
Complexity Analysis Of Range Image
Segmentation on MasPar MP-1*

Nagarajan Ramesh
Vision & Neural Networks Lab.

Dept. of Computer Science
Wayne State University

Detroit, MI 48202

Abstract - Many low level vision tasks that are computation-
ally intensive are easily parallelizable. The lack of parallel pro-
cessing systems, or their prohibitive costs, have prevented the
move of vision processing algorithms from single processor sys-
tems to multiprocessor systems. With the recent spurt of parallel
processing hardware, there is a need to investigate the feasibility
of using such machines for some vision algorithms. Speedup is
an important factor in determining the feasibility of migration
from single processor systems to parallel processors. In this work,
we investigate a particular segmentation algorithm and present
theoretical speedup results. Our formula can work out numerical
speedups by simply plugging in the parameter values.

INTRODOCTION
Computer vision tasks require an enormous amount of compu-

tation demanding high performance computers for practical, red-
time applications. Parallelism appears to be the only economical
way to achieve this level of performance. Most of the work in
computer vision focuses on images with 2-D data, but pragmatic
vision problems require 3-D data which is easily available now.

Three dimensional data may be represented by a 3-D matrix
of intensity values, f (i , j, k), where each intensity value repre-
sents a property associated with the location (i , j , k) . A p rimary .
goal (and initial step) of computer vision is to abstract ‘Lrelevant’’
information from an image. This may involve a process called seg-
mentation that groups a set of homogeneous pixels into regions.
Homogeneity can be defined by different criteria depending upon
the image modality, Segmentation thus reduces the information
content in the image to the most relevant and by defining some
features of the segmented regions, computer vision scientists hope
to extract just enough information to characterize those regions.
Such an abstraction will be helpful in other higher level tasks like
object recognition (11 and visualization.

Two major approaches to segmentation are the region growing
ones and the region splitting ones. In region growing, each pixel is
considered in relation to its neighbors and pixels that are “closer”
in some distance metric are merged. On the other hand, in re-
gion splitting, the whole image is initially considered to be one
single region and this region is recursively split into smaller re-
gions. Both these approaches are in general amenable to parallel
implementation.

In this paper we derive the formulas for the theoretical time
complexity and speedups obtainable on the implementation of a
segmentation algorithm on thr MasPar SIMD machine. In sec-
tion we briefly describe the segmentation algorithm. In the fol-
lowing section we discuss the architecture of the SIMD machine,
MP-1. In section , we derive the time complexity. section 0.0.2 is
the concluding section of the paper.

DESCRIPTION OF THE ALGORITHM

The segmentation algorithm of Sabata et. al. [2][3] was chosen as
the candidate for implementation on a SIMD machine. The first
stage of the two stage process involves oversegmenting the image
based on zeroth and first, order surface properties. The second
stage involves merging of small regions into a final segmented
output with each segmented region being specified by a bivariate
polynomial.

A number of intensity images are generated using the 3-D range
data, each assuming a light source at different points. The first
segmentation module uses a pyramid structure of p + 1 levels:
Level 0 has 2P+l x 2P+’ nodes with each image pixel being mapped
to one node. The next level contain 2P x 2P nodes, and the ith
level containing 2‘ x 2‘ nodes.

Vipin Chaudhary
Dept. of Electrical and Computer Engineering

Wayne State University
Detroit, MI 48202

Each node at level i can communicate with a set of nodes at
level i - 1) designated its sons, and with another set of nodes at
level \i + 1) designated its fathers. First, all nodes at level i are
initialized by averagin the pixels in a 2 x 2 (called span) neigh-
borhood at level (i - 17. Between each node at level i and (i + 1)
or (z - 1)) three parameters are defined: wjj the membership I unction, u , ~ the connection weight and 4, the difference in prop-

erty value between two nodes given as a product norm. Starting
at the bottom most level, an iterative updating procedure is use
to stablize w , ~ and U . Then the nodes at the next level undergo
the same process, ana this proceeds until the top most level in the
pyramid has reached a fixed point. Each node at the top most
level is then assigned a label which is propagated downwards to
level 0, based on the highest weighting function. Thus each pixel
at level 0 is labelled. This whole process is called pyramidal node
linking.

It
may happen (and often does) that a region RI in image 11 and
region Rz in image Iz do not occupy the same pixel locations. In
such a case, another new region is formed in the resulting image
which contain the region corresponding to RI n Rz, in addition to
regions that correspond to RI in II and RZ in Iz. This operation
on all the image regions will yield a large number of segmented
regions, resulting in oversegmentation of the image.

