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Analysis of fault tolerance in Cayley digraphsusing forbidden faulty setsSubburajan Ponnuswamy and Vipin Chaudhary
AbstractThe connectivity and fault tolerance measures of various interconnection networks assumethat all the neighboring nodes of any node could be faulty at the same time. The forbiddenfaulty set analysis of restricted connectivity and fault tolerance assumes that a set of nodescannot be faulty at the same time. We discuss the di�culties in analyzing the fault-toleranceof directed Cayley graphs using forbidden faulty sets. A new forbidden set is de�ned withpairs of nodes as elements to study the fault tolerance of the Cayley digraphs. The faulttolerance under this forbidden faulty set is shown to be (2n�5). We also present an algorithmfor determining the connectivity of Cayley digraphs under (2n � 4) faults and evaluate itstime complexity.1 IntroductionCayley graphs have been studied by many authors in recent years [4, 3, 12, 15, 21, 28, 10] ase�cient interconnection networks for parallel processing. Most of the interconnection networksstudied for e�cient parallel computation are modeled as undirected graphs. However, in reality acommunication link between two processing elements (e.g. optical link) is often realized by twodirected links in opposite directions [15, 8, 16, 13]. This has led to the study of symmetric directedinterconnection networks as e�cient topologies for multiprocessor networks [12, 15]. Machineswith directed communications are easy to construct, and they allow faster communication bysimplifying the protocols used at the link level [11, 27, 9]. The uni-directional counterparts of thewell studied undirected interconnection networks like the star graph [13], the hypercube [9, 16], andmesh [8] have also been proposed and analyzed by many researchers. Recently, a set of directedCayley graphs called rotator graphs has been introduced in the literature [12]. The cycle pre�xdigraphs introduced by Faber, Moore, and Chen [15] were similarly de�ned. These sets of graphsare isomorphic except for reversed directions. The diameter of n-rotator graph and cycle pre�xdigraphs is lower than that of star and pancake graphs for the same number of nodes. Similar tothe star graph these directed Cayley graphs have a degree of (n � 1), but the average distance�This work was supported in part by NSF Grant MIP-9309489 and Wayne State University Faculty ResearchAward. 1



between nodes is lower than the star graph. A comparison of the diameter and the average distanceof star, pancake, hypercube, and n-rotator has been studied by Corbett [11].The fault-tolerance of Cayley graphs [2, 1, 5, 6, 12, 1, 11] has been investigated extensivelyin the literature. Communication structures with high fault tolerance have also been introducedin the literature [19, 26, 20, 23, 7]. It is known that the hierarchical Cayley graphs [2, 12] andhierarchical Cayley digraphs (with some exceptions, see [17, 6]) are optimally fault tolerant. Oneof the widely used measure is the connectivity of the network. The fault tolerance of the networkwith connectivity � is � � 1. Apart from the connectivity, many other fault tolerance metricshave been proposed. Pradhan and Meyer [25] discuss the inconsistencies of various fault tolerancemeasures for interconnection networks. A multiprocessor network is considered to be functionalas long as there is a path between any two processors, under the presence of F faults [2]. Adirected graph must be strongly connected in order to be F -fault tolerant. A network is said tobe maximally fault tolerant when the fault tolerance is one less than the degree of the network.This measure assumes that all the nodes (or links) connected to any node in the interconnectionnetwork could fail at the same time. However, in reality the failure of all the nodes connectedto any node at the same time is highly unlikely. Therefore, an entirely di�erent fault tolerantanalysis is necessary to study the fault tolerant properties of interconnection networks.Esfahanian [14] introduced the concept of forbidden faulty sets for conditional fault toleranceof interconnection networks, especially for n-cube. Lati�, Hegde, and Naraghi-Pour [22] haverecently generalized the forbidden faulty set concept introduced by Esfahanian [14] for n-cubes.The generalized fault tolerant properties of star graphs have also been studied in the literature [29].In this paper we study the fault tolerance properties of rotator and cycle pre�x digraphs undercertain forbidden faulty sets. This paper is organized as follows. In section two, the de�nitionsof rotator and cycle pre�x digraphs, fault tolerant measures and forbidden faulty sets are given.The maximum fault tolerance of Cayley digraphs using forbidden sets is given in section three.Section four discusses the algorithm for determining conditional connectivity of Cayley digraphsand its time complexity. Section �ve concludes the paper with the summary of results.2 PreliminariesIn this section we present de�nitions of directed Cayley graphs and other fault tolerance parameterswhich will be used in subsequent sections. The de�nition of Cayley graphs and other grouptheoretic terms can be found in Akers and Krishnamurthy [3, 4] and Harary [18]. The rotatorgraph and the cycle pre�x digraphs are denoted by Rn and Cn, respectively. The notation Dn isused to denote both Rn and Cn. The notation G is used to denote a general graph. The set ofnodes and edges of G are denoted by V and E respectively. Since Dn and Rn are directed graphsthe nodes and edges are denoted by V and ~E respectively.
