
1996 International Conference on Parallel Processing

Unique Sets Oriented Partitioning of Nested Loops with
Non-uniform Dependences*

Jialin J u and Vipin Chaudhary
Parallel and Distributed Computing Laboratory

Wayne State University, Detroit, MI
Phone: (313) 577-0605

Email: vipin@eng. Wayne. edu

ABSTRACT

Although m a n y methods exist f o r nested loop parti-
tioning, most of t hem perform poorly when paralleliz-
ing loops with non-uniform dependences. This paper
addresses the issue of parallelizing nested loops with
non-uniform dependences. Our approach is based o n
convex hull theory, which has adequate information t o
handle non-uniform dependences. W e introduce the
concept of Complete Dependence Convex Hull, unique
head and tail sets and abstract the dependence infor-
mation into these sets. These sets f o r m the basis of
the iteration space partitions. The properties of the
unique head and tail sets are derived using Convex
Hull theory. Depending o n the relative placement of
these unique sets, the partitioning problem i s grouped
in to several cases. Several partitioning schemes are
also suggested f o r implementing our technique. Pre-
liminary implementation results of our scheme on the
Cray 5916 and comparison with other schemes show a
dramatic improvement in performance.

INTRODUCTION

Loops with cross-iteration dependences can be roughly
divided into two groups. The first group is loops
with static regular dependences, which can be ana-
lyzed during compile time. ExampIe l beIongs to this
group. The other group consists of loops with dynamic
irregular dependences, which have indirect access pat-
terns eg. loops used for edge-oriented representation
of sparse matrices. These kind of loops cannot be
parallelized at compile time, for lack of sufficient in-
formation.

IThis work was supported in part by NSF MIP-9309489, US
Army Contract DAEA-32-93-D-004 and Ford Motor Company
Grant #0000952185

Example 1:
do i = 1, 12

do j = 1, 12
A(2 * i + 3 , j + 1) = . . .
. . . = A(2 t j + i + 1, i + j + 3)

enddo
enddo

Static regular loops can be further divided into two
sub groups; the ones with uniform dependences and
the other with non-uniform dependences. The de-
pendences are uniform only when the pattern of de-
pendence vectors is uniform ie. the dependence vec-
tors can be expressed by some constants which are
distance vectors. Similarly we call dependences non-
uniform when the dependence vectors are in some ir-
regular pattern which cannot be expressed with dis-
tance vectors. Figure 1 shows the non-uniform depen-
dence pattern of Example 1, which has a non-uniform
dependence, in the iteration space,

1 2 . . e 0
. . . a

. a
.e...

I 2 1 4 5 6 1 R Y 1 l 1 I I 1 2

(b)

Figure 1: Iteration space of Example 1

In an empirical study, Shen et al. [l] observed that
nearly 45% of two dimensional array references are
coupled and most of these lead to non-uniform de-
pendences. This paper focuses on parallelizing loops

111-45
0190-3918/96 $5.00 0 1996 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1 996 International Conference on Parallel Processing
-

with such dependences. Our approach is based on
Convex Hull theory which has been proven [a] to
have enough information to handle non-uniform de-
pendences. Based on our Unique Set technique, we
will divide the iteration space into several parallel re-
gions] such that all the iterations in each region can be
executed in parallel in most cases. In the worst case
only the last region has to be run sequentially.

Research in parallelizing non-uniform nested loops
has been limited. Tzen and Ni[3] proposed the De-
pendence Uniformization technique. This technique
computes a set of basic dependence vectors using De-
pendence Slope theory and adds them to every itera-
tion in the iteration space. This uniformization helps
in applying existing partitioning and scheduling tech-
niques, but imposes too many additional dependences
to the iteration space. Our approach provides more ac-
curate information about the iteration space and finds
more parallelism. Two other techniques based on Con-
vex Hull theory have been proposed recently. Zaafrani
and Ito [4] proposed a three region approach which di-
vides the iteration space into two parallel regions and
one serial region. Punyamurtula and Chaudhary [5]
use a Minimum Dependence Distance Technique to
partition the iteration space into regular tiles. Our
technique subsumes both the above techniques.

