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Abstract

Process/thread migration and checkpointing schemes
support load balancing, load sharing and fault tolerance to
improve application performance and system resource us-
age on workstation clusters. To enable these schemes to
work in heterogeneous environments, we have developed
an application-level migration and checkpointing pack-
age, MigThread, to abstract computation states at the lan-
guage level for portability. To save and restore such states
across different platforms, this paper proposes a novel “Re-
ceiver Makes Right” (RMR) data conversion method, called
Coarse-Grain Tagged RMR (CGT-RMR), for efficient data
marshalling and unmarshalling. Unlike common data rep-
resentation standards, CGT-RMR does not require program-
mers to analyze data types, flatten aggregate types, and en-
code/decode scalar types explicitly within programs. With
help from MigThread’s type system, CGT-RMR assigns a
tag to each data type and converts non-scalar types as a
whole. This speeds up the data conversion process and
eases the programming task dramatically, especially for the
large data trunks common to migration and checkpoint-
ing. Armed with this “Plug-and-Play” style data conver-
sion scheme, MigThread has been ported to work in hetero-
geneous environments. Some microbenchmarks and perfor-
mance measurements within the SPLASH-2 suite are given
to illustrate the efficiency of the data conversion process.

1. Introduction

Migration concerns saving the current computation state,
transferring it to remote machines, and resuming the execu-
tion at the statement following the migration point. Check-
pointing concerns saving the computation state to file sys-
tems and resuming the execution by restoring the compu-
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tation state from saved files. Although the state-transfer
medium differs, migration and checkpointing share the
same strategy in state handling. To improve application per-
formance and system resource utilization, they support load
balancing, load sharing, data locality optimization, and fault
tolerance.

The major obstacle preventing migration and check-
pointing from achieving widespread use is the complexity of
adding transparent migration and checkpointing to systems
originally designed to run stand-alone [1]. Heterogeneity
further complicates this situation. But migration and check-
pointing are indispensable to the Grid [2] and other loosely
coupled heterogeneous environments. Thus, effective solu-
tions are on demand.

To hide the different levels of heterogeneity, we have de-
veloped an application level process/thread migration and
checkpointing package, MigThread, which abstracts the
computation state up to the language level [3, 4]. For ap-
plications written in the C language, states are constructed
in the user space instead of being extracted from the origi-
nal kernels or libraries for better portability across different
platforms. A preprocessor transforms source code at com-
pile time while a run-time support module dynamically col-
lects the state for migration and checkpointing.

The computation state is represented in terms of data.
To support heterogeneity, MigThread is equipped with a
novel “plug-and-play” style data conversion scheme called
coarse-grain tagged “Receiver Makes Right” (CGT-RMR).
It is an asymmetric data conversion method to perform data
conversion only on the receiver side. Since common data
representation standards are separate from user applications,
programmers have to analyze data types, flatten down ag-
gregate data types, such as structures, and encode/decode
scalar types explicitly in programs. With help from MigTh-
read’s type system, CGT-RMR can detect data types, gener-
ate application-level tags for each of them, and ease the bur-
den of data conversion work previously left to the program-
mer. Aggregate type data are handled as a whole instead
of being flattened down recursively in programs. Therefore,
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foo()
{
  int      a; 
  double   b; 
  int     *c; 
  double **d; 
        . 
        . 
        . 
}

Figure 1. The original function.

compared to common standards, CGT-RMR is more conve-
nient in handling large data chunks. In migration and check-
pointing, computation states spread out in terms of memory
blocks, and CGT-RMR outperforms normal standards by a
large margin. Also, no large routine groups or tables are
constructed as in common RMR [8].

Architecture tags are generated on the fly so that new
computer platforms can be adopted automatically. CGT-
RMR takes an aggressive data conversion approach between
incompatible platforms. The low-level data conversion fail-
ure events can be conveyed to the upper-level MigThread
scheduling module to ensure the correctness of real-time
migration and checkpointing. Empowered with CGT-RMR,
MigThread can handle migration and checkpointing across
heterogeneous platforms.