The second stage is the merging process. Oversegmentation is
followed by region mer ing based on a neighborhood criteria of
least mean square (LMSB error of bivariate polynomial fits to adja-
cent regions. Adjacent regions with an error less than a threshold
are merged. This stage is driven by the requirements of the higher
level vision task. A segmented image is the final output.

PARALLEL IMPLEMENTATION

We attempt to parallelize the pyramidal node linking module
and analyze its time complexity. To do so, we need to map the
nodes of the pyramid to the PES of MP-1 in an efficient manner
to minimize idle time of each PE and achieve load balancing.
Communication bottlenecks and routing of messages have to be
taken care of.

The configuration of the particular MasPar, hlP-l [4] we con-
sider has 16K PES (processing elements) arranged as a 128 x 128
array, each with local memory of 64K. Each PE can communicate
with the other by two methods. One is a “router’’ that allows any
P E to communicate with any other PE, and the other is the faster
“XNet” connections between 8 neighboring PES. The front end
is a DEC station 3500. The front end can communicate to the
array control unit (ACU) that has its own processor and memory.
The ACU primarily controls the operations in the PES, though it
can do limited computation. The front end machine (FE) is used
to load programs and data into the ACU and DPU while it can
still act as a standalone workstation.

Each generated image undergoes pyramidal node linking.

TIME COMPLEXITY ANALYSIS
Lets assume that we have an array of PES of size n x n, where

n = 2” and an image of size k x k, where k = 2 b ; a, b 2 2; b 2
a;a , b E I.

(l o , 1 1 , . . . I p) , ,
(see figurer) and the number of iteration at each level be il, iz, . . , z p
We assume that the time taken for each iteration is a constant,
t . This is justifiable on a parallel machine each P E operates on
one pixel which makes the time taken independent of the data
size. We shall use some terminology similar to [5] to describe dif-
ferent levels of computation. One stage is complete when all the
iterations between any two levels I ; and /;+I is completed.

Let the number of levels in the pyramid be p + 1

We consider two allocation schemes of tasks to processors, and

‘This work was supported in part by NSF Grant MIP-9309489 and Wayne Sta te University Faculty Research Award

CH 3381-11931$01.0001993 IEEE 903

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 16:04 from IEEE Xplore. Restrictions apply.

compare their theoretical speedups against a single processor sys-
tem.

Data Parallel Unlt
Array of 128 x 128 P

speclal bus -4-7
Front End Proc sor I FE 4

Figure 1: The ACU controls the DPU. The front end is used to
load data and programs onto the ACU, DPU or just to execute
them right there.

Figure 2: The image is processed in a pyramidal fashion. The
processing iterates between levels 20 and 11, until a certain cri-
teria is satisfied, after which processing between levels 11 and 12

commence. Processing proceeds in this fashion until the topmost
level of the pyramid is reached.

Mapping Scheme 1
In this mapping scheme, we divide the image into a number

of sub-images, each equal to the size of the P E array. The total
time, Tsl, taken up by one subimage is given by

P
T,, = tCij

j=l

Therefore, accounting for all the sub-images, the total time taken,
Ttl, to complete the pyramidal algorithm is given by

where tll(k) accounts for reconfiguration time of PES after each
subimage computation has completed, tcom,,,l(k) is the commu-
nication delay in the data transfer, and tsl(k) is the setup time
needed for file 1/0 which is a function of k.

This scheme is obviously not very efficient, because after the
first stage has completed, g t h of the number of PES are freed up
and never get used again, till the next subimage is processed.
Again, after the completion of each stage, more and more PES
are freed up. The number of processors that are freed, N,j , after
the ifh stage is

The total idle time, Ti, of all processors, during the processing
of one sub-image is

processors

El km k

Figure 3: The image is divided into sub-images, the size of the
P E array and the pixels in each subimage is assigned to the corre-
sponding PES. Each sub-image numbered 1,2,3 and 4 for example
may be assigned to the PES in turns.

processors

n

lmnae

k

k

Figure 4: The array of PES is subdivided into smaller regions. As
the computation proceeds, more and more PES are freed, which
get reconfigured immediately. For example, after one iteration,
only a'h of the PES are active, which means that three more sub-
images (for example (2l) , (22), and (23)) can be allocated to
these PES. In the subsequent assignment, sub-images (24) (42)
and (44) may be assigned to the freed PES as indicated by the
different pattern

The average idle time/PE, Ta, is then given by

Mapping Scheme 2
Let us consider yet another scheme of mapping of tasks to pro-

cessors. In this case, we try to maximize the processor utilization
time, by assigning the inactive PES to other pixels. The scheme
is illustrated in figureq.