The rest of this paper is organized as follows. Sec-
tion two describes our program model, reviews some
fundamental concepts and introduces the concept of
a Complete Dependence Convex Hull. Section three
gives the definition of Unique Sets and methods to
find them. Section four presents our Unique Set ori-
ented partitioning technique. Section five confirms our
claims with results comparing our technique with pre-
viously proposed techniques. Finally, we conclude in
section six. Due to the space restrictions all the proofs
of the theorems and corollaries have been omitted.
Please refer to the technical report[6] for further de-
tails.

PROGRAM MODEL AND
DEPENDENCE REPRESENTATION

Studies [7, 11 show that most of the loops with com-
plex array subscripts are two dimensional loops. In or-
der to simplify explaining our techniques, our Program
Model has a normalized] doubly nested loops with cou-
pled subscripts (i.e., subscripts are linear functions of
loop indices). Both lower and upper bounds for in-
dices should be known at compile time. Our general
program model is:

do i = L1, U1
do j = La, U2

A(a11i + b l l j + c11, alzi + b l z j + ~ 1 2) = . . .
. . . = A (a 2 1 i + b z i j + czi, azzi + bzz j + cz2)

enddo
enddo

The most common method to compute data de-
pendences involves solving a set of linear Diophantine
equations with a set of constraints formed by the it-
eration boundaries. Given the program model above,
we want to find a set of integer solutions (i l , j1, i z , jz)
that satisfy the system of Diophantine equations (1)
and the system of linear inequalities (2) .

aiiii + hiji + cii aziiz + b z i j z + ~ z i
aizii + b i z j i + ciz = a z z i z + b 2 2 j z + czz (1)

The Dependence Convex Hull(DCH) is a convex
polyhedron and is a subspace of the solution space.
Please refer to [3] for the definition.

There are two approaches to solving the system of
Diophantine equations in (1). One way is to set il to
x1 and j1 to y1 and solve for i 2 and j z .

iz = Ql lZ l + PllYl + 711 { . 32 = a1221 + PlZYl + YlZ

where a11 = (a11bzz - alzbzl)/(azlbZ2 - a z z b z l) ,
P11 = (b l l b Z 2 - b lzbz l) / (az lbzz - a z z b z l) , 711 =
(bzzcii + bziczz - bzzc21 - b 2 1 ~ 1 z) / (a 2 1 b z z - a z z b a i) ,
Q l 2 = (a 2 1 a 1 2 - a 1 1 b 2 2) / (a 2 1 b 2 2 - a 2 2 b 2 1) , P 1 2 =
(a z i b 1 2 - ~ 2 b i i) / (a 2 1 b 2 2 - a2zbzi) , 7 1 2 = (aziciz +
a 2 2 c 2 1 - a 2 1 c 2 2 - a 2 2 c 1 1) / (a 2 1 b 2 2 - a z z b 2 1)

The solution space S is the set of points (x, y) sat-
isfying the equations given above. The set of inequal-
ities can be written as

51 L U1

L1 5 Q l l Z l + PllYl +Til 5 U1
Y1 (3) i L":2 L2 5 a 1 2 2 1 + P12Y1 + 7 1 2 5 U2

where (3) defines a DCH denoted by DCH1.
Another approach is to set i 2 to x 2 and j 2 to y 2 and

solve for il and jl.

il = Q Z l Z Z + P a y 2 + 7 2 1 { jl = Q22XZ + PzzY2 + Y22

where a 2 1 = (~ Z I ~ I Z - a 2 2 b l l) / (a l l b 1 2 - a ~ z h l) ,
Pa1 = (blZbZ1 - bllb22)/(allb12 - alabll), 7 2 1 =

111-46

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1 996 International Conference on Parallel Processing