The remainder of this paper is organized into seven sec-
tions. Section 2 provides an overview of migration and
checkpointing. Section 3 discusses data conversion issues
and some existing schemes. In Section 4, we provide the
detail of designing and implementing CGT-RMR in MigTh-
read. Section 5 presents some microbenchmarks and exper-
imental results from real benchmark programs. In Section
6, we discuss related work. Section 7 discusses our conclu-
sions and future work.

2. Migration and Checkpointing

Migration and checkpointing concerns constructing,
transferring, and retrieving computation states. Despite the
complexity of adding transparent support, migration and
checkpointing continue to attract attention due to the po-
tential for computation mobility.

2.1. MigThread

MigThread is an application-level multi-grained migra-
tion and checkpointing package [3], which supports both
coarse-grained processes and fine-grained threads. MigTh-
read consists of two parts: a preprocessor and a run-time
support module.

The preprocessor is designed to transform a user’s source
code into a format from which the run-time support module
can construct the computation state efficiently. Its power
can improve the transparency drawback in application-level

MTh_foo()
{

struct MThV_t { 
      void   *MThP; 
      int     stepno; 

      int        a; 
      double     b; 
  } MThV;

struct MThP_t { 
      int       *c; 
      double   **d; 
  } MThP;

  MThV.MThP = (void *)&MThP; 
         . 
         . 
         . 
}

Figure 2. The transformed function.

schemes. The run-time support module constructs, trans-
fers, and restores computation states dynamically [4].

Originally, the state data consists of the process data seg-
ment, stack, heap and register contents. In MigThread, the
computation state is moved out from its original location (li-
braries or kernels) and abstracted up to the language level.
Therefore, the physical state is transformed into a logical
form to achieve platform-independence. All related infor-
mation with regard to stack variables, function parameters,
program counters, and dynamically allocated memory re-
gions, is collected into pre-defined data structures [3].

Figures 1 and 2 illustrate a simple example for such a
process, with all functions and global variables transformed
accordingly. A simple function foo() is defined with four
local variables as in Figure 1. MigThread’s preproces-
sor transforms the function and generates a corresponding
MTh foo() shown in Figure 2. All non-pointer variables
are collected in a structure MThV while pointers are moved
to another structure MThP. Within MThV, field MThV.MThP
is the only pointer, pointing to the second structure, MThP,
which may or may not exist. Field MThV.stepno is a logi-
cal construction of the program counter to indicate the pro-
gram progress and where to restart. In process/thread stacks,
each function’s activation frame contains MThV and MThP
to record the current function’s computation status. The
overall stack status can be obtained by collecting all of these
MThV and MThP data structures spread in activation frames.

Since address spaces could be different on source and
destination machines, values of pointers referencing stacks
or heaps might become invalid after migration. It is the
preprocessor’s responsibility to identify and mark pointers
at the language level so that they can easily be traced and
updated later. MigThread also supports user-level memory
management for heaps. Eventually, all state related con-
tents, including stacks and heaps, are moved out to the user
space and handled by MigThread directly.
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2.2. Migration and Checkpointing Safety

Migration and checkpointing safety concerns ensuring
the correctness of resumed computation [4, 5]. In other
words, computation states should be constructed precisely,
and restored correctly on similar or different machines. The
major identified unsafe factors come from unsafe type sys-
tems (such as the one in C) and third-party libraries [4]. But
for heterogeneous schemes, if data formats on different ma-
chines are incompatible, migration and resuming execution
from checkpoint files might lead to errors. This requires
that upper level migration/checkpointing schemes be aware
of the situation in lower level data conversion routines.

MigThread supports aggressive data conversion and
aborts state restoration only when “precision loss” events
occur. Thus, the third unsafe factor for heterogeneous
schemes, incompatible data conversion, can be identified
and handled properly.

3. Data Conversion

Computation states can be transformed into pure data.
If different platforms use different data formats and com-
putation states constructed on one platform need to be in-
terpreted by another, the data conversion process becomes
unavoidable.

3.1. Data Conversion Issues

In heterogeneous environments, common data conver-
sion issues are identified as follows:

• Byte Ordering : Either big endian or little endian.

• Character Sets : Either ASCII or EBCDIC represen-
tation.

• Floating Point Standards : IEEE 754, IEEE 854,
CRAY, DEC or IBM standard.

