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Abstract - The mapping problem arises when the dependency struc- 
ture of a parallel algorithm differs from the interconnection of proces- 
sors in the intended parallel computer (topological variation) or, when 
the number of processes required by the algorithm exceeds the num- 
ber of processors available in the computer (cardinality variation). The 
problem discussed in this paper is to identify a distributed computing 
environment that best optimizes the objective function for the given 
problem. Distinct network permutations may result in equivalent pro- 
cess permutation depending upon t,he mapping of processes onto the 
processors. In this paper we study the permuting properties of d y n m -  
ic interconnection networks taking process mapping into consideration. 
A uniform group theoretic representation for interconnection networks 
is developed. Finally, an algorithm to evaluate the number of passes 
required by an interconnection network t,o realize a given mapping is 
presented. 

INTRODUCTION 

Parallel computers have been employed in a wide variety of applica- 
tions because they provide excellent speed and cost effectiveness. A 
fundamental task in the implemcntation of a parallel algorithm on a 
parallel computer is the allocation of processes and their dependencies 
in the algorithm to processors and their interconnections in the given 
computer [ I ,  21. The above problem, however, is extremely difficult to 
solve and generally intractable. Instead of trying to find a mapping 
that optimizes certain objective function, we now look at the prob- 
lem from a different viewpoint. We are given a parallel algorithm and 
the objective function to  be optimized. The problem is to identify a 
distributed computing environment that best optimizes the objective 
function for the given problem. Although worded differently, this prob- 
lem is equivalent to  the mapping problem and thus intractable. The 
potentially dominating effect of interprocessor communication delays 
has motivated research in the design and analysis of interconnection 
networks. The permuting properties of several of these networks, and 
the topological and functional relationships amongst them have been 
established 18, 3, 10). 

Interconnections networks arc usually compared by the number of 
different interconnections they can achieve. These interconnections 
are greatly influenced by the mapping of processes [7]. In this pa- 
per we examine how the mapping of processes affects the permuting 
properties of interconnection networks. This is better illustrated with 
an example. Consider an interconnection network that realizes two 
permutations as shown in Fig. I(a) and (b). The processes a,  b, c, 
d, and e are mapped onto processors 1. 2,  3, 4, and 5 respectively. 
The processes a and b communicate in Fig. 1(a), whereas processes a 
and c communicate in Fig. l(b).  A remapping of processes onto the 
processors as shown in Fig. l(c) can realize the permutation of Fig. 
l (b)  on the interconnection network of Fig. l(a).  Thus, with proper 
mapping we can achieve the same permutations with networks having 
fewer interconnection patterns. Also, given a permutation pattern, 
an algorithm can be executed in fewer routing steps with the optimal 
mapping [4]. Such interactions between mapping and interconnection 
networks are discussed in this paper, 
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Figure 1: An ezample showing the effect of process mapping in realizing 
a process permutation. 

The rest of the paper is organized as follows. The following section 
describes the multiprocessor model where the group theoretic defini 
tions of an interconnection network are described. This is followed 
with a careful look at  the problem we are addressing. The next sec 
tion uses the group theoretic formulation to addrcss the relationships 
between interconnection networks. Following this is the section which 
analyzes various interconnection networks using the tools from the pre 
vious section. An algorithm to evaluate the number of passes required 
by a permutation networks to realize a given mapping is presented. Fi 
nally, we conclude with direction for further research for the problems 
addressed here. 

MULTIPROCESSOR SYSTEM MODEL 

A multiprocessor system is comprised of M processing elements (PES) 
communicating through an interconnection network. The PES are 
numbered from 1 to m. The interconnection network is composed 
of numerous switching elements which connect the PES. Each input 
is connected to exactly one output, and each allowable switch setting 
simultaneously connects several sets of inputs to uut,put.s. 

