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ABSTRACT 

Although m a n y  methods exist f o r  nested loop parti- 
tioning, most of t hem perform poorly when paralleliz- 
ing loops with non-uniform dependences. This paper 
addresses the issue of parallelizing nested loops with 
non-uniform dependences. Our approach is based o n  
convex hull theory, which has adequate information t o  
handle non-uniform dependences. W e  introduce the 
concept of Complete Dependence Convex Hull, unique 
head and tail sets and abstract the dependence infor- 
mation into these sets. These sets f o r m  the basis of 
the iteration space partitions. The properties of the 
unique head and tail sets are derived using Convex 
Hull theory. Depending o n  the relative placement of 
these unique sets, the partitioning problem i s  grouped 
in to  several cases. Several partitioning schemes are 
also suggested f o r  implementing our technique. Pre- 
liminary implementation results of our scheme on the 
Cray 5916 and comparison with other schemes show a 
dramatic improvement in performance. 

INTRODUCTION 

Loops with cross-iteration dependences can be roughly 
divided into two groups. The first group is loops 
with static regular dependences, which can be ana- 
lyzed during compile time. ExampIe l beIongs to  this 
group. The other group consists of loops with dynamic 
irregular dependences, which have indirect access pat- 
terns eg. loops used for edge-oriented representation 
of sparse matrices. These kind of loops cannot be 
parallelized at compile time, for lack of sufficient in- 
formation. 

IThis  work was supported in part by NSF MIP-9309489, US 
Army Contract DAEA-32-93-D-004 and Ford Motor Company 
Grant #0000952185 

Example 1: 
do i = 1, 12 

do j = 1, 12 
A(2 * i + 3 , j  + 1) = . .  . 
. . . = A(2 t j  + i + 1, i + j  + 3) 

enddo 
enddo 

Static regular loops can be further divided into two 
sub groups; the ones with uniform dependences and 
the other with non-uniform dependences. The de- 
pendences are uniform only when the pattern of de- 
pendence vectors is uniform ie. the dependence vec- 
tors can be expressed by some constants which are 
distance vectors. Similarly we call dependences non- 
uniform when the dependence vectors are in some ir- 
regular pattern which cannot be expressed with dis- 
tance vectors. Figure 1 shows the non-uniform depen- 
dence pattern of Example 1, which has a non-uniform 
dependence, in the iteration space, 

1 2 .  . e 0 . . . .  
. . . a  . . . . .  . . . . . .  

. . . . . a  . . . . . .  
.e... . . . . .  . . . . .  .... . . . .  . . . .  

I 2  1 4  5 6 1 R Y 1 l 1 I I 1 2  

( b )  

Figure 1: Iteration space of Example 1 

In an empirical study, Shen et al. [l] observed that 
nearly 45% of two dimensional array references are 
coupled and most of these lead to  non-uniform de- 
pendences. This paper focuses on parallelizing loops 
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with such dependences. Our approach is based on 
Convex Hull theory which has been proven [a] to 
have enough information to handle non-uniform de- 
pendences. Based on our Unique Set technique, we 
will divide the iteration space into several parallel re- 
gions] such that all the iterations in each region can be 
executed in parallel in most cases. In the worst case 
only the last region has to  be run sequentially. 

Research in parallelizing non-uniform nested loops 
has been limited. Tzen and Ni[3] proposed the De- 
pendence Uniformization technique. This technique 
computes a set of basic dependence vectors using De- 
pendence Slope theory and adds them to every itera- 
tion in the iteration space. This uniformization helps 
in applying existing partitioning and scheduling tech- 
niques, but imposes too many additional dependences 
to the iteration space. Our approach provides more ac- 
curate information about the iteration space and finds 
more parallelism. Two other techniques based on Con- 
vex Hull theory have been proposed recently. Zaafrani 
and Ito [4] proposed a three region approach which di- 
vides the iteration space into two parallel regions and 
one serial region. Punyamurtula and Chaudhary [5]  
use a Minimum Dependence Distance Technique to 
partition the iteration space into regular tiles. Our 
technique subsumes both the above techniques. 