(blZC21 + bllCl2 - b12Cll - bllC22)/(allb12 - alzbll),
Q22 = (ma22 - a12b21)/(a11b12 - alabl l) , P22 =
(a l l b z - a12b21)/(a11b12 - a l zb l l) , y22 = (a11c22 +
U 1 2 C l l - allcl2 - a12c21)/(a11b12 - QZbll)

The solution space S is the set of points (x , y) sat-
isfying the solution given above. In this case the set
of inequalities can be written as

L1 I a21x2 + PZlYZ + 7 2 1 i U1
Lz I Q 2 2 X 2 + P22Y2 + 7 2 2 I U2

2 2 i U1

5 U2 La 5 Y2

(4) [L 1 <

where (4) defines another DCH, denoted by DCH2.
We introduce a new term Complete DCH to repre-

sent the union of DCHl and DCH2 (which were con-
structed by (3) and (4)) and we shall demonstrate that
the Complete DCH contains all the information we
need to parallelize the loop.

Definition 1 (Complete DCH (CDCH))
The Complete DCH is the union of two closed sets
of integer points in the iteration space, which satisfy

We use an arrow to represent a dependence in the iter-
ation space. We call the arrow’s head the dependence
head and the arrow’s tail the dependence tail. Figure
2 shows the CDCH of Example 1.

(3) or (4).

Figure 2: CDCH of Example 1

Theorem 1 All the dependence heads and tails lie
within the CDCH. The head and tail of any partic-
ular dependence lie separately in the two DCHs of the
CD CH.

If iteration (i 2 , j ~) is dependent on iteration (i l , jl),
then we have a dependence vector D(x, y) with
d i (x , y) = i2 - i l , dj(x,y) = j 2 - j , . So, for DCH1,
we have

di(Z1,Yl) = (a11 - 1) X l + PllYl + 7 1 1

d j (X1,Yl) = Q 1 2 X 1 + (PlZ - 1) Y l + 7 1 2 (5)

For DCH2, we have

Clearly, if we have a solution (XI, y1) in DCH1, we
must have a solution (2 2 , y2) in DCH2, because they
are derived from the same set of linear Diophantine
equations (1).

UNIQUE SETS IN THE ITERATION
SPACE

As we have shown, all dependences lie within the
CDCH. In other words, the iterations lying outside
the CDCH are independent and can be executed in
parallel. Hence we only have to worry about the iter-
ations inside CDCH.

UNIQUE HEAD AND UNIQUE TAIL SETS

DCHl and DCH2 are our primitive sets. For a partic-
ular set it is possible that it contains both, dependence
heads and tails.

Definition 2 (Unique Head(Tai1) Set) Unique
head(tai1) set is a set of integer points in the itera-
t ion space that satisfies the following conditions:

1. it is subset of one of the DCHs (or is the D C H
its elf).

2. it contains all the depen-
dence arrow’s heads(tails), but does not contain
any other dependence arrow’s tails(heads).

Obviously the DCHs in Figure 2 are not the unique
sets we are trying to find, because each DCH con-
tains all the dependence heads of one kind and at
the same time contains all the dependence tails of the
other kind. Therefore, these DCHs must be further
partitioned into smaller unique sets.

FINDING UNIQUE HEAD AND UNIQUE
TAIL SETS

We first examine the properties of DCHl and DCH2.

Theorem 2 DCHl contains all flow dependence tails
and all anta dependence heads (i f they exist) and
DCH2 contains all anti dependence tails and all f low
dependence heads (if they exist).

111-47

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1 996 International Conference on Parallel Processing
-

The above theorem tells us that DCHl and DCH2
are not unique head or unique tail sets. If there ex-
ist only flow or anti dependence, DCHl either con-
tains all the flow dependence tails or anti dependence
heads, and DCH2 either contains all the flow depen-
dence heads or anti dependence tails. Under these
conditions, both DCHl and DCH2 are unique sets.
The following theorem states the condition for DCHl
and DCH2 to be unique sets.

Theorem 3 If d i (x , y) = 0 does not pass through any
DCH, then there is only one kind of dependence, either
flow or anti dependence, and the DCH itself is the
Unique Head set or the Unique Tail set.