From the above multiprocessor model, the interconnection network 
IN can be represented as a permutation group (M,G) [5]. M is the 
set of PES corresponding to the input and output of the network. 
For simplicity of notation and without loss of generality, let A4 = 
{1,2,. . . ,m}. G & Sym(M), the symmetric group un M .  Let g E G 
be a permutation over M .  Then, for i , j  E M ,  we write g ( i )  = j to 
mean that the network has established an interconnection function y 
which transfers data from P E  i to PE j .  The inverses and compositions 
of the interconnection functions are defined similarly. This definition 
is extended to sets of interconnection functions. If F and G are two 
such sets, then F-' = {f-' : f E F }  and F.G = {f.g : f E F , g  E G}, 
where f.g is the composition of the interconnection functions f and g. 

The interconnection functions will be represented in both cycle anti 
two row matrix form 151. A cycle of m literals is called an m-cycle, and 
in particular a 2-cycle is a transposition. Let {M,d  : 1 5 j 5 k,}, 1 5 
i 5 n, be some n partitions of M ,  and G,j  be the set to functions over 
M;,], 1 5 j 5 I C , ;  1 5 i 5 n. Rased on the above partition, we now 
define two types of interconnection networks 161. 

Definition 1: An interconnection network IN, = (M,G,), where 
G; = n?il G,,,, is called a single-stagenetwork, and lN,,, = (M,,j,G,,,), 
1 5 j 5 k, are called the switches of TN,. 

Definition 2: Let IN. = (M,G,), l  5 i 5 n be n single-stage net- 
works. An interconnection network IN = (M,G), where G = & G; 
is called a multistage network or an (m, n) network, and IN;, 1 5 i 5 n 
are called the stages of IN. 

Definition 3: Let IN = ( M ,  G) be a (m, n) network with stages IN, 
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= (M, G;),  1 < i 5 n. IN is said to be a recirculating or multipaas net- 
work if (91.92.. . . . h ) q ,  where g; E G;, 1 < i < m, is an interconnection 
function of IN for any integer q 2 1. 

The set of all interconnection functions of IN = (M, G) in q passes 
is denoted by Gq. In particular, Go = e and G' = G. 

Definition 4 :  A single-stage network IN; = (M, G;) is Aomogeneow 
if all its switches are of the same size, i.e., I Mi,, I=[ Mi,,, 1,1 5 j, j' 5 
k,. The network is strictly Aomogeneow if all its switches are identical, 
i.e., G; j  = G,,,,, 1 5 j, j' 5 k,. 

5 5 

6 

6 

Figure 2: An (8,s) interconnectaon network. 

An (8,3) multistage network is shown in Fig. 2. It has three 
stages, each of which is a single-stage network. The specification of 
G;,, determines the set of interconnection functions this network can 
establish. 

G1,1 = {e,(12)1 G1,z = {e,(34)) G1,3 = {e,(56)) 
G1,4 = {e,(78)) Gz,l = {e,(123)) Gz,z = {e1(456)) 
G2,3 = {e,(78)) G3,l = {e,(1234)) G3,Z = {e,(5678)) 

(34)(781,(56)(78), (12)(34)(56), (12)(34)(78) 
(12)(56)(78), (34)(56)(78), (12)(34)(56)(78)) 

(456)(78), (123)(456) (78)) 

GI = G l j  = {e, (121, (3419 (561, (78), (12)(56), (12)(78) 

Gz = n;==, G2,j = {e, (123), (456), (78), (123)(456), (123)(78) 

G3 = n;=, G3j  = {e, (1234), (5678), (1234)(5678)) 
Similarly, we can compute G = G; which is the set of inter- 

connection functions this network (M, G) realizes. 

DEVELOPING THE PROBLEM 

On establishing an interconnection function g E G, PE i can transfer 
data to PE  g ( i ) .  All the data transfers are assumed to be completed 
simultaneously in one unit time. This results in one poS8 through the 
network. The set of permutations corresponding to the interconnection 
functions that a network can establish in one pass will be referred to 
as the fundamental set. These terms are applicable to both the single- 
stage and multistage networks. For example, the fundamental set of 
the (8, 3) network in Fig. 2 is evaluated as G = ne, G;. 