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De�nition 1 The generators of the (n, k)-rotator graph R(n;k) are of the formx1x2 : : : xixi+1 : : : xk ) ( x2x3 : : : xix1xi+1 : : : xk if 2 � i � k < nx2x3 : : : xixi+1 : : : xkxj if k < j � nThe total number of nodes and degree of R(n;k) are n!=(n� k)! and (n� 1), respectively.De�nition 2 The generators of the (n, k)-cycle pre�x digraph C(n;k) are of the formx1x2 : : : xixi+1 : : : xk ) ( xix1 : : : xi�1xi+1 : : : xk if 2 � i � k < nxjx1x2 : : : xixi+1 : : : xk�1 if k < j � nThe number of nodes and degree of C(n;k) are the same as that of R(n;k).In this paper we consider special cases of R(n;k) and C(n;k), the n-rotator Rn and the n-cycle pre�xdigraph Cn. The generators of Rn and Cn are of the form x1x2 : : : xixi+1 : : : xn gi) x2x3 : : : xix1xi+1: : : xn and x1x2 : : : xixi+1 : : : xn gi) xix1x2 : : : xi�1xi+1 : : : xn, respectively. Both Rn and Cn have n!vertices, degree (n� 1), connectivity (n� 1), and diameter (n� 1). The results obtained for Rnand Cn can be easily extended to R(n;k) and C(n;k). Most of the results presented here for directedCayley graphs refer to the rotator graph. We use the terms rotation and generator interchangeably,while discussing rotator graphs. It should be noted that the rotator graphs are isomorphic to thecycle pre�x digraphs with the direction of the edges reversed [12]. Fig. 1 shows an example ofthe 4-rotator graph. The direction of the links are indicated by the arrows. Since the generatorg2 is reversible, the resultant directed links between two adjacent vertices are denoted by thickundirected links. The link denoted by an alphabet (o) denotes an outgoing link. This link isconnected to the node with a link marked with the same alphabet and (i) (means incoming). Wesummarize some of the known properties of Rn [12, 15, 24].� Rn is hierarchical and vertex symmetric.� The diameter of Rn is (n� 1).� The in-degree and out-degree of Rn is (n� 1).� The fault diameter of Rn is less than or equal to (n+ 1).� Rn is one step (n� 1)-fault diagnosable.De�nition 3 The vertex connectivity �(G) of G is de�ned as the minimum number of faultyvertices S required to disconnect G.The fault tolerance f is the maximum number of faults that G can tolerate without beingdisconnected. Therefore, fault tolerance f of G is one less than the connectivity. In the case ofCayley digraphs Dn, if a directed edge ~e = (u; v) 2 ~E, then the node v is adjacent to node u3
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Figure 1: 4-rotator graph (R4)(converse is not necessarily true). Every node has (n � 1) incoming links and (n � 1) outgoinglinks. All the nodes connected to the incoming links will be referred to as incoming nodes andthe nodes connected to the outgoing nodes will be referred to as outgoing nodes. The set of allincoming nodes of u are denoted by In(u), and the set of all outgoing nodes of u are denoted byOut(u). There is exactly one node x for every node u in Dn, where x 2 In(u) and x 2 Out(u),due to the only reversible generator g2.De�nition 4 All the incoming and outgoing nodes of any node u 2 V , (totaling 2n � 3) will bereferred to as neighboring nodes N(u) of u, where N(u) = (In(u) [ Out(u))� (In(u) \ Out(u)).A node v = Out(u), can also be represented as v = gi�u, i.e., v is obtained from u by applying thegenerator gi, where 2 � i � n. We use the terms vertex, node, and permutation interchangeably.We use the notation aCb to denote the binomial co-e�cient throughout this paper. All n! nodesof Dn are associated with a unique permutation � of n numbers. The number at the ith positionof the permutation � is referred to as �[i], where 1 � i � n.3 Fault tolerance of Cayley digraphsLet S 2 V , such that jSj = �(Rn) = (n � 1). If the failure (or removal) of the nodes in the setS results in a disconnected graph of size Rn � jSj, the set S is called a minimum cut. There aren!C� distinct subsets of size �, and only n! of them are minimum cuts. Since the ratio n!=n!C� isvery small as n increases, the probability of failure of all elements of n! minimum cut sets is verysmall. 4