The rest of this paper is organized as follows. Sec- 
tion two describes our program model, reviews some 
fundamental concepts and introduces the concept of 
a Complete Dependence Convex Hull. Section three 
gives the definition of Unique Sets and methods to 
find them. Section four presents our Unique Set ori- 
ented partitioning technique. Section five confirms our 
claims with results comparing our technique with pre- 
viously proposed techniques. Finally, we conclude in 
section six. Due to the space restrictions all the proofs 
of the theorems and corollaries have been omitted. 
Please refer to  the technical report[6] for further de- 
tails. 

PROGRAM MODEL AND 
DEPENDENCE REPRESENTATION 

Studies [7, 11 show that most of the loops with com- 
plex array subscripts are two dimensional loops. In or- 
der to simplify explaining our techniques, our Program 
Model has a normalized] doubly nested loops with cou- 
pled subscripts (i.e., subscripts are linear functions of 
loop indices). Both lower and upper bounds for in- 
dices should be known at compile time. Our general 
program model is: 

do i = L1, U1 
do j = La, U2 

A(a11i + b l l j  + c11, alzi + b l z j  + ~ 1 2 )  = . . . 
. . . = A ( a 2 1 i  + b z i j  + czi, azzi + bzz j  + cz2) 

enddo 
enddo 

The most common method to compute data de- 
pendences involves solving a set of linear Diophantine 
equations with a set of constraints formed by the it- 
eration boundaries. Given the program model above, 
we want to find a set of integer solutions ( i l ,  j1, i z ,  jz) 
that satisfy the system of Diophantine equations (1) 
and the system of linear inequalities (2) . 

aiiii + hiji + cii aziiz + b z i j z  + ~ z i  
aizii + b i z j i  + ciz = a z z i z  + b 2 2 j z  + czz (1) 

The Dependence Convex Hull(DCH) is a convex 
polyhedron and is a subspace of the solution space. 
Please refer to [3] for the definition. 

There are two approaches to solving the system of 
Diophantine equations in (1). One way is to set il to 
x1 and j1 to y1 and solve for i 2  and j z .  

iz = Ql lZ l  + PllYl + 711 { .  32 = a1221 + PlZYl + YlZ 

where a11 = (a11bzz - alzbzl)/(azlbZ2 - a z z b z l ) ,  
P11 = ( b l l b Z 2  - b lzbz l ) / ( az lbzz  - a z z b z l ) ,  711 = 
(bzzcii + bziczz - bzzc21 - b 2 1 ~ 1 z ) / ( a 2 1 b z z  - a z z b a i ) ,  
Q l 2  = ( a 2 1 a 1 2  - a 1 1 b 2 2 ) / ( a 2 1 b 2 2  - a 2 2 b 2 1 ) ,  P 1 2  = 
( a z i b 1 2  - ~ 2 b i i ) / ( a 2 1 b 2 2  - a2zbzi) ,  7 1 2  = (aziciz + 
a 2 2 c 2 1  - a 2 1 c 2 2  - a 2 2 c 1 1 ) / ( a 2 1 b 2 2  - a z z b 2 1 )  

The solution space S is the set of points (x, y)  sat- 
isfying the equations given above. The set of inequal- 
ities can be written as 

51 L U1 

L1 5 Q l l Z l  + PllYl +Til 5 U1 
Y1 (3) i L":2 L2 5 a 1 2 2 1  + P12Y1 + 7 1 2  5 U2 

where (3) defines a DCH denoted by DCH1. 
Another approach is to set i 2  to x 2  and j 2  to y 2  and 

solve for il and jl. 