The communication requirements between processes of a parallel 
task can be specified by a permutation of the process names. These 
permutations specifying the logical interconnection pattern to be real- 
ized are known as process permutationa. The equivalence between net- 
works [6] and the complexity of simulating one network with another 
have been studied by establishing functional relationships between the 
fundamental sets of these networks. In this paper we study the ability 
of interconnection networks to realize process permutations. 

Once the processes have been assigned to the PES, each member 
of the fundamental set realizes a permutation. If any member of the 
fundamental set realizes the process permutation, then the process 
permutation is realized in one pass, or one unit time. We then say 
that the parallel task is ideally mappable on this multiprocessor. More 
interesting is the case when the process permutation is not ideally 
mappable. There are two distinct approaches to accomplish this. In 

the first approach, data is passed through the interconnection network 
several times till the desired process permutation is realized. During 
each pass a distinct interconnection function from the fundamental set 
can be set up in the network. The resulting permutation is the com- 
position of the permutations realized in each pass. This permutation 
may not belong to the fundamental set. Thus, for a given assignment 
of processes, new permutations can be realized. The transitive closure 
of the fundamental set with respect to composition of interconnection 
functions will be denoted by P, the power set of the network. 

The second approach is to change the assignment of processes onto 
the PES. This could result in realizing a distinct permutation which 
happens to be the process permutation. Note that we may still need 
more than one pass to realize the required permutation, but would 
possibly be requiring fewer passes. This one-to-one assignment of pro- 
cesses onto PES will be referred as process mapping. Since process 
mapping is a bijective function, it can be represented as a permuta- 
tion of process names. 

The set of all permutations realizable by the above two approaches 
along with the fundamental set forms the admissable set AS of per- 
mutations for that network [7]. In contrast to the power set which 
measures the physical ability of the network to establish interconnec- 
tion functions, the admissible set is representative of the ability of 
the network to establish logical communication patterns between pro- 
cesses. Thus, two networks are equivalent if their admissible sets are 
identical. Establishing functional relationships between the admissi- 
ble sets of nonequivalent networks will determine how a network can 
be simulated by another. The cardinality of the admissible set can be 
taken as a measure of the permutability of the network. This is usually 
much larger than the cardinality of the fundamental set. The tradeoff 
is the increased delay due to multiple passes or/and the overhead of 
mapping. Finally, we would like realize an arbitrary permutation on 
the network which is not a member of the fundamental set. The num- 
ber of passes required along with the overhead of mapping to realize 
this permutation places an upper bound on the worst case performance 
of a network. Such issues are examined in this paper in the context of 
group theoretic representation of interconnection networks. 

RELATION AMONG NETWORKS 

Consider the affect of process mapping and multiple passes through 
the network. It is obvious that allowing arbitrarily large number of 
passes t h r p g h  the network will eventually realize all M! permutations, 
i.e. Sym(M) [5]. Consider a process mapping f E Sym(M) and an 
interconnection function g E Sym(M) .  Process P will be assigned to 
PE  f(P). g will establish a communication path from PE f(P) to PE 
g(f(P)). Let process Q also be assigned to PE  g(f(P)). Thus, f(Q) = 
g(f(P)) or Q = f-'gf(P). Hence, the process permutation realized by 
the interconnection function g taking into account the process mapping 
f ,  is f - lgf ,  which is conjugate to f .  

Definition 5: Let (M,G) be a permutation group. An orbit of 
(M, G) is a subset T of M such that 3a E M for which T = aG. 

Definition 6: A permutation group (M,G) is tranaitave ilT it has 
only one orbit (namely M). Otherwise (M,G) is intransitive. Thus, in 
a transitive interconnection network, there exists an input from which 
one can go to any output. 