DCHl and DCH2 are constructed from the same
system of linear Diophantine equations and inequali-
ties. The following two theorems highlight their com-
mon attributes.

Theorem 4 If d i (x 1 , y l) = 0 does not pass through
D C H l , then d i (x2 , y z) = 0 does not pass through
D CH2.

Corollary 1 W h e n d i (z 1 , y l) = 0 does not pass
through DCH1,

1. if D C H l is o n the side of d i (x1 , y l) > 0 , then

(a) D C H l is the flow dependence Unique Tail

(b) DCH2 is the flow dependence Unique Head
set, and

set.

2. if D C H l is on the side of di(x1 , y1) < 0, then

(a) D C H l is the anti dependence Unique Head

(b) DCH2 is the anti dependence Unique Tail
set, and

set.

Corollary 2 W h e n d i (x 1 , y l) = 0 does not pass
through D C H l ,

1. if D C H l is on the side of d i (x 1 , y l) > 0, then

2. i f D C H l is o n the side of d i (x l , y l) < 0 , then

DCH2 is o n the side of dt(z2, y2) > 0.

DCH2 is on the side of d i (x2 , y z) < 0.

We have now established that if di (x1 , y1) = 0 does
not pass through DCH1, then both DCHl and DCH2
are Unique Sets.

When d i (z , y) = 0 passes through the CDCH, a
DCH might contain both dependence heads and tails
(even if DCHl and DCH2 do not overlap). This makes

it harder to find the unique head and tail sets. The
next theorem looks at some common attributes when
d i (x , y) = 0 passes through the CDCH.

Theorem 5 If d i (z 1 , y l) = 0 passes through DCHI,
then d i (x 2 , y ~) = 0 must pass through DCH2.

Using the above theorem we can now deal with the
case where a DCH contains all the dependence tails
of one kind and all the dependence heads of another
kind.

Theorem 6 If d i (x , y) = 0 passes through a DCH,
then it will divide that DCH into a unique tail set and
a unique head set. Furthermore, dj (x , y) = 0 decides
on the inclusion of di(x, y) = 0 in one of the sets.

Note that if d j (x1 , y 1) > 0 , then the line segment
corresponding to d i (x 1 , y l) = 0 belongs to the flow
dependence Unique Tail set and if d j (z 1 , y l) < 0,
then the line segment corresponding to d i (z 1 , y l) = 0
belongs to the anti dependence Unique Head set.
The iteration corresponding to the intersection of
d i (x 1 , y l) = 0 and d j (l ~ 1 , y1) = 0 has no cross-iteration
dependence. If the intersection point of di (x1 , y1) = 0
and d j (z 1 , y l) = 0 lies in DCH1, then one segment of
the line di (x1 , y1) = 0 inside DCHl is a subset of the
flow dependence unique tail set and the other segment
of the line di (z1 , y1) = 0 inside DCHl is a subset of
the anti dependence unique head set.

For DCH2, we have similar results as above.

Corollary 3 When d i (x 1 , y l) = 0 passes through
DCH1, then

1. D C H l is the union of the flow dependence Unique
Tail set and the anti dependence Unique Head set,
and

2. DCH2 is the union of the flow dependence Unique
Head set and the anti dependence Unique Tail set.

Figure 3 illustrates the application of our results to
example 1. Clearly d i (z l , y1) = 0 divides DCHl into
two parts. The area on the left side of di(z1, y1) = 0 is
the Unique Tail set for flow dependence and the area
on the right side of d i (z 1 , y l) = 0 is the Unique Head
set for anti dependence. di(x2,92) = 0 divides DCH2
into two parts too. The area below di(z2, yz) = 0 is
the Unique Head set for flow dependence and the area
above di (x2 ,yz) = 0 is the Unique Tail set for anti
dependence.

111-48

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1 996 International Conference on Parallel Processing
~

I
12

11 .

IO

> .
x .
7

6 .

5 .

4 ,
3 .

2 .

I?. !
11

10 .

Y .
x .
7 .

6 -

s .
4 .