il = Q Z l Z Z  + P a y 2  + 7 2 1  { jl = Q22XZ + PzzY2 + Y22 

where a 2 1  = ( ~ Z I ~ I Z  - a 2 2 b l l ) / ( a l l b 1 2  - a ~ z h l ) ,  
Pa1 = (blZbZ1 - bllb22)/(allb12 - alabll), 7 2 1  = 
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(blZC21 + bllCl2 - b12Cll - bllC22)/(allb12 - alzbll), 
Q22 = (ma22 - a12b21)/(a11b12 - alabl l ) ,  P22 = 
( a l l b z  - a12b21)/(a11b12 - a l zb l l ) ,  y22 = (a11c22 + 
U 1 2 C l l  - allcl2 - a12c21)/(a11b12 - QZbll) 

The solution space S is the set of points ( x , y )  sat- 
isfying the solution given above. In this case the set 
of inequalities can be written as 

L1 I a21x2 + PZlYZ + 7 2 1  i U1 
Lz I Q 2 2 X 2  + P22Y2 + 7 2 2  I U2 

2 2  i U1 

5 U2 La 5 Y2 

(4) [ L 1 <  

where (4) defines another DCH, denoted by DCH2. 
We introduce a new term Complete DCH to repre- 

sent the union of DCHl and DCH2 (which were con- 
structed by (3) and (4)) and we shall demonstrate that 
the Complete DCH contains all the information we 
need to parallelize the loop. 

Definition 1 (Complete DCH (CDCH)) 
The Complete DCH is  the union of two closed sets 
of integer points in the iteration space, which satisfy 

We use an arrow to  represent a dependence in the iter- 
ation space. We call the arrow’s head the dependence 
head and the arrow’s tail the dependence tail. Figure 
2 shows the CDCH of Example 1. 

(3) or (4). 

Figure 2: CDCH of Example 1 

Theorem 1 All the dependence heads and tails lie 
within the CDCH. The  head and tail of any partic- 
ular dependence lie separately in the two DCHs of the 
CD CH. 

If iteration ( i 2 ,  j ~ )  is dependent on iteration ( i l ,  jl), 
then we have a dependence vector D(x, y) with 
d i ( x , y )  = i2 - i l ,  dj(x,y) = j 2  - j , .  So, for DCH1, 
we have 

di(Z1,Yl)  = (a11 - 1 ) X l  + PllYl + 7 1 1  

d j (X1,Yl)  = Q 1 2 X 1  + (PlZ - 1 ) Y l  + 7 1 2  (5) 

For DCH2, we have 

Clearly, if we have a solution (XI, y1) in DCH1, we 
must have a solution ( 2 2 ,  y2) in DCH2, because they 
are derived from the same set of linear Diophantine 
equations (1). 

UNIQUE SETS IN THE ITERATION 
SPACE 

As we have shown, all dependences lie within the 
CDCH. In other words, the iterations lying outside 
the CDCH are independent and can be executed in 
parallel. Hence we only have to worry about the iter- 
ations inside CDCH. 

UNIQUE HEAD AND UNIQUE TAIL SETS 

DCHl and DCH2 are our primitive sets. For a partic- 
ular set it is possible that it contains both, dependence 
heads and tails. 

Definition 2 (Unique Head(Tai1) Set) Unique 
head(tai1) set is  a set of integer points in the itera- 
t ion space that satisfies the following conditions: 

1. it is  subset of one of the DCHs  (or is  the D C H  
its elf). 

2. it contains all the depen- 
dence arrow’s heads(tails), but does not  contain 
any other dependence arrow’s tails(heads). 

Obviously the DCHs in Figure 2 are not the unique 
sets we are trying to find, because each DCH con- 
tains all the dependence heads of one kind and at 
the same time contains all the dependence tails of the 
other kind. Therefore, these DCHs must be further 
partitioned into smaller unique sets. 

FINDING UNIQUE HEAD AND UNIQUE 
TAIL SETS 

We first examine the properties of DCHl and DCH2. 