• Data Alignment and Padding : Data is naturally
aligned when the starting address is on a “natural
boundary.” This means that the starting memory
address is a multiple of the data’s size. Structure
alignment can result in unused space, called padding.
Padding between members of a structure is called in-
ternal padding. Padding between the last member and
the end of the space occupied by the structure is called
tail padding. Although natural boundary can be the
default setting for alignment, data alignment is actu-
ally determined by processors, operating systems, and
compilers. To avoid such indeterministic alignment
and padding, many standards flatten native aggregate
data types and re-represent them in their own default
formats.

• Loss of Precision : When high precision data are con-
verted to their low precision counter-parts, loss of pre-
cision may occur.

3.2. Data Conversion Schemes

Data representations can be either tagged or untagged. A
tag is any additional information associated with data that
helps a decoder unmarshal the data.

Canonical intermediate form is one of the major data
conversion strategies which provides an external represen-
tation for each data type. Many standards adopt this ap-
proach, such as XDR (External Data Representation) [6]
from Sun Microsystems, ISO ASN.1 (Abstract Syntax No-
tation One) [7], CCSDS SFDU (Standard Formatted Data
Units), ANDF (Architecture Neutral Data Format), IBM
APPC GDS (General Data Stream), ISO RDA (Remote
Data Access), and others [8]. Such common data formats
are recognized and accepted by all different platforms to
achieve data sharing. Even if both the sender and receiver
are on the same machine, they still need to perform this sym-
metric conversion on both ends. XDR adopts the untagged
data representation approach. Data types have to be deter-
mined by application protocols and associated with a pair of
encoding/decoding routines.

Zhou and Geist [8] took another approach, called “re-
ceiver makes it right”, which performs data conversion only
on the receiver side. If there are n machines, each of a dif-
ferent type, the number of conversion routine groups will be
(n2−n)/2. In theory, the RMR scheme will lead to bloated
code as n increases. Another disadvantage is that RMR is
not available for newly invented platforms.

4. Coarse-Grain Tagged RMR in MigThread

The proposed data conversion scheme is a “Receiver
Makes Right” (RMR) variant which only performs the con-
version once. This tagged version can tackle data alignment
and padding physically, convert data structures as a whole,
and eventually generate a lighter workload compared to ex-
isting standards.

An architecture tag is inserted at the beginning. Since the
byte ordering within the network is big-endian, simply com-
paring data representation on the platform against its format
in networks can detect the endianness of the platform. Cur-
rently MigThread only accepts ASCII character sets and is
not applicable on some IBM mainframes. Also, IEEE 754
is the adopted floating-point standard because of its dom-
inance in the market, and MigThread can be extended to
other floating-point formats.
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4.1. Tagging and Padding Detection

For data conversion schemes, the tagged approaches as-
sociate each data item with its type attribute so that receivers
can decode each item precisely. With this, fewer conver-
sion routines are required. But tags create an extra workload
and slow down the whole process. However, untagged ap-
proaches maintain large sets of conversion routines and en-
coding/decoding orders have to be handled explicitly in ap-
plication programs. Performance improvement comes from
the extra coding burden.

In existing data format standards, both tagged and un-
tagged approaches handle basic (scalar) type data on a one-
by-one basis. Aggregate types need to be flattened down to
a set of scalar types for data conversion. The main reason
is to avoid the padding issue in aggregate types. Since the
padding pattern is a consequence of the processor, operating
system, and compiler, the padding situation only becomes
deterministic at run-time. It is impossible to determine a
padding pattern in programs and impractical for program-
mers to convey padding information from programs to con-
version routines at run-time. This is because programs can
only communicate with conversion routines in one direction
and programming models have to be simple. Most existing
standards choose to avoid padding issues by only handling
scalar types directly.

MigThread is a combination of compile-time and run-
time supports. Its programmers do not need to worry about
data formats. The preprocessor parses the source code, sets
up type systems, and transforms source code to commu-
nicate with the run-time support module through inserted
primitives. With the type system, the preprocessor can an-
alyze data types, flatten down aggregate types recursively,
detect padding patterns, and define tags. But the actual tag
contents can be set only at run-time and they may not be
the same on different platforms. Since all of the tedious tag
definition work has been performed by the preprocessor, the
programming style becomes extremely simple. Also, with
the global control, low-level issues such as the data conver-
sion status can be conveyed to upper-level scheduling mod-
ules. Therefore, easy coding style and performance gains
come from the preprocessor.