The fault tolerance and connectivity measures assume that any subset of processors (or links)is equally likely to be faulty. A forbidden set of undirected graphs [14, 29] is de�ned as the setof all nodes adjacent to any node. The generalized fault tolerance under forbidden sets is usuallyhigher than the fault tolerance of the graphs without forbidden sets. This is due to the fact thatany node can communicate in each direction with at least one adjacent node. Therefore, eachminimum cut can be a forbidden faulty set, i.e, we can assume that all the neighboring nodesof any node in Rn cannot fail at the same time. However, the forbidden sets of directed Cayleygraphs are di�erent. There are (2n � 3) neighbors of a node in Rn. If the forbidden faulty setis the set of all neighboring nodes of any node, then the generalized fault tolerance under thiscondition will be the same as the fault tolerance of Rn without forbidden sets. Since all the nodesof a forbidden set cannot fail at the same time, in the worst case, one incoming or outgoing nodewill be non-faulty. This will not make any di�erence in the generalized fault tolerance measure ofRn, since the failure of all the (n� 1) outgoing or incoming nodes will disconnect the graph. Thegeneralized fault tolerance under this condition is (n� 1).The above selection of forbidden sets is too restrictive and cannot be used for comparison withother undirected graphs. Therefore, the forbidden faulty set F1 is de�ned as the the set of (n� 1)elements, F1 = f(x); (x3; y3); : : : ; (xn; yn)g. The element x is the node obtained by the generatorg2 of Rn. There are (n � 2) remaining elements in F1, each consisting of a pair of nodes. Anelement (xk; yk) of F1, indicates that for any node u, xk is the incoming node obtained by thegenerator gk (i.e., for some node p, p = gk � u) and yk is the outgoing node (i.e., for some node q,u = gk � q), where 3 � k � n. All the elements of F1 cannot be faulty at the same time, i.e., atmost (n� 2) elements can be faulty at the same time.Lemma 1 There exists cycles of length k in Dn, where 3 � k � n and n � 3.Proof. The proof of this lemma follows directly from the de�nition of the directed Cayley graphs[12]. 2Lemma 2 For any pair of vertices (u; v) in Rn, where v = gi � u, the number of nodes commonto the neighboring nodes of u and v, excluding the nodes u and v is,jfN(u)� vg \ fN(v)� ugj = ( 1 if i = 30 otherwiseProof. The generator g2 is the only generator of Rn that is reversible. Consider a pair of vertices(u; v) 2 V , and v = g2 � u. Since there are no 3-cycles (cycles of length three) in Rn with twonodes connected by generator g2, both nodes u and v have 2(n�2) distinct neighbors each. Similarargument holds for nodes connected by generators g4; g5; : : : ; gn. However, if v = g3 � u, then g3applied twice to v would result in node u. Therefore one of the outgoing node of v is an incomingnode for u. This makes jfN(u)� vg \ fN(v)� ugj = 1. 2Lemma 3 For any pair of arbitrary nodes (u; v) in Rn, the total number of distinct neighbors ofu and v is jffN(u)� vg [ fN(v)� ugg � ffN(u)� vg \ fN(v)� uggj � 4n� 10, for n � 4.5



Proof. Let us consider �ve possible pairs of nodes (u; v).Case I. v = gi� u, where i = 3: It is known from Lemma 2 that jfN(u)� vg \ fN(v)� ugj = 1,for i = 3. Therefore, jffN(u)� vg [ fN(v)� ugg � ffN(u)� vg \ fN(v)� uggj = 4n� 10 (seeFig. 2).
