems
define computation states at language level and are often equipped with VM support.
Only the application-level approach requires to ensure state correctness, especially
the heterogeneous migration.

Since the computation state consists of stacks and heaps, heterogeneous migration
schemes need to interpret all memory segments precisely. They usually have difficul-
ties in dealing with programs written in type-unsafe languages, such as C [21], where
memory blocks’ dynamic types could be totally different from the types declared in
the program.

Type-safe languages can avoid such type uncertainty. That is, static types de-
clared within a program will be the same as the dynamic types at run-time. No type
casting is allowed, and no type change occurs once programs start running. Thus,
migration/checkpointing schemes can interpret contents of memory segments accu-
rately and build thread states correctly. But “type-safe languages” restriction is too
conservative since many programs written in such languages might be safe for migra-
tion. Most schemes rely on type-safe programming styles [21, 24]. It is impractical
to rely on programmers to identify unsafe language features and avoid using them.
Major unsafe uses come from pointers and their operations. If a pointer is cast into
an integral-type variable before migration/checkpointing and cast back to a pointer
variable later, a scheme might fail to identify the real data type in the memory block
statically declared as an integral type, and miss the pointer updating procedure dur-
ing the migration. Then, subsequent use of the pointer with invalid values can lead
to errors or incorrect results. Therefore, events generating hidden pointers such as
pointer casting are the actions we must forbid. MigThread applied a pointer inference
algorithm [61] to detect hidden pointers. Then programmers are free to write code in
any programming style.

Another unsafe factor is third-party library calls which may leave undetectable
memory blocks and pointers out of the control scope. Without precise understanding,
migration schemes will fail to determine their existence. MigThread can issue compile
time warnings of the potential risks [62].

3.5. Adaptation Points. Migration points reflect the adaptability of computa-
tions. Mobile agents can interact with environments and make travel decision them-
selves. However, normally computations will receive commands passively from Grid
schedulers or resource managers. Systems using kernel-level, user-level, and VM mi-
gration can accept migration request at anytime. Computation images/states will be
dumped instantly. Contents of address space and hardware registers are saved for
migration.
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Application-level approaches need to reconstruct computation states in the ap-
plications and only allow such events to take place at certain convenient positions,
called adaptation points. Applications employ polling strategy to check migration
commands at these adaptation points which are the superset of migration points.
The locations and types of adaptation points are critical since the distance between
two consecutive adaptation points determines the migration scheme’s sensitivity and
overheads. If they are too far apart, applications might be insensitive to the dynamic
situation. But if they are too close, the related overheads will slow down the ac-
tual computation. Most migration systems do not elaborate this issue. SNOW [24]
suggested to insert adaptation points based on the number of floating point opera-
tions although how to count operations in irregular problem applications is unclear.
MigThread [23] proposed a heuristic algorithm to insert adaptation points based on
programming constructs such as loops and function calls [63]. The polling overhead is
reduced to small enough so that more adaptation points may not incur any significant
slowdown.

In parallel applications, sometimes adaptation points can be only inserted at the
locations where all parallel parts are in consistent status. Synchronization points are
good candidates since data copies are synchronized and no transient messages are
on the fly. MigThread inserts pseudo-barriers to only synchronize task progress for
adaptation points [63]. C® [44, 45] proposed non-synchronization schemes to check-
point shared-address-space and message-passing programs. Same strategy can be also
applied to migration case and will be essential to support adaptive parallel computing.

3.6. Communication and I/O support. After migration, how computations
can continue previous communication and issue new I/O operations to original hosts
is still a big challenge in most current migration systems. Only kernel-level migration
can resolve this seamlessly since networked and distributed operating systems have full
control on both source and destination machines. Reconnecting communication and
forwarding I/O requests back to source nodes are straightforward since communication
protocols and I/O device access are all under operating systems’ control.