Theorem 2 DCHl contains all flow dependence tails 
and all anta dependence heads ( i f  they exist) and 
DCH2 contains all anti dependence tails and all f low 
dependence heads (if they exist). 
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The above theorem tells us that DCHl and DCH2 
are not unique head or unique tail sets. If there ex- 
ist only flow or anti dependence, DCHl either con- 
tains all the flow dependence tails or anti dependence 
heads, and DCH2 either contains all the flow depen- 
dence heads or anti dependence tails. Under these 
conditions, both DCHl and DCH2 are unique sets. 
The following theorem states the condition for DCHl 
and DCH2 to  be unique sets. 

Theorem 3 If d i ( x ,  y )  = 0 does not pass through any 
DCH, then there is only one kind of dependence, either 
flow or anti dependence, and the DCH itself is the 
Unique Head set or the Unique Tail set. 

DCHl and DCH2 are constructed from the same 
system of linear Diophantine equations and inequali- 
ties. The following two theorems highlight their com- 
mon attributes. 

Theorem 4 If d i ( x 1 , y l )  = 0 does not pass through 
D C H l ,  then d i ( x2 , y z )  = 0 does not pass through 
D CH2. 

Corollary 1 W h e n  d i ( z 1 , y l )  = 0 does not pass 
through DCH1, 

1. if D C H l  is o n  the side of d i ( x1 , y l )  > 0 ,  then 

(a) D C H l  is the flow dependence Unique Tail 

(b)  DCH2 is the flow dependence Unique Head 
set, and 

set. 

2. if D C H l  is on  the side of di(x1 , y1) < 0, then 

(a) D C H l  is the anti dependence Unique Head 

(b )  DCH2 is the anti dependence Unique Tail 
set, and 

set. 

Corollary 2 W h e n  d i ( x 1 , y l )  = 0 does not pass 
through D C H l ,  

1.  if D C H l  is on the side of d i ( x 1 , y l )  > 0, then 

2. i f  D C H l  is o n  the side of d i ( x l , y l )  < 0 ,  then 

DCH2 is o n  the side of dt(z2, y2) > 0. 

DCH2 is on  the side of d i ( x2 , y z )  < 0. 

We have now established that if di (x1 ,  y1) = 0 does 
not pass through DCH1, then both DCHl and DCH2 
are Unique Sets. 

When d i ( z , y )  = 0 passes through the CDCH, a 
DCH might contain both dependence heads and tails 
(even if DCHl and DCH2 do not overlap). This makes 

it harder to find the unique head and tail sets. The 
next theorem looks at some common attributes when 
d i ( x ,  y) = 0 passes through the CDCH. 

Theorem 5 If  d i ( z 1 , y l )  = 0 passes through DCHI,  
then d i ( x 2 , y ~ )  = 0 must  pass through DCH2. 

Using the above theorem we can now deal with the 
case where a DCH contains all the dependence tails 
of one kind and all the dependence heads of another 
kind. 

Theorem 6 If d i ( x , y )  = 0 passes through a DCH, 
then it will divide that DCH into a unique tail set and 
a unique head set. Furthermore, dj ( x ,  y )  = 0 decides 
on  the inclusion of di(x, y )  = 0 in one of the sets. 

Note that if d j (x1 ,  y 1 )  > 0 ,  then the line segment 
corresponding to d i ( x 1 , y l )  = 0 belongs to the flow 
dependence Unique Tail set and if d j ( z 1 , y l )  < 0, 
then the line segment corresponding to d i ( z 1 , y l )  = 0 
belongs to the anti dependence Unique Head set. 
The iteration corresponding to  the intersection of 
d i ( x 1 , y l )  = 0 and d j ( l ~ 1 ,  y1) = 0 has no cross-iteration 
dependence. If the intersection point of di (x1 ,  y1) = 0 
and d j ( z 1 , y l )  = 0 lies in DCH1, then one segment of 
the line di (x1 ,  y1) = 0 inside DCHl is a subset of the 
flow dependence unique tail set and the other segment 
of the line di (z1  , y1) = 0 inside DCHl is a subset of 
the anti dependence unique head set. 