3 .

2 .
I _

Figure 3: Unique Head sets and Unique Tail sets of
(a) Flow dependence, (b) Ant i dependence

UNIQUE SETS ORIENTED
PARTITIONING

Based on the Unique Head and Tail Sets that we
identify, there exist various combinations of overlaps
(and/or disjointness) of these Unique Head and Tail
sets. We categorize these combinations as various
cases starting from simpler cases and leading up to
the more complicated ones. Because of lack of space
we will not discuss all combinations. However, these
combinations are not too many and can be generated
systematically.

Case 1 There is only one kind of dependence and
DCHI does not overlap with DCH2.

Figure 4: One kind of dependence and DCHl does not
overlap with DCH2

Figure 4(a) illustrates this case. Any line drawn be-
tween DCHl and DCH2 divides the iteration space
into two areas. The iterations within each area can
be executed concurrently. However, the area contain-
ing DCH2 needs to execute before the area containing
DCHl (as shown by the partitioning in Figure 4(b)).
The execution order is given by 1 t 2.

Case 2 There is only one kind of dependence and
DCHi overlaps with DCH2.

Figure 5: One kind of dependence and DCHi overlaps
with DCH2

Figure 5(a) illustrates this case. DCHl and DCH2
overlap to produce three distinct areas denoted by
A r e a l , Area2 and Area3, respectively. Area2 and
Area3 are either Unique Tail or Unique Head sets
and thus iterations within each set can execute con-
currently. Area l contains both tail and heads of de-
pendences. One can apply the Minimum Dependence
Distance Tiling technique proposed by Punyamurtula
and Chaudhary [5] to A r e a l . Depending on the type
of dependence there are two distinct execution orders
possible. If DCHl is a Unique Tail set, then the exe-
cution order is Area2 ---i Area l ---f Area3. Otherwise,
the execution order is Area3 -+ Area l ---f Area2. Fig-
ure 5(b) shows one possible partitioning.

Case 3 There are two kinds of dependences and
DCHI does not overlap with DCH2.

I + \

Figure 6: Two kinds of dependences and DCHi does
not overlap with DCH2

Figure 6(a) illustrates this case. Since DCHl and
DCH2 are disjoint we can partition the iteration space
into two with DCHl and DCH2 belonging to distinct
partitions. From theorem 6 we know that d i (z , y) = 0
will divide the DCHs into Unique Tail and Unique
Head sets. We next partition the area with DCHl by
the line di(zl,yl) = 0, and the area with DCH2 by

111-49

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1996 International Conference on Parallel Processing

the line d2(xZ,y2) = 0. So, we have four partitions,
each of which is totally parallelizable. Figure 6(b)
gives one possible partition with execution order as
1 -+ 2 -+ 3 -+ 4. Note that the Unique Head sets
must execute after the Unique Tail sets.

Case 4 There are two kinds of dependences and
DCHI overlaps wath DCH2, and there is at least one
asolated unaque set.

Figure 7 : Two h n d s of dependences and one isotated
unique set

Figures ?(a) and 7(c) illustrate this case. What we
want to do is to separate this isolated unique set from
the others. The line d,(s,y) = 0 is the best candi-
date to do this. If d,(z,y) = 0 does not intersect
with any other unique set or another DCH, then it
will divide the iteration space into two parts as shown
Figure 7(b). If d,(z,y) = 0 does intersect with other
unique sets or another DCH, we can add one edge of
the other DCH as our boundary to partition the iter-
ation space into two as shown in Figure 7(d). Let us

the partition containing the isolated unique set
by Area2. The other partition is denoted by Area l . If
Area2 contains a unique tail set, then Area2 must ex-
ecute before A r e a l , otherwise Area2 must execute af-
ter Area l . The next step is t a partition Area l . Since
Areul has only one kind of dependence (as long as
we maintain the execution order defined above) and

aps with DCH2, it faIls under the category
of case 2 and can be fur

Case 5 There are two kinds of dependence and all
unique sets are overlapping with each other.