In this scheme, after each stage has completed, g t h of the PES
are freed up. These can be reconfigured immediately. In the
subsequent steps, the same number of PES become free. Thus,
we can consistently assign new tasks to the same number of PES
after the computation has completed at stage. Let us denote the
total time taken for such stages to be TI*. In the last stages
however, when there is no more tasks left, an increasing number
of PES will become idle as each level of computation completes.
Let the total time in this case be Tlb.

In this scheme, the P E array is split into four equal sized regions,
and the image is split into sub-images matching the size of these

904

-.T-

I

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 16:04 from IEEE Xplore. Restrictions apply.

regions. The total time to complete the computation, Ttz, is given

Since the image size is k x k and the P E array size is n x n, and the
P E is split into four equal regions, we have the image split into
$ sub-images. In the first level of computation, four sub-images
are assigned to the PES and i n the subsequent levels, three sub-
images are assigned. This means, that the $$ sub-images would

have been completely allocated to PES in n, = 3 steps.
4 -4

Then, the time, Tia is given by

01

Tfn = Tp(1 + ns)

where Tp is the equally spaced time interval after which P E

is the time taken for the Last sub-image to iterate all the way
reallocation takes place.

through completion, and it given by

D rb = txij

P * T,, = Tp(1 + n,) + t i, (4)
,=I

The equation above is not exactly right. Since the number of
iterations at each level are different, we have to wait till all the
computations finish, before reconfiguring the freed PES. This re-
quires us to modify the expression for Ta. If the time intervals
between P E reconfigurations were equal, then Tp will be a con-
stant.

Let us define a function $(i) 2 maz(tl , t z , . .. t ,) that computes
the maximumvalue of the time taken for the iterations at different
levels, [11 , l ,] .

Also, let t , fi 0 V j > p .
We can now formulate Tia as

n.

3=1
Tfa = C +(j)

(5)
J = 1 j=1

As in the previous scheme, we include a constant time t , z (k) for
reallocation. There is also some setup time t s 2 (k) involved in file
I/O. The image files have to be moved from the front end to the
ACU. The time taken for the movement of data from the ACU to
the DPU is accounted for by tcomm2(ns).

Equation(5) is modified thus,

n. P

J = l , = I
7’t2 = O (J) + t xi, + tcm“(ns) + t S z (k) + t , z (k) (6)

Boundary conditions
In the above mapping scheme, we conveniently ignored edge

conditions. When we allocated subimages whose size were equal
to the P E array, we assumed that information to compute the
pixels values for the next level was fully contained in the subim-
age. This is not the case. The pixels on the border would actually
require the information from the adjacent subimages. In effect,

we can only compute the next higher level for an image that is
slightly smaller than the P E array size.

Say, from any level lJ to level l J + l , there is a neighborhood of
nh x nb(= n t) at level 1, that takes part in the computation of
one pixel in level Consider the allocation of one subimage
of size n x n to the P E array. Since the information for some of
the border pixels are missing, they cannot be computed. As a
result, instead of being able to compute the values for &, we
can only compute the pixels values for (E - [?I) (2 - I?]).
Incidentally, in this problem we use nb = nh = 2.

Following figure(), say we allocate the array of PES with the
subimages as shown. There will be a certain amount of overlap
in the subimages. In other words, some pixels may have to he
allocated to the PES twice. If allocation proceeds in this manner,

. ~

1 :;I ; 1 ; 4
. L

............

residual plxels

Figure 5 : There is a certain overlap in the allocation scheme
to take care of the edge pixel computations. The unbroken lines
indicate subimages whose size are equal to the PE array. However,
since the P E array is missing some neighboring information to
compute the border pixels, only the areas indicated by the broken
lines are computed. Each subimage allocated to the PE has some
overlap as indicated by the broken lines. The residual pixels occur
at the right end and the bottom of the image.

a rectangularly shaped region, which we shall call residual pixels,
will be left out at the right end of the image and at the bottom
of the image. These can later be allocated to the PE array. If the
number of residual pixels are few, one allocation to the P E array
would suffice. However, if there are too many residual pixels, a
number of allocations have to be done.

Here, we attempt to compute the number of times these residual
pixels have to be allocated. As before, say we have an image of
size k x k and a P E array of size n x n. The “thickness” of the
pixels on the right hand side of the image would be [?1;. The
height of the region is k . Similarly, the “height” of the residual
pixels at the bottom of the image is and the corresponding
length of the region is k . The total number of residual pixels, P,,
is therefore given by

because the bottom left corner of size x [?l! has been
counted twice. Considering the arrangement of the residual pixels
as shown in figure 3 , we would require more than Rt pixels to
be allocated to the P E array, since neighborhood information is
required. This bring us to the question of how many actual pixels
need to be allocated to the P E array.