In MigThread, tags are used to describe data types and
their padding situations so that data conversion routines can
handle aggregate types as well as common scalar types. As
we discussed in Section 2, global variables and function lo-
cal variables in MigThread are collected into their corre-
sponding structure type variables MThV and MThP which
are registered as the basic units. Tags are defined and gen-
erated for these structures as well as dynamically allocated
memory blocks in the heap.

For the simple example in Section 2 (Figures 1 and 2),
tag definitions of MThV heter and MThP heter for MThV

MTh_foo()
{                   . 
                    . 
                    . 
  char MThV_heter[60]; 
  char MThP_heter[41]; 

  int MTh_so2 = sizeof(double); 
  int MTh_so1 = sizeof(int); 
  int MTh_so4 = sizeof(struct MThP_t); 
  int MTh_so3 = sizeof(struct MThV_t); 
  int MTh_so0 = sizeof(void *); 

sprintf(MThV_heter, "(%d,-1)(%d,0) 
(%d,1)(%d,0)(%d,1)(%d,0)(%d,1)(%d,0)", MTh_so0, 
(long)&MThV.stepno-(long)&MThV.MThP-MTh_so0,
MTh_so1, (long)&MThV.a-(long)&MThV.stepno-
MTh_so1, MTh_so1,(long)&MThV.b-(long)&MThV.a- 
MTh_so1, MTh_so2,(long)&MThV+MTh_so3-
(long)&MThV.b-MTh_so2);

sprintf(MThP_heter, "(%d,-1)(%d,0)(%d,-1) 
(%d,0)", MTh_so0,(long)&MThP.d-(long)&MThP.c-
MTh_so0, MTh_so0,(long)&MThP+MTh_so4-
(long)&MThP.d-MTh_so0);
                    . 
                    . 
                    . 
}

Figure 3. Tag definition at compile time.
 char MThV_heter[60]="(4,-1)(0,0)(4,1)
         (0,0)(4,1)(0,0)(8,0)(0,0)”; 
 char MThP_heter[41]=”(4-1)(0,0)(4,-1)(0,0)”;

Figure 4. Tag calculation at run-time.

and MThP are shown in Figure 3. It is still too early to
determine the content of the tags within programs. The pre-
processor defines rules to calculate structure members’ sizes
and variant padding patterns, and inserts sprintf() to glue
partial results together. The actual tag generation has to take
place at run-time when the sprintf() statement is executed.
On a Linux machine, the simple example’s tags can be two
character strings as shown in Figure 4.

A tag is a sequence of (m,n) tuples, and can be expressed
in one of the following cases (where m and n are positive
numbers):

• (m,n) : scalar types. The item “m” is simply the size
of the data type. The “n” indicates the number of such
scalar types.

• ((m′, n′)...(m′′, n′′), n) : aggregate types. The “m”
in the tuple (m,n) can be substituted with another tag
(or tuple sequence) repeatedly. Thus, a tag can be ex-
panded recursively for those enclosed aggregate type
fields until all fields are converted to scalar types. The
second item “n” still indicates the number of the top-
level aggregate types.

• (m,−n) : pointers. The “m” is the size of pointer
type on the current platform. The “-” sign indicates
the pointer type, and the “n” still means the number of
pointers.

• (m, 0) : padding slots. The “m” specifies the number
of bytes this padding slot can occupy. The (0, 0) is a
popular case and indicates no padding.
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Walk
through 

Old tag: (m1,n1)(m2,n2)… New tag: (m1’,n1’)(m2’,n2’)… 

Old block New block

padding padding 

Figure 5. Walk through “tag-block” format
segments.

In programs, only one statement is issued for each data type,
whether it is a scalar or aggregate type. The flattening pro-
cedure is accomplished by MigThread’s preprocessor dur-
ing tag definition instead of the encoding/decoding process
at run-time. Hence, programmers are freed from this re-
sponsibility.