Without kernel’s support, user-level and application-level migration systems have
to catch communication and I/0 requests before issuing system calls to kernels. Con-
dor [2] proposed a shadow process concept to leave the old precess at the source
machines. The shadow processes keep the old communication channels and forward
newly arrived messages to the new processes on the destination machines. After
migration, I/O requests for file read/write, signals, and device accesses issued by re-
sumed processes will be sent back to shadow processes and performed on the original
machines. This is a generic strategy which can handle the communications in open
systems, i.e., the other end of the original communication channels can be unknown.
But the communication primitive syntax has to be well defined so that messages can
be forwarded back and forth in shadow processes.

In closed systems, communication problem is relatively easier to deal with be-
cause migration systems have full control of communication’s senders and receivers.
Communication primitives are easily replaced or wrapped. SNOW [24] supports con-
tinuous communication in heterogeneous process migration with the support from
PVM (Parallel Virtual Machine). Since both ends of communication are using PVM
and under control, send and receive primitives are rewritten to contain reconnection
functionality. Any command issued after migration will implicitly tear down old com-
munication channel and set up a new one. Transient messages are forwarded to new
locations and message sequences are maintained. The restriction is that the modified
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version of PVM has to be installed ahead. Modifying communication primitives on
other virtual machines or operating systems can achieve the same result. However,
this strategy only works for closed systems. Open systems such as web servers using
socket programming are not applicable.

4. Case Study: MzigThread. MigThread, an application-level heterogeneous
multi-grained computation migration and checkpointing system, is a representative
infrastructure to demonstrate how to apply various effective migration strategies on
the Grid [65]. Both coarse-grained processes and fine-grained threads are supported
and both migration and checkpointing are available, as shown in Figure 4.1. For a
certain process, its threads can simultaneously checkpoint to file systems or migrate to
different destinations. This design brings sufficient flexibility into parallel computing.
For process migration, all internal threads as well as their shared global data are
processed together. Therefore, process migration could be the summation of the ones
for all the internal threads.

4.1. State Construction. The state data typically consists of the process data
segment, stack, heap and register contents. In MigThread, the computation state
is moved out from its original location (libraries or kernels) and abstracted up to
the language level. Therefore, the physical state is transformed into a logical form to
achieve platform-independence and reduce migration restrictions, enabling MigThread
not to rely on any type of thread library or operating system. Both the portability
and the scalability of stack are improved. For threads, there is no need to preallocate
addresses of stacks on each machine which is too costly and almost impossible in
Grid computing environments. The limitation on virtual memory address space is
also removed. User-level management of both stack and heap are provided. Pointers
referencing stack or heap are represented in a generic manner so that they can be
updated precisely after migration and checkpointing.

MigThread consists of two parts: a preprocessor and a run-time support mod-
ule. The preprocessor is designed to transform user’s source code into a format from
which the run-time support module can construct the computation state precisely
and efficiently. Its power can improve the transparency drawback in application-level
schemes. The run-time support module constructs, transfers, and restores computa-
tion state dynamically as well as provides other run-time safety checks.

Handling computation state is the core of migration. State construction is done
by both the preprocessor and the run-time support module. At compile time, all infor-
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mation related to stack variables, function parameters, program counters, and dynam-
ically allocated memory regions, is collected into certain pre-defined data structures
[23].

In order to reduce migration overheads, many systems [21, 24, 22] intend to
determine variables for migration dynamically, i.e., only the modified variables will
be migrated. However, for applications written in C language, it is almost impossible
for the preprocessor/precompiler to detect which variables are touched because of
pointer arithmetic and dereference operations. Tracing variable access at runtime
is too costly and will slow down the whole execution. To ensure the correctness
of migration, MigThread collects globally shared variables and user functions’ local
variables into predefined data structures. During the migration, computation states
will be constructed quickly by merging aggregate data structures instead of selecting
variables one-by-one. Since the address spaces of a thread could be different on source
and destination machines, and stacks and heaps need to be re-created on destination
machines, values of pointers referencing stacks or heaps might become invalid after
migration. The preprocessor run-time support module work together to identify and
mark pointers at the language level so that they can easily be traced and updated
later.

The program counter (PC) is the memory address of the current execution point
within a program. It indicates the starting point after migration. When the PC is
moved up to the language level, it is represented as a series of integer values. In
the transformed code, a switch statement is inserted to dispatch execution to each
labeled point according to the value of PC. The switch and goto statements help
control jump to resumption points quickly.