The row residues and the column residues do have some com-
mon pixels. However, for analytical simplicity, we assume that
we allocate these common pixels, independently. Thus, the same
pixel might be allocated twice in the PE array at the same time.

Therefore, the number of pixels Pt that remain to be allocated
is

If Pt is smaller than the P E array size, one allocation would
suffice. If not, the PES have to work on the residual pixels a

905

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 16:04 from IEEE Xplore. Restrictions apply.

number of times. The number of times, nr is given by

As in our case if nb = nh = 2,n = 128 and k = 256, then
nr = 1.

Thus replacing the 5 term by ($ + n,) in equations(1) and
(6), we get the actual time complexities in each of the cases to be

and

g - 4 4(+ -n,)-4 where n, = 3 changes to the term nt = n .
Single processor complexity
On a single processor machine, the time taken for total com-

putation is simpler to compute. Since after each level of compu-
tation, the number of pixels reduce by four, we get the following
expression for the total time taken for complete computation.

As in the previous case, we can include a factor, ts3(k) for the
time taken for file I/O. This would change the equation to

One can use equations(l), (6) and (12) to determine theoretical
speedups.

Theoretical Speedup
Using the above near exact case analysis, we can compute the

speedup, S, for a particular case. As a basis of comparison, we
shall refer to the speedup calculation cited by Siegel et. al. [6

ing operation to be
They compute the speedup, S, on a array processor for the smoot h. -

(k - 2)’
S =

kZ/nZ + 4k/n + 4

where k2 and nz are the sizes of the image and the PE array
respectively. Substituting values of k = 256 and n = 128 we get
S = 4032.25.

Speedup for mapping scheme 1

The speedup for the mapping schemes 1 is given by

For the computations of the speedup, let us assume that the
number of iterations in each stage is the same and is denoted by
N . Therefore ij = Np, p + 1 being the number of levels in
the pyramid.

Also,
p 1 4 Iim E,- = -

If we ignore all the communication, setup and reconfiguration

p-O0 j=1 2 0 - 1) 3

times, equation(14) will reduce to

4n2 S = -
3P

If n = 128 and p = 6 as in our case, we get a speedup of 3640.
This speedup is the theoretical maximum but it is important to
note that this number is given for illustrative purposes only. In
actual computations, we need to take the communication and
other factors into account.

For this reason, we make no attempts to give numerical values
for speedups. Instead, we simple provide the equations, and if the
communication and other delays are known, they can be directly
plugged into the equation.

Speedup for mapping scheme 2

The speedups the mapping scheme 2 derived from equations (6)
and (12) is given by

CONCLUSIONS AND FUTURE WORK

In this work, we have derived a formula for the theoretical
speedup obtained for the pyramidal segmentation algorithm of
Sabata et. al. [2], when switching from single processor to a SIMD
parallel processor. Our exact case analysis will give an accurate
estimation of the speedups if the values of the different param-
eters are known. One could also approximately estimate these
parameters. However, we have made no attempts to do so.

Currently, we are working on implementing the segmentation
algorithm on the MasPar MP-1 system. This will help us to
compare the performances of the system in the real world to our
theoretical results.

REFERENCES
[l] P. Besl and R. Jain, “Three-dimensional object recognition,”

Computcng Surveys, __ vol. 17, pp. 75-145, 1985.

[2] B. Sabata, F. Arman, and J. K. Aggarwal, “Segmentation
of 3-d range images using pyramidal data structures,” Private
communication - to appear in Comput. Vision, Graphics and
Image Processing, 1992.

[3] F. Arman, B. Sabata, and J. K. Aggarwal, “Range image
segmentation,” in Proc. IEEE Fifth International Conf. on Com-
puter Vision, (Japan), IEEE, 1991.

[4] T. Blank, “Maspar mp-1 architecture,” in Proc. Thirty Fifth
ZEEE Comp. Soc. Conf., (San Francisco, CA), IEEE, Feb-Mar
1990.

[5] V. Chaudhary and J. K. Aggarwal, “A generalized scheme
for mapping parallel algorithms,” IEEE Trans. on Parallel and
Distributed Systems, vol. 4, no. 3, pp. 328-346, Mar. 1993.

[6] H. J. Siegel, J. B. Armstrong, and D. W. Watson, “Map-
ping computer-vision-related tasks onto reconfigurable parallel
processing systems,” IEEE Computer, vol. 25, pp. 54-63, Feb.
1992.

906

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 16:04 from IEEE Xplore. Restrictions apply.