4.2. Data Restoration

Each function contains one or two structures and cor-
responding tags depending on whether MThP exists. In
MigThread, all memory segments for these structures are
represented in a “tag-block” format. The process/thread
stack becomes a sequence of MThV, MThP and their tags.
Memory blocks in heaps are also associated with such tags
to express the actual layout in memory space. Therefore, the
computation state physically consists of a group of memory
segments associated with their own tags in a “tag-segment”
pair format. To support heterogeneity, MigThread executes
data conversion routines against these coarse-grained mem-
ory segments instead of the individual data object. Perfor-
mance gains are guaranteed.

The receivers or reading processes of checkpointing files
need to convert the computation state, i.e., data, as required.
Since activation frames in stacks are re-run and heaps are
recreated, a new set of segments in “tag-block” format is
available on the new platform. MigThread first compares ar-
chitecture tags by strcmp(). If they are identical and blocks
have the same sizes, this means the platform remains un-
changed and the old segment contents are simply copied
over by memcpy() to the new architectures. This enables
prompt processing between homogeneous platforms while
symmetric conversion approaches still suffer data conver-
sion overhead on both ends.

If platforms have been changed, conversion routines are
applied on all memory segments. For each segment, a
“walk-through” process is conducted against its correspond-
ing old segment from the previous platform, as shown in
Figure 5. In these segments, according to their tags, memory
blocks are viewed to consist of scalar type data and padding

slots alternatively. The high-level conversion unit is data
slots rather than bytes in order to achieve portability. The
“walk-through” process contains two index pointers point-
ing to a pair of matching scalar data slots in both blocks.
The contents of the old data slots are converted and copied
to the new data slots if byte ordering changes, and then in-
dex pointers moved down to the next slots. In the mean
time, padding slots are skipped over, although most of them
are defined as (0, 0) to indicate that they do not physically
exist. In MigThread, data items are expressed in “scalar type
data - padding slots” pattern to support heterogeneity.

4.3. Data Resizing

Between incompatible platforms, if data items are con-
verted from higher precision formats to lower precision for-
mats, precision loss may occur. Normally higher precision
format data are longer so that the high end portion cannot
be stored in lower precision formats. But if the high end
portions contain all-zero content, it is safe to throw them
away since data values still remain unchanged. MigThread
takes this aggressive strategy and intends to convert data un-
til precision loss occurs. More programs are qualified for
migration and checkpointing. Detecting incompatible data
formats and conveying this low-level information up to the
scheduling module can help abort data restoration promptly
for safety.

4.4. Plug-and-play

We declare CGT-RMR as a “plug-and-play” style
scheme, and it does not maintain tables or routine groups for
all possible platforms. Since almost all forthcoming plat-
forms are following the IEEE floating-point standard, no
special requirement is imposed for porting code to a new
platform. However, adopting old architectures such as IBM
mainframe, CRAY and DEC requires some special conver-
sion routines for floating-point numbers.

5. Microbenchmarks and Experiments

One of our experimental platforms is a SUN Enterprise
E3500 with 330Mhz UltraSparc processors and 1Gbytes of
RAM, running Solaris 5.7. The other platform is a PC with
a 550Mhz Intel Pentium III processor and 128Mbytes of
RAM, running Linux. The CGT-RMR scheme is applied
for data conversion in migration and checkpointing between
these two different machines.

PVM (Parallel Virtual Machine) uses the XDR standard
for heterogeneous computing. Thus, some process migra-
tion schemes, such as SNOW [12], apply XDR indirectly
by calling PVM primitives. Even the original RMR imple-
mentation was based on XDR’s untagged strategy [8]. Since
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Figure 7. Conversion costs of integer arrays.

most existing systems adopt XDR or similar data conver-
sion strategies [11, 5, 12], we compare our CGT-RMR with
XDR implementation in PVM to predict the performance of
MigThread and other similar systems.

The costs of converting scalar data types are shown in
Figure 6. Data are encoded on one platform and decoded on
another platform. For scalar types, such as char, short, int,
long and double, the PVM’s XDR implementation (PVM-
XDR) is slower than CGT-RMR, which is even faster in ho-
mogeneous environments since no conversion actually oc-
curs. Also XDR forces the programmer to encode and de-
code data even on the same platforms. Figure 6 indicates
that CGT-RMR can handle basic data units more efficiently
than PVM-XDR.