MigThread also supports user-level memory management for heaps. In application
programs, when malloc() and free() are invoked to allocate and deallocate memory
space, extra statements are appended to trace memory blocks correspondingly. Even-
tually, all computation state related contents, including stacks and heaps, are moved
out to the user space and handled by MigThread directly. This strategy achieves the
foundation for correct state retrieval and fulfills the pre-condition for portability.

4.2. The Data Conversion Scheme. Computation states can be abstracted
to language level and transformed into pure data. If different platforms use different
data formats, then the computation states constructed on one platform need to be
interpreted by another. Thus data conversion is unavoidable.

MigThread adopts a new data conversion scheme, called Coarse-Grain Tagged
“receiver makes it right” (CGT-RMR) [60]. This tagged RMR version scheme can
tackle data alignment and padding physically, convert data structures as a whole, and
eventually generate lighter workload and less programming complexity compared to
existing standards such as XDR [58]. It accepts ASCII character sets, handles byte
ordering, and adopts IEEE 754 floating-point standard because of its dominance in
the market.

With MigThread, programmers do not need to worry about data formats. The
preprocessor parses the source code, sets up type systems, transforms source code, and
communicates with the run-time support module through inserted primitives. The
preprocessor can analyze data types, flatten down aggregate types recursively, detect
padding patterns, and define tags as in Figure 4.2. But the actual tag contents can be
set only at run-time and they may not be the same on different platforms. Since all
of the tedious tag definition work has been performed by the preprocessor, the pro-
gramming style becomes extremely simple. Also, with global control, low-level issues
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Fic. 4.2. Tag definition and generation in MigThread.

such as data conversion status can be conveyed to upper-level scheduling modules.
Therefore, easy coding style and performance gains come from the preprocessor.

In MigThread, tags are used to describe data types and their paddings so that
data conversion routines can handle aggregate types as well as common scalar types.
Tags are defined and generated for these structures as well as dynamically allocated
memory blocks in the heap. At compile time, it is still too early to determine the
content of the tags. The preprocessor defines rules to calculate structure members’
sizes and variant padding patterns, and inserts sprintf() to glue partial results to-
gether. The actual tag generation has to take place at run-time when the sprintf()
statement is executed. Only one statement is issued for each data type, whether it
is a scalar or aggregate type. The flattening procedure is accomplished by MigTh-
read’s preprocessor during tag definition instead of the encoding/decoding process at
run-time. Hence, programmers are freed from this responsibility.

In MigThread, all memory segments for predefined data structures are represented
in a “tag-block” format. The process/thread stack becomes a sequence of these struc-
tures and their tags. Memory blocks in heaps are also associated with such tags to
express the actual layout in memory space. Therefore, the computation state phys-
ically consists of a group of memory segments associated with their own tags in a
“tag-segment” pair format.

CGT-RMR works in a “plug-and-play” style since it does not maintain tables
or routine groups for all possible platforms as in traditional RMR [59]. No special
requirement is imposed for porting it to a new platform.

4.3. State Restoration. On the sender side, there is no need to perform data
conversion. But the receivers have to convert the computation state, i.e., data, as
required. Since activation frames in stacks are re-run and heaps are recreated, a new
set of segments in “tag-block” format is available on the new platform. MigThread
first compares architecture tags by strecmp(). If they are identical and the blocks
have the same sizes, the platforms remain unchanged and the old segment contents
are simply copied over by memcpy() to the new architectures. This enables prompt
processing between homogeneous platforms while symmetric conversion approaches
still suffer data conversion overhead on both ends.

If platforms have been changed, conversion routines are applied on all memory
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segments. For each segment, a “walk-through” process is conducted against its cor-
responding old segment from the previous platform. In these segments, according to
their tags, memory blocks are viewed to consist of scalar type data and padding slots
alternately. The high-level conversion unit is data slots rather than bytes in order to
achieve portability. The “walk-through” process contains two index pointers pointing
to a pair of matching scalar data slots in both blocks. The contents of the old data
slots are converted and copied to the new data slots if byte ordering changes, and
then the index pointers are moved down to the next slots. In the mean time, padding
slots are skipped over. In MigThread, data items are expressed in “scalar type data -
padding slots” pattern to support heterogeneity.