n − 3

n − 3

n − 3

n − 3n − 3
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Figure 2: 3-cycle in RnCase II. v = gi�u, where i = 2; 4; 5; : : : (n� 1): Since no two neighboring processors in any 3-cycle ofRn are connected by any of these generators, jffN(u)� vg [ fN(v)� ugg � ffN(u)� vg \ fN(v)� uggj= 4n� 8.Case III. v 62 In(u) and v 62 Out(u) and the pair (u; v) is contained in a 4-cycle: It should benoted that there are only three ways to generate 4-cycles in Rn with any node u. The sequence ofgenerators of the three 4-cycles are s1 = (g4g4g4g4); s2 = (g2g3g2g3), and s3 = (g3g2g3g2). It can beobserved from Fig. 3 ( for sequence s1) and Lemma 2 that jffN(u)� vg [ fN(v)� ugg � ffN(u)� vg \ fN(v)� uggj =4n�10. Similarly, for the sequences s2 and s3, jffN(u)� vg [ fN(v)� ugg � ffN(u)� vg \ fN(v)� uggj= 4n� 10.
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Figure 3: 4-cycle in Rn (g4g4g4g4)6



Case IV. v 62 In(u), v 62 Out(u), the pair (u; v) is not contained in any 3-cycles or 4-cycles ofRn, and v is two hops away from u: In this case there is only one node which is common to theneighboring sets of u and v. Therefore, the number of distinct neighbors of (u; v) is 4n� 8.Case V. v 62 In(u), v 62 Out(u), the pair (u; v) is not contained in any 3-cycles or 4-cyclesof Rn, and v is at least three hops away from u: Since there are no common nodes between theneighboring sets of u and v, jffN(u)� vg [ fN(v)� ugg � ffN(u)� vg \ fN(v)� uggj = 4n�6.Therefore, any pair of arbitrary vertices (u; v) in Rn have at least 4n� 10 distinct neighboringnodes, for n � 4. 2Theorem 1 The generalized fault tolerance of Rn under the forbidden set F1 is 2n� 5 for n � 3.Proof: Let us consider a pair of non-faulty nodes (u; v) 2 V in Dn. We consider four cases.Case I: v = g3� u or u = g3� v: Nodes u and v have (n� 3) distinct incoming nodes, (n� 3)distinct outgoing nodes, and one node each obtained by generator g2. One of the incoming nodesof u (or v) is the outgoing node of v (or u). Again, the graph is always connected if the nodecommon to the node sets fN(u)� vg and fN(v)� ug fails, since there is at least one input andoutput non-faulty node. However, if all the three nodes in the directed 3-cycle are non-faulty (Fig.2), then the graph will become disconnected if all the incoming or outgoing nodes of all threenodes in the 3-cycle are faulty. For the graph to be strongly connected, at least one incoming nodeand one outgoing node should be non-faulty in any of the three non-faulty nodes in the 3-cycle.Therefore, the generalized fault tolerance under this condition is 3(n� 2)� 1 = 3n� 7.Case II: v 62 In(u), v 62 Out(u) and (u; v) are elements of a 4-cycle: Similar to Case I, thefailure of any of the common neighboring nodes to u and v will not disconnect the graph. When allthe nodes in the 4-cycle containing (u; v) are non-faulty, the fault tolerance is 4(n�2)�1 = 4n�9(Fig. 3).Case III: v = g2�u and u = g2�v: For each node u and v, there are (2n�4) distinct neighbors((n�2) incoming and (n�2) outgoing nodes), excluding nodes u and v. If all the (n�2) incoming(or outgoing) nodes of both u and v are faulty, then the graph will not be strongly connected.Therefore, at most (2n� 5) incoming or outgoing nodes can be faulty without disconnecting thenetwork.Case IV: v 62 In(u), v 62 Out(u), and (u; v) is not contained in any 4-cycle: It can be easilyshown that the fault tolerance under this condition is at least 2n � 5. An example is given inFig. 4. Consider the case when all the nodes in Fig. 4 are non-faulty. Since all the incomingand outgoing nodes of the nodes between u and v can be faulty, the worst case occurs when allthe incoming nodes of u and u0 (= g2 � u) or all the output nodes of v and v0 (= g2 � v) arefaulty (since the nodes in Fig. 4 form a directed path). Therefore, the fault tolerance under thiscondition is 2n� 5. Similar arguments hold when node v is two hops away from node u. 2These Cayley digraphs o�er high fault tolerance under the forbidden faulty sets. It can beobserved that the fault tolerance is (2n � 5) only under one condition (i.e., when the nodesconnected by the generator g2 are non-faulty), otherwise the fault tolerance is at least (3n � 7).There are n!=2 possible pairs of nodes connected by generator g2 in Dn. Each pair has two possible7