Figure 8: Two kinds of dependence and all unique sets
overlapped each other

Figure 8(a) illustrates this case. The CDCH can be
partitioned into at most eight parts as shown in Fig-
ure 8@). Areal contains only flow dependence tails.
Areu2 contains only anti dependence tails. Area3 con-
tains only anti dependence heads. Area4 contains only
flow dependence heads. Area5 contains flow depen-
dence tails and anti dependence tails. Area6 contains
flow dependence heads and anti dependence heads.
Area7 contains flow dependence tails and flow depen-
dence heads. Area8 contains anti dependence tails
and anti dependence heads.

A r e a l , Area2, and Area5 can be combined to-
gether into a larger area, because they contain only
the dependence tails. Let us denote this combined
area by A r e a l . In the same way, Area3, Area4, and
Area6 can also be combined together, because they
contain only the dependence heads. Let us denote
this combined area by A r e a I I . A r e a I and A r e a I I
are fully parallelizable. The execution order becomes
AreaI -+ Area7 3 Area8 -+ A r e a I I . Since Area7
and Area8 contain both dependence heads and tails,
we can apply Minimum Dependence Distance
technique to parallelize this area.

PRELIMINARY EXPERIMENTAL
RESULTS

We executed Example 1 on a Gray J916 with 16 pro-
cessors and 4 GBytes of RAM with different parti-
tioning schemes. We analyzed the program using the
Autotasking Expert System (atexpert), which is a tool
developed by CRI for accurately measuring and graph-
ically displaying tasking performance from a job run
on an arbitrarily loaded CRI system. It can predict
speedups on a dedicaked system fram data c

on a non-dedicated system.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1996 International Conference on Parallel Processing

We used User-directed tasking directives to con-
struct our fully parallelizable area in the iteration
space. We set the upper bounds of the loop to 1000.

The iteration space for Example1 is shown in Figure
9. In Figure 9(a), Areal contains the flow dependence

Figure 9: Iteration space of Example 2

tail set and part of the anti dependence tail set. Area2
contains only anti dependence tails. Area3 contains
only anti dependence heads. Area4 contains both anti
dependence heads and tails. Area5 contains the flow
dependence head set. In figure 9(b), AREA I is the
combination of Areal, Area2, Area3 and Area4, and
AREA 11 is the same as Area5.

Obviously this example falls into the category of
case 4. Based on unique sets, we can first isolate a par-
allel area which contains the flow dependence Unique
Head set. That area is Area5 and it should execute
last. The iteration space beyond this area, which is
AREA 11, falls into case 2. Now we need only con-
sider one kind of dependence, anti dependence. At
this point, we can either continue our partitioning ac-
cording to the anti dependence Unique Head set and
Tail set, or apply minimum dependence distance tiling
technique to AREA I. We show these two approaches
in the following schemes. In addition, we add the case
where the last region of the first approach is run se-
quentially for comparison purposes (corresponding to
scheme 2).

1. Scheme 1: executing in the order of AREA
I -+ AREA II, where AREA 11 is fully parallel.
In AREA I apply the minimum dependence dis-
tance tiling technique. Here minimum distance is
4 in the j direction(i.e., tiling size is 4 in the j
direction).

2 . Scheme 2; executing in the order of Areal 4
Area2 + Area3 -+ Area4 -+ Area5, where
Areal, Area2, Area3 and Area5 execute in par-
allel and Area4 executes in serial order.

3. Scheme 3: executing in the order of Areal 4
Area2 -+ Area3 --+ Area4 + Areas, where
Areal, Area2, Area3 and Area5 execute fully
in parallel. We apply the minimum dependence
distance tiling technique to Area4(Here minimum
distance is 4 too).

The results for the above schemes are shown in Fig-
ure 10, 11, and 12, respectively. The solid line is the

Figure 10: Speedup for Scheme I

a t I
o w 0

0 2 4 5 8 10 12 14 16
CPU$

Figure 11: Speedup for Scheme 2

speedup on a dedicated system. The dashed line is the '
potential speedup which is the maximum speedup un-
der ideal conditions for this program. The dotted line
shows linear speedup, the boundary for all speedups.