4.4. Safety Issues. MigThread can detect and handle some migration “unsafe”
features, including pointer casting, pointers in unions, library calls, and incompatible
data conversion. Then computation states will be precisely constructed to make those
programs eligible for migration. Programmers are free to code in any programming
style.

Pointer casting does not mean the cast between different pointer types, but the
cast to/from integral types, such as integer, long, or double. The problem is that
pointers might hide in integral type variables. The central issue is to detect those
integral variables containing pointer values (or memory addresses) so that they could
be updated during state restoration. Casting could be direct or indirect.

Pointer arithmetic and operations cause the harmful pointer casting, the most
difficult safety issue. In MigThread, a novel intra-procedural, flow-insensitive, and
context-insensitive pointer inference algorithm is proposed to detect hidden pointers
created by unsafe pointer casting, regardless of whether it is applied in pointer assign-
ments or memcpy() library call. This pointer inference algorithm has the following
features:

e Intra-procedure : Analysis works within the function’s scope. It does not
consider the ripple effect of propagating unsafe pointer casting among func-
tions.

e Flow-insensitivity : Control flow constructs are ignored. It is almost im-
possible to predict the exact execution order because of the potential dynamic
inputs for the program. Conservative solutions might be safer for our case
(pointer casting).

e Context-insensitivity : Different contexts do not be distinguished which
simplifies the algorithm. For larger programs the exponential cost of context-
sensitive algorithms quickly becomes prohibitive.

In C, the ways to modify memory contents include assignment statements, incre-
ment and decrement statements, and library calls. Since the increment and decrement
statements only change data values instead of types, MigThread focuses on the other
two. MigThread uses its type system to identify the types of the left-hand and right-
hand sides of assignments. As type systems need to follow type inference rules, the
pointer inference system has to apply pointer inference rules to detect unsafe pointer
casting [61]. Pointer Casting (PC) Closure concept is used to denote an approximate
superset of possible variables and locations holding hidden pointers.

The static analysis at compile time is the actual process that applies the pointer
inference rules to the source code. It detects suspicious assignments and library calls,
appends corresponding primitives to them for run-time checking, and transforms the
source code. At run-time, the dynamic check section is activated by the primitives
inserted at compile time. Clearly, if PC Closure is empty and no primitives are
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inserted, the dynamic check will not be performed. During the dynamic check, another
red-black tree is maintained to record actual unsafe pointer casting variables and
locations. This is a precise set, unlike the approximate superset (closure) at compile
time. And it may expand and shrink to reflect the real situation in program execution.
With this algorithm, MigThread can either trace and recover unsafe pointer uses or
simply abort the migration and checkpointing actions.

Union is a construct where pointers can evade updating since pointer fields’ value
can be referenced nonpointer fields. MigThread to trace the field use and identify
the dynamic situation on the fly. In the program, once the preprocessor detects that
a certain member of the union variable is in use, it inserts a primitive to inform
the runtime support module which member and its corresponding pointer fields are
in activation. The records for previous members’ pointer subfields become invalid
because of the ownership changing in the union variable. A linked list is used to
maintain these inner pointers and get them updated after migration.

Library calls bring difficulties to all migration schemes since it is hard to figure out
what is going on inside the library code. It is even harder for application-level schemes
because they work on the source code and “memory leakage” might happen in the
libraries. Without source code of libraries, it is difficult to catch all memory allocations
because of the “blackbox” effect. The current version of MigThread provides a user
interface to specify the syntax of certain library calls so that the preprocessor can
know how to insert proper primitives for memory management and pointer tracing.

The final unsafe factor is the incompatible data conversion. Between incompatible
platforms, if data items are converted from higher precision formats to lower precision
formats, precision loss may occur. But if the high end portion of an unsigned number
contains all-zero content, it is safe to throw them away since data values still remain
unchanged. MigThread intends to convert data unless precision loss occurs. This
aggressive data conversion enables more programs for migration without aborting
them too conservatively. Detecting incompatible data formats and conveying this
low-level information up to the scheduling module can help abort data restoration
promptly.