Definition 7: Let (M,G) be a transitive permutation group. A 
block B of G is a proper subset of M such that (i) o(B) > 1, and (ii) 
if g E G, then either B = Bg or BnBg = 4. These blocks correspond 
to the switching blocks in an interconnection network. 

Lemma 1: If M is finite and B is a block for the transitive permu- 
tation group (M,G), then o(B) divides o ( M ) .  Thus, the size of the 
switches is a factor of the size of the network. 

Definition 8: A primitive permutation group is a transitive permu- 
tation group without blocks. An imprimitawe permutation group is a 
transitive group with blocks. 

Lemma 2: A 2-transitive group is always primitive. 
Lemma 3: If (M,G) is a transitive group of prime degree, then G 

is primitive. 
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Definition 9: A block sp tem of an imprimitive group (M, G )  is a 
set S of blocks such that M = U { B  : B E S }  and such that if B E S 
and g E G, then B g  E S. 

The structure of imprimitive permutation groups is determined by 
the next lemma. 

Lemma 4 :  If M is a set, o(S) > l , M  = U { B  : B E S}, and 
o(R) = o(B')  > 1 for all B and B' in S, then 

there is an imprimitive permutation group (M,G) with S as 
a block system, which contains every other such permutation 
group as subgroup; 

G = {g E Sym(M): if B t S then Bg t S } ;  

if o ( M )  = m and o(B) = le are finite for B E S? then o(G) = 

(k!)m/k (m/k)! .  

NETWORK ANALYSIS 

In this section we analyze a few interconnection networks using the 
group theoretic representation as discussed in the previous section. 
The first part states some results for static networks [7], followed by 
dynamic networks. 

Static network 

We will state results for the bidirectional ring. 

1) Bidirectional ring: The bidirectional ring switching element 
allows two states, i.e., a unit shift in the forward direction and a unit 
shift in the backward direction. This network has IN = ( M , G )  has 
its fundamental set G = {f,b}: where the interconnection functions 
f and b are defined as f : i - (i + 1) m o d M  and b : i + (i - 
1) mod M :  respectively. Larger shifts are realized by a combination 
of these two unit shifts, i.e., by multiple passes through the network. 
It is easy to verify the following relationships between the elements of 
the fundamental set. 

f'=b'-' 

bi = f M - a  

f ' b i = e  

bif' = f l - 3  if i > j 
F p = b - - ' i f i < j  

ybi = f t - 3  if i > j 

~ f ' = b - - ' i f i < j  

The power set P = { e ,  f'; i == 1,. . . , [ M / 2 ]  ,b'; i = I , .  . . , LM/Zj} 
with f M  = BM = e. For sake of clarity we will assume that M 
is even; although the results easily extend for M being odd. The 
interconnection functions b', i = 1,2, , . . , M / 2  are equivalent to f', i = 

M - 1, M - 2 , .  . . , M / 2 ,  respectively. 
Theorem 1:  The cardinality of the admissible set of bidirectional 

ring network is given by 

over all distinct gcd(M,d). 
Theorem 2: Given an arbitrary permutation I E Sym(M), it is 

admissible iff the cycle representation of I consists of cycles of equal 
length. 

Lemma 5: Any permutation comprising of only one cycle can be 
realized on a bidirectional ring network in at most four passes, using 
the interconnection function f z b 2 .  

Theorem 3: Given an arbitrary permutation 5 E Sym(M) with a 
cycle representation (c1cZ.. . C L )  where the length of each cycle is 
1,,  i = 1 ~ 2 : .  . . , L,  the number of passes required to realize z on the 
bidirectional ring network is min{?. rM/lm,,,1}! where lm,,, = min{l, : 
la > 2 , i  = 1,2,. .. . L } .  

Dynamic networka 

The fundamental set for a single stage interconnection network IN, 
= ( M , G ; ) ,  where G; = @!=!G,,>, and whose switches are IN;,j = 

(M,,j,Gt,j)? 1 I j I k ,  is Gi. 
The fundamental set for a (m,n )  interconnection network IN = 

(M,G), where G = fl:=, G,, and whose stages are IN, = (M,G; ) ,  1.5 
i 5 n is G. 