For DCH2, we have similar results as above. 

Corollary 3 When d i ( x 1 , y l )  = 0 passes through 
DCH1, then 

1.  D C H l  is the union of the flow dependence Unique 
Tail set and the anti dependence Unique Head set, 
and 

2. DCH2 is the union of the flow dependence Unique 
Head set and the anti dependence Unique Tail set. 

Figure 3 illustrates the application of our results to 
example 1. Clearly d i ( z l  , y1) = 0 divides DCHl into 
two parts. The area on the left side of di(z1, y1) = 0 is 
the Unique Tail set for flow dependence and the area 
on the right side of d i ( z 1 , y l )  = 0 is the Unique Head 
set for anti dependence. di(x2,92)  = 0 divides DCH2 
into two parts too. The area below di(z2, yz) = 0 is 
the Unique Head set for flow dependence and the area 
above di (x2 ,yz )  = 0 is the Unique Tail set for anti 
dependence. 
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Figure 3: Unique Head sets and Unique Tail sets of 
(a) Flow dependence, (b)  Ant i  dependence 

UNIQUE SETS ORIENTED 
PARTITIONING 

Based on the Unique Head and Tail Sets that we 
identify, there exist various combinations of overlaps 
(and/or disjointness) of these Unique Head and Tail 
sets. We categorize these combinations as various 
cases starting from simpler cases and leading up to  
the more complicated ones. Because of lack of space 
we will not discuss all combinations. However, these 
combinations are not too many and can be generated 
systematically. 

Case 1 There is only one kind of dependence and 
DCHI does not overlap with DCH2. 

Figure 4: One kind of dependence and DCHl does not 
overlap with DCH2 

Figure 4(a) illustrates this case. Any line drawn be- 
tween DCHl and DCH2 divides the iteration space 
into two areas. The iterations within each area can 
be executed concurrently. However, the area contain- 
ing DCH2 needs to execute before the area containing 
DCHl (as shown by the partitioning in Figure 4(b)). 
The execution order is given by 1 t 2. 

Case 2 There is only one kind of dependence and 
DCHi  overlaps with DCH2. 

Figure 5: One kind of dependence and DCHi  overlaps 
with DCH2 

Figure 5(a) illustrates this case. DCHl and DCH2 
overlap to produce three distinct areas denoted by 
A r e a l ,  Area2 and Area3, respectively. Area2 and 
Area3 are either Unique Tail or Unique Head sets 
and thus iterations within each set can execute con- 
currently. Area l  contains both tail and heads of de- 
pendences. One can apply the Minimum Dependence 
Distance Tiling technique proposed by Punyamurtula 
and Chaudhary [5] to A r e a l .  Depending on the type 
of dependence there are two distinct execution orders 
possible. If DCHl is a Unique Tail set, then the exe- 
cution order is Area2 ---i Area l  ---f Area3. Otherwise, 
the execution order is Area3 -+ Area l  ---f Area2. Fig- 
ure 5(b) shows one possible partitioning. 

Case 3 There are two kinds of dependences and 
DCHI does not overlap with DCH2. 

I + \ 

Figure 6: Two kinds of dependences and DCHi  does 
not overlap with DCH2 

Figure 6(a) illustrates this case. Since DCHl and 
DCH2 are disjoint we can partition the iteration space 
into two with DCHl and DCH2 belonging to  distinct 
partitions. From theorem 6 we know that d i ( z ,  y) = 0 
will divide the DCHs into Unique Tail and Unique 
Head sets. We next partition the area with DCHl by 
the line di(zl,yl) = 0, and the area with DCH2 by 
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the line d2(xZ,y2) = 0. So, we have four partitions, 
each of which is totally parallelizable. Figure 6(b) 
gives one possible partition with execution order as 
1 -+ 2 -+ 3 -+ 4. Note that the Unique Head sets 
must execute after the Unique Tail sets. 