u v
u vFigure 4: An example of non-adjacent nodes (u; v) in Rnsets of (2n�4) nodes (i.e., either incoming or outgoing nodes). Therefore, there are only n! possiblefaulty sets with (2n � 4) nodes that can disconnect Dn. Since the maximum possible number of(2n� 4) processor sets is n!C(2n�4), the ratio n!=n!C(2n�4) becomes very small as n increases. Forexample, when n = 3, the ratio is 615 , and when n = 4, the ratio is 41761 . Therefore, the probabilityof failure of such sets is very small in Dn.4 Algorithm for conditional connectivityIn this section we present algorithms for determining connectivity of the directed Cayley graph inthe presence of (2n� 4) faults or less. Let f be the set of faulty nodes in Rn, and jf j � 2n� 4.Algorithm 1:Step 0: If jf j < (n� 1), then Rn � jf j is connected. Stop.Step 1: If (n�1) � jf j � (2n�4), and if there exists a node u 2 V , such that u 62 f and In(u) � for Out(u) � f then Rn � jf j is disconnected. Stop.Step 2: If jf j < 2n� 4, then Rn � jf j is connected. Stop.Step 3: If jf j = 2n� 4 and ( jf j = fIn(u) [ In(v)g or jf j = fOut(u) [ Out(v)g ), for (u; v) 2 V ,and u = g2 � v, then Rn � jf j is disconnected; otherwise Rn � jf j is connected. Stop.Time complexity analysis: Step 0 and Step 2 require constant time. In Step 1, since avertex v 2 f , may be an incoming node or outgoing node for any other node, we need to examine(2n�3)jf j vertices. For each such vertex, at most (n�1)jf j comparisons are necessary to check ifIn(v) � f or Out(v) � f . Therefore, the worst case computational requirement is O((njf j)2). Rnwith jf j = 2n� 4 faulty nodes, will be disconnected only when all the faults occur at the input oroutput nodes of two adjacent nodes (u; v), where v = g2 � u (Theorem 1).Before we discuss the implementation of Step 3 of Algorithm 1, we present some properties ofthe neighboring sets of u and v. Consider any two nodes of Rn, namely �u = 1234 : : : (n � 1)nand �v = 2134 : : : (n� 1)n, where �u = g2��v. The set of incoming nodes and the set of outgoingnodes of �u and �v are of the form,

In(�u) = 8>>>>>>><>>>>>>>: 31245 : : : (n� 1)n;41235 : : : (n� 1)n;51234 : : : (n� 1)n;...n123 : : : (n� 2)(n� 1)
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Out(�u) = 8>>>>>>><>>>>>>>: 23145 : : : (n� 1)n;23415 : : : (n� 1)n;23451 : : : (n� 1)n;...23456 : : : n1In(�v) = 8>>>>>>><>>>>>>>: 32145 : : : (n� 1)n;42135 : : : (n� 1)n;52134 : : : (n� 1)n;...n2134 : : : (n� 2)(n� 1)Out(�v) = 8>>>>>>><>>>>>>>: 13245 : : : (n� 1)n;13425 : : : (n� 1)n;13452 : : : (n� 1)n;...13456 : : : n2There are few things to note here. All the permutations in the incoming or the outgoing sets of�u and �v have the same symbol at the second position. Only one permutation in any set hasa last symbol di�erent from other elements of the set, and all other elements have the symbol�u[n] (same as �v[n]) at the last position. Once the permutation with a di�erent last symbol isidenti�ed, it is easy to identify the permutations (�u; �v) and check whether their neighbors arein the faulty set f . Now, Step-3 can be implemented as follows;1. If �i[2] is not same for all �i 2 f , then divide the faulty f set into two equal sets f1 andf2 with the same �[2]. If