Zaafrani and Ito's three-region region method[4]
was also implemented and the result is shown in Figure
13. Clearly all three partitioning schemes we proposed
show better results than the three-region method. The
sequential region in our scheme is much smaller than

Among our three schemes, Scheme 2 is the worst,
showing 74.1% parallel and 25.9% serial parts. Scheme
1 comes in second, with 99.6% parallel and 0.4% serial

in theirs.

111-51

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

1 996 International Conference on Parallel Processing
-

Figure 12: Speedup for Scheme 3

154 156 1 6 0 1.62 1.M 186 1.68 189 1 7 0 1 7 1 1 7 1 1.72 1 2

3 1 5 1 156 160 152 1.84 1 6 6 1 8 8 1 6 s 1 7 0 1 7 1 1 7 1 1 7 2 1

0 2 4 6 8 10 12 1 1 16
CPU$

Figure 13: Speedup for Zaafrani and Ito’s three-region
method

parts. Scheme 3 is the best, it shows 99.9% parallel
and 0.1% serial parts. The reason that Scheme 2 is
worst is that it has a sequential region in the itera-
tion space, which becomes a bottleneck. Scheme 3 is
far better than Scheme 2, leaving nothing in the it-
eration space that would run sequentially. Scheme 1
uses tiling technique in AREA I, which divides AREA
1 into many small, fully parallel regions. These tiles
would run sequentially. Scheme 3 shows almost linear
speedup, since there are no sequential regions.

From our preliminary results, it appears that the
iteration space should be partitioned into parallel re-
gions based on unique sets and the non-parallelizable
region should be partitioned using the minimum de-
pendence distance tiling technique.

CONCLUSION
In this paper, we systematically analyzed the charac-
teristics of the dependences in the iteration space with
the concepts of Complete Dependence Convex Hull,
Unique Head sets and Unique Tail sets, which iso-

lated the dependence information and showed the re-
lationship among the dependences. We also proposed
the Unique sets oriented partitioning of the iteration
space. The suggested scheme was implemented on a
Cray J916 and compared with the three-region tech-
nique. Preliminary results exhibit marked improve-
ment in speedups.

ACKNOWLEDGMENTS
We would like to thank Sumit Roy and Chengzhong
Xu for their constructive comments on the contents of
this paper.

References
Z. Shen, Z. Li, and P. C. Yew, “An empirical
study on array subscripts and data dependencies,”
in Proceedings of the International Conference on
Parallel Processing, pp. 11-145 to 11-152, 1989.

Y. Q. Yang, C. Ancourt, and F. Irigoin, “Minimal
data dependence abstractions for loop transforma-
tions: Extended version,” International Journal of
Parallel Programming, vol. 23, no. 4, pp. 359-388,
1995.

T. H. Tzen and L. M. Ni, “Dependence uniformiza-
tion: A loop parallelization tehnique,” IEEE
transactions on Parallel and Distributed Systems,
vol. 4, pp. 547-558, May 1993.

A. Zaafrani and M. Ito, “Parallel region execution
of loops with irregular dependences,” in Proceed-
ings of the International Conference on Parallel
Processing, pp. 11-11 to 11-19, 1994.

S. Punyamurtula and V. Chaudhary, “Minimum
dependence distance tiling of nested loops with
non-uniform dependences,” Symp. on Parallel and
Distributed Processing, pp. 74-81, 1994.

J . Ju and V. Chaudhary, “Unique sets oriented
partitioning of nested loops with non-uniform de-
pendences,” Technical Report PDCL 96-03-39,
Parallel and Distributed Computing Laboratory,
Wayne State University, 1996.

Z. Li, P. Yew, and C. Zhu, “An efficient data
dependence analysis for parallelizing compilers,”
IEEE transactions on Parallel and Distributed
Systems, pp. 26-34, Jan. 1990.

I 11-52

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 18:03 from IEEE Xplore. Restrictions apply.