To test the scalability, we apply the two schemes on in-
teger and structure arrays. Figure 7 shows an integer ar-
ray’s behavior. In homogeneous environments, i.e., both
encoding and decoding operations are performed on either
the Solaris or Linux machine, CGT-RMR demonstrates vir-
tually no cost and excellent scalability. In heterogeneous

struct { 
   char     a; 
   short    b; 
   int      c; 
   long     d; 
   double   e; 
} s[n]; 

Figure 8. The structure array.
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Figure 9. Conversion costs of structure ar-
rays.

environments, i.e., encoding data on Solaris or Linux and
decoding data on a different machine, CGT-RMR incurs a
little more overhead, shown by the top two curves. The four
curves in the middle are from PVM-XDR which does not
vary much by different platform combinations, nor can it
take advantage of homogeneous environments. This indi-
cates that PVM-XDR has a little better scalability on scalar
type arrays in heterogeneous environments.

The conversion overheads of structure arrays are simu-
lated in Figure 9. Figure 8 lists the sample structure ar-
ray which contains 5 common scalar type fields with differ-
ent data alignment requirements. Again, in a homogeneous
environment, CGT-RMR causes virtually no overhead. Its
heterogeneous cases, the top two curves start merging with
the 4 PVM-XDR curves. Because of the padding issue in
structures, programmers have to encode/decode each field
explicitly which diminishes XDR’s advantage in scalar ar-
rays and incurs tremendous programming complexity. In
the simple case shown in Figure 8, assuming that n is the
number of scalar types, there will be 10n encoding and de-
coding statements hand-coded by programmers. In CGT-
RMR, only one primitive is required on each side, and the
preprocessor can handle all other tag generation details au-
tomatically. Therefore, CGT-RMR eases the coding com-
plexity dramatically in complex cases such as migration and
checkpointing schemes where large computation states are
common.

To evaluate the CGT-RMR strategy in real applications,
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Table 1. Migration and Checkpointing Overheads in real applications (Microseconds)

Program Platform State Save Read Send Convert Convert Update
(Func. Act.) Pair Size (B) Files Files Socket Stack Heap Pointers

Solaris-Solaris 78016 96760 24412 26622 598 1033 364
FFT Linux-Solaris 78024 48260 24492 29047 1581 57218 459
( 2215 ) Solaris-Linux 78016 96760 13026 16948 923 28938 443
1024 Linux-Linux 78024 48260 13063 17527 387 700 399

Solaris-Solaris 2113139 2507354 4954588 4939845 589 27534 5670612
LU-c Linux-Solaris 2113170 1345015 4954421 5230449 1492 3158140 6039699
( 2868309 ) Solaris-Linux 2113139 2507354 7011277 7045671 863 2247536 8619415
512x512 Linux-Linux 2113170 1345015 7058531 7131833 385 19158 8103707

Solaris-Solaris 135284 165840 51729 53212 528 2359 306
LU-n Linux-Solaris 135313 85053 51501 62003 1376 103735 322
( 8867 ) Solaris-Linux 135284 165840 40264 44901 837 52505 359
128x128 Linux-Linux 135313 85053 40108 56695 357 1489 377

Solaris-Solaris 397259 501073 166539 164324 136 2561 484149
MatMult Linux-Solaris 397283 252926 120229 220627 385 306324 639281
( 6 ) Solaris-Linux 397259 501073 166101 129457 862 604161 482380
128x128 Linux-Linux 397283 252926 120671 130107 100 3462 640072

we apply it on FFT, continuous and non-continuous versions
of LU from the SPLASH-2 suite, and matrix multiplication
applications. We predefine the adaptation points for migra-
tion or checkpointing. The detailed overheads are listed in
Table 1. With certain input sizes, applications are paused on
one platform to construct computation states whose sizes
can vary from 78K to 2M bytes in these sample programs.
Then the computation states are transferred to another plat-
form for migration, or saved into file systems and read out
by another process on another platform for checkpointing.