Case 4 There are two kinds of dependences and 
DCHI overlaps wath DCH2, and there is at least one 
asolated unaque set. 

Figure 7 :  Two h n d s  of dependences and one isotated 
unique set 

Figures ?(a) and 7(c) illustrate this case. What we 
want to do is to separate this isolated unique set from 
the others. The line d,(s,y)  = 0 is the best candi- 
date to do this. If d,(z,y) = 0 does not intersect 
with any other unique set or another DCH, then it 
will divide the iteration space into two parts as shown 
Figure 7(b). If d,(z,y)  = 0 does intersect with other 
unique sets or another DCH, we can add one edge of 
the other DCH as our boundary to partition the iter- 
ation space into two as shown in Figure 7(d). Let us 

the partition containing the isolated unique set 
by Area2. The other partition is denoted by Area l .  If 
Area2 contains a unique tail set, then Area2 must ex- 
ecute before A r e a l ,  otherwise Area2 must execute af- 
ter Area l .  The next step is t a  partition Area l .  Since 
Areul  has only one kind of dependence (as long as 
we maintain the execution order defined above) and 

aps with DCH2, it faIls under the category 
of case 2 and can be fur 

Case 5 There are two kinds of dependence and all 
unique sets are overlapping with each other. 

Figure 8: Two kinds of dependence and all unique sets 
overlapped each other 

Figure 8(a) illustrates this case. The CDCH can be 
partitioned into at most eight parts as shown in Fig- 
ure 8@). Areal  contains only flow dependence tails. 
Areu2 contains only anti dependence tails. Area3 con- 
tains only anti dependence heads. Area4 contains only 
flow dependence heads. Area5 contains flow depen- 
dence tails and anti dependence tails. Area6 contains 
flow dependence heads and anti dependence heads. 
Area7 contains flow dependence tails and flow depen- 
dence heads. Area8 contains anti dependence tails 
and anti dependence heads. 

A r e a l ,  Area2,  and Area5 can be combined to- 
gether into a larger area, because they contain only 
the dependence tails. Let us denote this combined 
area by A r e a l .  In the same way, Area3,  Area4,  and 
Area6 can also be combined together, because they 
contain only the dependence heads. Let us denote 
this combined area by A r e a I I .  A r e a I  and A r e a I I  
are fully parallelizable. The execution order becomes 
AreaI  -+ Area7 3 Area8 -+ A r e a I I .  Since Area7 
and Area8 contain both dependence heads and tails, 
we can apply Minimum Dependence Distance 
technique to parallelize this area. 

PRELIMINARY EXPERIMENTAL 
RESULTS 

We executed Example 1 on a Gray J916 with 16 pro- 
cessors and 4 GBytes of RAM with different parti- 
tioning schemes. We analyzed the program using the 
Autotasking Expert System (atexpert), which is a tool 
developed by CRI for accurately measuring and graph- 
ically displaying tasking performance from a job run 
on an arbitrarily loaded CRI system. It can predict 
speedups on a dedicaked system fram data c 

on a non-dedicated system. 
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We used User-directed tasking directives to con- 
struct our fully parallelizable area in the iteration 
space. We set the upper bounds of the loop to 1000. 

The iteration space for Example1 is shown in Figure 
9. In Figure 9(a), Areal contains the flow dependence 

Figure 9: Iteration space of Example 2 

tail set and part of the anti dependence tail set. Area2 
contains only anti dependence tails. Area3 contains 
only anti dependence heads. Area4 contains both anti 
dependence heads and tails. Area5 contains the flow 
dependence head set. In figure 9(b), AREA I is the 
combination of Areal,  Area2, Area3 and Area4, and 
AREA 11 is the same as Area5. 