the division is not possible return not disconnected. If �i[2] is thesame for all �i 2 f , divide f into two sets f1 and f2 with the same �[1], respectively. If not,return not disconnected.2. If (n� 3) permutations of the total (n� 2) permutations of f1 do not have same last symboland one permutation has a di�erent last symbol, or (n � 3) permutations of f2 do nothave same last symbol and one permutation has a di�erent last symbol, then return notdisconnected. The permutations with a di�erent nth symbol in f1 and f2 are denoted as �f1and �f2 respectively.3. Insert �f1 [1] and �f2 [1] in the nth positions of �f1 and �f2 to generate the permutations �xand �y, respectively. If �x and �y satisfy the condition, �x = g2 � �y, and (�x; �y) 62 f ,and In(�x) � f and In(�y) � f , then return disconnected. If not, insert the symbol �f1 [n]and �f2 [n] in the �rst position of the permutations �f1 and �f2 respectively. If the resultantpermutations x and y satisfy the condition, x = g2� y and (x; y) 62 f , and Out(�x) � f andOut(�y) � f , then return disconnected. If not, return not disconnected.It requires O(jf j) steps to compare elements �i[2] and �i[1] for all �i 2 f . The next step to identify�f1 and �f2 also requires O(jf j) steps. The comparisons in part three requires O(jf j2) steps in9



the worst case to �nd out whether the graph is disconnected. So, Step 3 requires O(jf j2) steps.Therefore, the time complexity of Algorithm 1 is O((njf j)2).5 ConclusionIn this paper we have used the forbidden faulty sets to analyze the fault tolerance of directedCayley graphs. A new forbidden set is de�ned with pairs of nodes as elements to study the faulttolerance of the Cayley digraphs. The fault tolerance of Cayley digraphs under this forbiddenfaulty set is shown to be (2n� 5). The fault tolerance of rotator graphs is (2n� 5) only when thenodes connected by the generator g2 are non-faulty. In other cases the fault tolerance is shownto be at least (3n � 7). The Cayley digraphs become disconnected only when any two nodesconnected by the reversible generator are non-faulty and all their incoming nodes or outgoingnodes are faulty. Therefore, there are only n! sets of size 2n� 4 which can disconnect the directedCayley graphs. In comparison to the total n!C2n�4 sets of size (2n � 4), n! is very small as nincreases. We also presented an algorithm for the determining the connectivity of directed Cayleygraphs under (2n� 4) faults and evaluated its time complexity.AcknowledgementsWe would like to thank Ramaraghavan Srinivasan and Sumit Roy for their comments on an earlierversion of this paper. References[1] S. B. Akers and B. Krishnamurthy. The fault tolerance of star graphs. In L. P. Kartashev andS. I. Kartashev, editors, Proceedings of the 2nd International Conference on Supercomputing,pages 270{276, 1987.[2] S. B. Akers and B. Krishnamurthy. On group graphs and their fault-tolerance. IEEE Trans-actions on Computers, 36:885{888, 1987.[3] S. B. Akers and B. Krishnamurthy. The star graph: An attractive alternative to the n-cube.In Proceedings of the International Conference on Parallel Processing, pages 393{400, 1987.[4] S. B. Akers and B. Krishnamurthy. A group-theoretical model for symmetric interconnectionnetworks. IEEE Transactions on Computers, 38(4):555{566, April 1989.[5] B. Alspach. Cayley graphs with optimal fault tolerance. IEEE Transactions on Computers,41(10):1337{1339, Oct 1992.[6] M. Baumslag. On the fault-tolerance of quasi-minimal Cayley networks. In InternationalConference on Computing and Information, pages 431{442, 1991.[7] J. C. Bermond, N. Homobono, and C. Peyrat. Large fault-tolerant interconnection networks.Graphs and Combinatorics, 5:107{123, 1989.10
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