In MigThread, pointer inference algorithm, a friendly user interface, and the data
conversion scheme CGT-RMR work together to eliminate unsafe factors to qualify
almost all programs for migration.

4.5. Adaptation Point Analysis. Since MigThread is an application-level mi-
gration system, certain code needs to be inserted into user programs in order to enable
migration functionality. Instead of selecting actual adaptation points, MigThread pro-
posed a strategy to aggressively insert potential adaptation points. Whether these
adaptation points will be actually executed is determined by the scheduler which dy-
namically collects load information from all related machines. Once it determines
that a thread/process needs to be migrated to another machine, it sends a signal to
MigThread and the signal handler will set the migration flag so that the corresponding
thread/process will be actually migrated at the next potential adaptation point. Since
threads only check the true/false value of flag variables, they do not need to contact
the scheduler directly and no further communication overhead will be introduced.
Therefore, cost can be reduced significantly.

User programs consist of loops, common non-loop code blocks, function calls,
and library calls. The preprocessor scans the program and detects all programming
constructs. For non-nested loops, a potential adaptation point is inserted right after
the last statement in the single loops. In case of nested loop, potential adaptation
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points are inserted inside the innermost loop since the code in inner loop will also be
executed in its outer loop.

Non-loop instructions including branch instructions will be ignored since they
usually do not consume a lot of time as indicated in the experiments [63]. However,
even if there are no loops in a subroutine, recursive functions and nested calls could
consume a long period of time. So, at least one potential adaptation point is inserted
at the end of the subroutine.

Library and system calls can cause problems to all application-level migration ap-
proaches since no source code is available to insert potential adaptation points at the
high level. However, to achieve better portability of the application-level approach,
it is reasonable to give up the sensitivity during the third-party library call proce-
dures. Luckily, the execution time of most library calls is relatively short. System
calls and I/O operations might take longer time according to the size of data bulk.
This heuristic algorithm might suffer bad insensibility which declares a drawback in
application-level approaches.

For some parallel applications where relaxed memory consistency models are used,
pseudo-barrier primitive is inserted first to synchronize computation progress of mul-
tiple threads/processes across different machines. If any thread/process is scheduled
for migration, real barrier operation will be activated to synchronize both computa-
tion progress and data copies. With little adaptation overhead, migration is achieved
without any data consistency violation which is particularly critical in DSM systems
[63].

MigThread is still underdevelopment. Many important features such I/O and
communication operations are not included in the current version. How to support
parallel computing on the Grid is not clear. However, this prototype demonstrates
that many migration issues can be addressed and computation migration is feasible
on the Grid.

5. Conclusions and Future Work. As resource sharing is one of the major
goals of the Grid, data and computation movements are frequently on demand. Mov-
ing computations on the Grid requires a flexible and portable migration system to
fit the dynamic and heterogeneous underlying environments. Existing systems still
cannot provide a satisfactory solution, and this further prevents the Grid from being
widely used. An efficient, practical, and flexible computation migration system is on
demand.

This chapter identifies major issues in developing a mature computation migration
system, including granularity, implementation levels, heterogeneity, migration safety,
adaptation points, and communication and I/O support. The dominant factor is how
to define a portable self-contained computation unit to fit the Grid. Since general
applications are the target, fine-grained threads can be reasonably treated as the
basic computation units to support both sequential and adaptive parallel computing.
Application-level migration approach will be the only candidate in the heterogeneous
Grid computing environments. Few restrictions may be placed on programs so that
programmers can code in any style. The migration systems should be sensitive enough
to dynamically load-changing environments. In addition, the communication and I/O
need to be supported even in open systems.

Although no mature migration system exists on the Grid, he prototype system,
MigThread, has indicated that multi-grained application-level migration approach is a
good candidate and most issues can be resolved smoothly. However, communication
and I/O operations in open systems are still under development. Current systems
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be used as guidelines to deploy the next generation migration system. Only

when both data and computation migration schemes are ready, could resources be
shared effective on the Grid. In another word, these migration techniques clean off
the obstacles for Grid computing.
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