Obviously this example falls into the category of 
case 4. Based on unique sets, we can first isolate a par- 
allel area which contains the flow dependence Unique 
Head set. That area is Area5 and it should execute 
last. The iteration space beyond this area, which is 
AREA 11, falls into case 2. Now we need only con- 
sider one kind of dependence, anti dependence. At 
this point, we can either continue our partitioning ac- 
cording to the anti dependence Unique Head set and 
Tail set, or apply minimum dependence distance tiling 
technique to AREA I. We show these two approaches 
in the following schemes. In addition, we add the case 
where the last region of the first approach is run se- 
quentially for comparison purposes (corresponding to 
scheme 2). 

1. Scheme 1: executing in the order of AREA 
I -+ AREA II, where AREA 11 is fully parallel. 
In AREA I apply the minimum dependence dis- 
tance tiling technique. Here minimum distance is 
4 in the j direction(i.e., tiling size is 4 in the j 
direction). 

2 .  Scheme 2; executing in the order of Areal 4 
Area2 + Area3 -+ Area4 -+ Area5, where 
Areal,  Area2, Area3 and Area5 execute in par- 
allel and Area4 executes in serial order. 

3. Scheme 3: executing in the order of Areal 4 
Area2 -+ Area3 --+ Area4 + Areas, where 
Areal,  Area2, Area3 and Area5 execute fully 
in parallel. We apply the minimum dependence 
distance tiling technique to Area4(Here minimum 
distance is 4 too). 

The results for the above schemes are shown in Fig- 
ure 10, 11, and 12, respectively. The solid line is the 

Figure 10: Speedup for  Scheme I 

a t  I 
o w  0 

0 2 4 5 8 10 12 14 16 
CPU$ 

Figure 11: Speedup for Scheme 2 

speedup on a dedicated system. The dashed line is the ' 
potential speedup which is the maximum speedup un- 
der ideal conditions for this program. The dotted line 
shows linear speedup, the boundary for all speedups. 

Zaafrani and Ito's three-region region method[4] 
was also implemented and the result is shown in Figure 
13. Clearly all three partitioning schemes we proposed 
show better results than the three-region method. The 
sequential region in our scheme is much smaller than 

Among our three schemes, Scheme 2 is the worst, 
showing 74.1% parallel and 25.9% serial parts. Scheme 
1 comes in second, with 99.6% parallel and 0.4% serial 

in theirs. 
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Figure 12: Speedup for Scheme 3 
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Figure 13: Speedup for Zaafrani and Ito’s three-region 
method 

parts. Scheme 3 is the best, it shows 99.9% parallel 
and 0.1% serial parts. The reason that Scheme 2 is 
worst is that it has a sequential region in the itera- 
tion space, which becomes a bottleneck. Scheme 3 is 
far better than Scheme 2, leaving nothing in the it- 
eration space that would run sequentially. Scheme 1 
uses tiling technique in AREA I, which divides AREA 
1 into many small, fully parallel regions. These tiles 
would run sequentially. Scheme 3 shows almost linear 
speedup, since there are no sequential regions. 

From our preliminary results, it appears that the 
iteration space should be partitioned into parallel re- 
gions based on unique sets and the non-parallelizable 
region should be partitioned using the minimum de- 
pendence distance tiling technique. 

CONCLUSION 
In this paper, we systematically analyzed the charac- 
teristics of the dependences in the iteration space with 
the concepts of Complete Dependence Convex Hull, 
Unique Head sets and Unique Tail sets, which iso- 

lated the dependence information and showed the re- 
lationship among the dependences. We also proposed 
the Unique sets oriented partitioning of the iteration 
space. The suggested scheme was implemented on a 
Cray J916 and compared with the three-region tech- 
nique. Preliminary results exhibit marked improve- 
ment in speedups. 
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