The following four theorems can be proved easily and give us the 
cardinality of the admissible set of the single and multistage inter- 
connection networks. They also give the condition for an arbitrary 
permutation to  be a member of the fundamental set of the networks. 

Theorem 4 :  For a process mapping p E Sym(M), the admissible set 
of a single stage network IN, = (M, G,) is AS = G,p = {gp : V g  E G,}, 
and corresponds to  a right coset of G, in Sym(M). 

Theorem 5: For a process mapping p E Sym(M), the admissible 
set of a ( m , n )  network IN = (M,G)  is AS = Gp = {gp : V g  E G}: 
and corresponds to a right coset of G in Sym(M). 

Theorem 6: An arbitrary permutation I E Sym(M) belongs to the 
fundamental set of a single stage network IN; = (M,G,) with a process 
mapping p E Sym(M), iff xp-' E G,. 

Theorem 7: An arbitrary permutation z E Sym(M) belongs to 
the fundamental set of a (m,n) network IN = ( M , G )  with a process 
mapping p E Sym(M), iff xp-' E G. 

Most practical networks are transitive. These networks could ei- 
ther be single stage or multistage. Since every stage of the network 
has several switching elements, these correspond to the blocks of the 
imprimitive permutation group. Because of lemma 1, it is imperative 
that the size of the switching elements be a factor of the size of the 
entire network. If the network is homogeneous, then lemma 4 gives us 
the order of the fundamental set of the network. 

Theorem 8: For an imprimitive homogeneous network ( M ,  G) with 
m inputs (and outputs) and switching elements of size b ,  the cardinal- 
ity of the fundamental set is o(G) = (k!)"lk(m/k)! .  

The power set of the network is got by composing the fundamental 
set to itself. It sh6uld be apparent to the reader by now that if the 
network is not homogeneous then the evaluation of the cardinality of 
the network is not trivial. The evaluation of the permuting capability 
of homogeneous networks is itself very involved 181. To evaluate the 
cardinality of the admissible set or checking to  see if an arbitrary 
permutation is ideally mappable or belongs to the admissible set is 
extremely hard. We now present polynomial time algorithms [9] to 
compute the order of the power set of an interconnection network 
and devise a membership test (to check if an arbit,rary permutation is 
ideally mappable). 

We form the power set by using the fundamental set as a generator. 
If G Sym(M), then the group < G > generated by G consists of all 
permutations in Sym(M) which can be written as a finite product of 
the permutations in G. Thus, < G > is the power set of G. 

In order to arrive at  the algorithm for evaluating the order of the 
power set of G and test for membership of an arbitrary permutation, 
we first give a few definitions and known results [9]. 

M. 
The subgroup Gpq = {g t GlVz t Y , g ( x )  = z} is the pointwise 
stabilizer of Y in G. Note that if 2 Y then GIZ1 < G [ Y ~ ,  i.e., Gjzl is 
a subgroup of G[Yi. 

Lemma 6: Let ( M , G )  be a permutation group, and let G(') = 
G[q ,  1 < i 5 n: be the pointwise stabilizer of Y, in G. We set G(,,) = G. 
For 1 5 i 5 n, let U, be a complete right traversal for G(') in G(I-'). 
Then, for 1 5 i 5 n: K ,  = U:=, U, is a generating set for G('-l). 

Lemma 7: The cardinality of the power set of (M. G) is n:=, I U, 1 ,  
and can be determined in O(m2) steps. 

We now construct the sets U, from a given set G of permutations 
generating < G >. The sets U, are stored in representation matrices. 

Definition 11: Let N be a nxn matrix of permutations with the 
following properties: (1) A',,, is the identity permutation e ,  1 5 i 5 n. 
(2) For i > j ,  N , , j  is empty. (3) For i < j :  N, , j  is either empty, or is 

Definition 10: Let ( M , G )  be a permutation group, and Y 

325 

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 15:19 from IEEE Xplore.  Restrictions apply.



a permutation g such that g pointwise fixes the set (1,. . . , i - l}, and 
g(i )  = j .  Then N is called a representation matriz. 