CGT-RMR plays a role in data conversion in stacks, data
conversion in heaps, and pointer updating in both areas.
In FFT and LU-n, large numbers of memory blocks are
dynamically allocated in heaps. In homogeneous environ-
ments, stacks and heaps are recreated without data conver-
sion. But in heterogeneous environments, converting data
in large heaps dominates the CPU time. On the other hand,
LU-c and MatMult are deployed as pointer-intensive ap-
plications. When computation states are restored, pointer
updating is an unavoidable task. In homogeneous envi-
ronments with no data conversion issue, the CPU simply
devotes itself to pointer updating. Even in heterogeneous
cases, pointer updating is still a major issue although their
large heaps also incur noticeable overheads. The time spent
on stacks is negligible. It is clear that overhead distribu-
tion is similar for both homogeneous and heterogeneous en-
vironments in XDR or similar standards. CGT-RMR runs
much faster in homogeneous environments and is similar in
performance of XDR in heterogeneous environments.

From the microbenchmarks, we can see that CGT-RMR

takes less time in converting scalar type data and pro-
vides distinct advantages in programming complexity. XDR
only shows limited advances in scalar array processing with
tremendous coding effort from programmers. The experi-
ments on real applications detail the overhead distribution
and indicate that CGT-RMR helps provide a practical mi-
gration and checkpointing solution with minimal user in-
volvement and satisfactory performance.

6. Related Work

There have been a number of notable attempts at design-
ing process migration and checkpointing schemes, however,
few implementations have been reported in literature with
regard to the fine-grain thread migration and checkpointing.
An extension of the V migration mechanism is proposed in
[9]. It requires both compiler and kernel support for migra-
tion. Data has to be stored at the same address in all mi-
grated versions of the process to avoid pointer updating and
variant padding patterns in aggregate types. Obviously this
constraint is inefficient or even impossible to meet across
different platforms.

Another approach is proposed by Theimer and Hayes in
[10]. Their idea was to construct an intermediate source
code representation of a running process at the migration
point, migrate the new source code, and recompile it on
the destination platform. An extra compilation might incur
more delays. Efficiency and portability are the drawbacks.

The Tui system [5] is an application-level process mi-
gration package which utilizes compiler support and a de-
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bugger interface to examine and restore process states. It
applies an intermediate data format to achieve portability
across various platforms. Just as in XDR, even if migration
occurs on the same platform, data conversion routines are
still performed twice.

Process Introspection (PI) [11] uses program annota-
tion techniques as in MigThread. PI is a general approach
for checkpointing and applies the “Receiver Makes Right”
(RMR) strategy. Data types are maintained in tables and
conversion routines are deployed for all supported plat-
forms. Aggregate data types are still flattened down to scalar
types (e.g., int, char, long, etc) to avoid dealing with data
alignment and padding. MigThread does this automatically.

SNOW [12] is another heterogeneous process migration
system which tries to migrate live data instead of the stack
and heap data. SNOW adopts XDR to encode and decode
data whereas XDR is slower than the RMR used in PI [8].
PVM installation is a requirement.

Virtual machines are the intuitive solution to provide ab-
stract platforms in heterogeneous environments. Some mo-
bile agent systems such as the Java-based IBM Aglet [13]
use such an approach to migrate computation. However, it
suffers from slow execution due to interpretation overheads.

7. Conclusions and Future Work

We have discussed a data conversion scheme, (CGT-
RMR), which enables MigThread to not flatten down ag-
gregate types into scalar (primitive) data types within data
conversion routines. In fact, type flattening takes place in
the tag definition process which is conducted by MigTh-
read’s preprocessor. The contents of tags are determined
at run-time to eliminate possible alignment affecting factors
from CPUs, operating systems, and compilers. Since tags
help resolve data alignment and padding, CGT-RMR pro-
vides significant coding convenience to programmers and
contributes a feasible data conversion solution in heteroge-
neous migration and checkpointing.

Performing data conversion only on the receiver side,
CGT-RMR exhibits tremendous efficiency in homogeneous
environments and performance similar to XDR in hetero-
geneous environments. Without tables or special data con-
version routines, CGT-RMR adopts “plug-and-play” design
and can be applied on new computer platforms directly.

Our future work is to build a new data conversion API
so that programmers can use CGT-RMR directly rather than
through MigThread. To accomplish a universal data con-
version scheme, CGT-RMR requires MigThread’s prepro-
cessor as its back-end because the preprocessor’s type sys-
tem is still indispensable. Working as a stand-alone stan-
dard such as XDR, CGT-RMR will benefit other migration
and checkpointing schemes, and any applications running in
heterogeneous environments.
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