Algorithm ..l describes the construction of a representation matrix 
&om generators. The input to the algorithm is the fundamental set 
G; (for a single stage network) or G (for a multistage network). The 
output of the algorithm is the representation matrix for the power set 
< G; > or < G > depending on the input. A queue Q is used for 
intermediate storing of pair products of entries in N .  Algorithm ..2 
is used as a subroutine whose input is a partially completed represen- 
tation matrix N, and the permutation g which is to be represented. 
The output of algorithm ..2 is true if g is in TN (TN is precisely the 
set of all those permutations for which Ismember returns true),  false 
otherwise. As a side effect, if g is not in TN, then N is changed such 
that g becomes representable by replacing an empty entry with a per- 
mutation. Furthermore, the coordinates i and j of this new entry are 
returned. 

Algori thm ..l Construction of a representation matrix from gener- 
ators. 

begin 
for i := 1 to n d o  
begin 
N;,; := e; 
for j := i + 1 to n do N;j  := empty; 

end 
Q := G; 
while -empty(G) do 
begin 

remove g )+om Q; 
invoke algorithm ..2 with input g; 
if algorithm ..2 returns false 

t h e n  
append to Q all pennutotiom h i  and i h ,  
where g’ w the new entq N;#, made for g 
by algorithm ..2 and h is any non-emptp entq 
an N ezeept the diagonal elements Nkc. 

end 
end  

Algori thm ..2 Ismember 

begin 
i := 0; 
ismember := t rue;  
while ((i < n)h ismember) do 
begin 

i := i + 1; 
j := g( i ) ;  
if (N;,, # empty) t h e n  g := g(M;,,)-’ 
else 

begin 
ismember := false; 
N .  . .- 9 -  1,j .- ! 

end 
e n d  
retamfismember); 

end  
Thus, theorems 6 and 8 can be extended to the power set mem- 

bership check. In fact we now have an algorithmic technique to check 
for the membership of an arbitrary permutation in the power set of an 
interconnection network. 

Theorem 9: An arbitrary permutation z E Sym(M) belongs to 
the power set of a single stage network IN; = (M,Gi)  with a process 
mapping p E Sym(M),  iff zp-’ E< G; >. 

Theorem 10: An arbitrary permutation z E Sym(M) belongs to 
the power set of a (m, n) network IN = (M, G) with a process mapping 
p E Sym(M),  if€ zp-’ E< G >. 

Thus, given an arbitrary permutation which correponds to the 
mapping desired, we can now evaluate the number of stages (or pass- 
es) of the interconnection network required to realize the permuta- 
tion. The fundamental set of the permutation network is evaluated 
first. Then, the given mapping is verified for membership in the fun- 
damental set. If the given mapping is a member of the fundamental 
set then it is realized in one stage (or pass). Otherwise, a second stage 
is added and the new fundmental set is evaluated. The membership 
check is done again on the new fundamental set. If the given m a p  
ping is a member of the new fundamental set then it requires only two 
stages (passes). This process of evaluating a new fundamental set is 
continued till the given permutation is a member of the fundamental 
set. The number of times a new fundamental set is evaluated gives 
the number of stages (passes) required to realize the given mapping. 

CONCLUSION 

This paper focused on characterizing interconnection networks based 
on their ability to realize process permutations. Group theoretic re- 
sults were used to characterize them. This analysis can be done for 
other static and dynamic networks. Choosing a network based on 
process permutation rather than the power set of the interconnection 
network can reduce the number of passes required to realize certain 
process permutation. This approach could also be extended to provide 
a framework in which one may pursue to design networks for specific 
applications. An extension of the present group theoretic formulation 
would be to be able to formulate networks other than permutation 
networks. 
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