Proceedings of the First SUIF Compiler Workshop, pp. 148-152, January 11-13, 1996, Stanford University

Automatic Parallelization of Non-uniform Dependences*®

Vipin Chaudhary, Jialin Ju, Laiwu Luo, Sumit Roy, Vikas Sinha
and Cheng Zhong Xu
Parallel and Distributed Computing Laboratory
Wayne State University
Detroit, Michigan 48202

Venkat Konda
Mitsubishi Electric Research Laboratories
Sunnyvale, California

Abstract

This report summarizes our current experiences with Automatic Program Parallelization tools for convert-
ing sequential Fortran code for use on a multiprocessor computer. A number of such tools were evaluated,
including Parafrase, Adaptor, PAT, Petit and the SUIF compiler package. We evaluated the suitability of
such tools for parallelizing Computational Fluid Dynamics code supplied by the Army Research Laboratory,
Aberdeen Proving Grounds. SUIF was found to be most suitable by carrying out extensive tests on a suite
of test programs and a matrix multiplication program. As a result of these experiments we suggest some
modifications to the existing SUIF toolkit for efficient parallelization of the CFD code. Although SUIF does
efficient loop partitioning for uniform dependences, it cannot handle nested loops with irregular dependen-
cies efficiently. Unlike the case of nested loops with uniform dependencies these will have a complicated
dependence pattern which forms a non-uniform dependence vector set. We propose to incorporate additional
passes in SUIF based on results from our previous research, to generate code which will handle applications
with non-uniform dependences.

1 Introduction

The Parallel and Distributed Computing Laboratory at Wayne State University has been investigating issues
in automatic program parallelization for the last couple of years. One phase of this research consisted of
evaluating various relevant public domain tools including Parafrase, Adaptor, PAT, Petit and SUIF. Based
on our experiences with these tools, we selected SUIF as the most suitable tool for automatically parallelizing
Computational Fluid Dynamics code supplied by the Army Research Laboratory, Aberdeen Proving Grounds.

Another phase of our work is related to the problem of parallelizing loops with non-uniform or irregular
dependence vectors. Unlike the case of nested loops with uniform dependencies these will have a complicated
dependence pattern which forms a non-uniform dependence vector set. In [9], we have proposed a a simple
way to compute minimum dependence distances. Using these minimum dependence distances the iteration
space of the nested loops can be tiled. Iterations in a tile can be executed in parallel and the tiles can be
executed with proper synchronization.

Hence we plan to add passes to the SUIF suite so that parallelism can be extracted from non-uniform
dependences. These type of dependences are often found in various applications. We are also planning to
construct a back-end for the SUIF suite to convert the intermediate format to Fortran instead of C. This

*This work was supported in part by NSF MIP-9309489, US Army Contract DAEA-32-93-D-004 and Ford Motor Company
Grant #0000952185

148

would let application programmers get an overview of the transformations introduced by SUIF and allow
them to add further directives as desired before passing the transformed code to the native compiler.

2 Parallelization Tools

There are a number of parallelization tools available in the public domain. We briefly evaluated the following
tools for ease of use and suitability for the target code.

e Parafrase[1] is a parallelization tool consisting of a number of passes, including constant propagation,
loop interchanging, detection of possible doall loops and code generation. If the input code is
in Fortran, the final code generated is in Cedar Fortran, for a hierarchical-memory multiprocessor
machine. Analysis is also supported for C code but there is no code generation. It was found that
this tool cannot recognize independence in linearized subscripts.(Which formed part of the CFD kernel
test suite).It is also not designed to be extended easily and the transformed code is not very portable.
However a strong point of the tool is the graphic display of the flow graph, the dependence vectors and
the function call graph.

e ADAPTOR [2] is a source-to-source translator, which takes programs written in Fortran with array
extensions, parallel loops and layout directives and converts them to code with calls to an explicit
message passing library. Support is provided for using PVM [5] on a cluster of workstations. However
it does not accept “C” code at all.

e PAT [3] is a source analysis tool providing support for interactive transformation of serial Fortran code.
The tool is under development and is being rewritten to adopt an object oriented approach.

e Petit [4] is a dependence analysis and program transformation tool based on Michael Wolfe’s Tiny tool.
It requires transformation of source programs into a Fortran like language before use.

e SUIF [6] is a parallel compiler research tool from Monica Lam’s group at Stanford University. It is
not designed to be a particularly efficient compiler in itself, rather it forms the basis for conducting
research in parallelizing compilers. It offers a standard intermediate format, which can be passed
through various compiler stages for doing dependence analysis, loop transformations etc. It is easily
extendible and has good support. Though the current distribution has support for a limited number
of machines, we were able to port most of the tool to a 4 processor SPARCserver 630MP and we wrote
a runtime library to make use of Solaris kernel threads. A small FORTRAN preprocessor was also
written to convert newer constructs, like the “D0O”- “ENDDQ” pair, to traditional Fortran 77 code
(“DO line-number” - “line-number CONTINUE”).

3 SUIF: Results and Analysis

The SUIF compiler tool-kit was chosen for this project based on the evaluations in the previous section. For
this stage, we wanted to concentrate our investigations on the efficiency of the SUIF compiler for the code
at hand. Since the performance yardstick would be the speed-up due to the compiler, we had to add some
extensions to the compiler package.

After porting SUIF to the 4 processor SUN, we performed various timing measurements. The codes
used were three test routines from ARL and a matrix multiplication program. The chief difference in the
test programs was in the format of their array declarations. The matrix multiplication program was used
as a basis to determine performance losses. Different problem sizes were considered to investigate scaling
issues. The number of processors used was changed from one to four, by increasing the number of concurrent
threads appropriately. (Individual threads will always attempt to run on every available processor.)

The matrix multiplication program consisted of two nested loops, one for initializing the elements, the
next for multiplying them. The first loop was doubly nested, and the second loop was triply nested. We
compared the execution times for the following versions of the program:

e A single-threaded Fortran version using the native compiler.

149

Real/Float Integer

Array Size Fr7 CC SUIF Hand Fr7 CC SUIF Hand

50 x 50 0.223 0.177 0.222 0.200 0.266 0.244 0.289 0.239
100 x 100 0.556 0.780 0.442 0.449 1.566 1.477 0.733 0.626
200 x 200 3.752 6.134 2.241 1.954 12.625 12.416 3.766 4.329
500 x 500 81.718 | 116.909 | 41.502 | 38.515 251.399 | 253.193 | 74.828 | 71.689
1000 x 1000 || 869.368 | 1231.317 | 466.334 | 482.201 || 2434.053 | 2468.806 | 717.615 | 714.940

Table 1: Matrix Multiplication Timings

e A single-threaded C version compiled with the native CC compiler.
e A multi-threaded C version, coded by hand.
e A Fortran version passed through SUIF with calls to the multi-threaded runtime.

All compilations were done with maximum optimization setting for the native compiler. Integer and
real/float were used to isolate language or hardware dependent behavior. We investigated scaling issues by
using various array sizes.[Table 1]. We also studied the effect of increasing the number of available threads,
beyond the actual number of processors.

[Fig. 1(a)] shows the relative performance of the differently compiled programs for floating point numbers
and [Fig. 1(b)] for integers.

1000
f 177
oo A
SUIF- 8- 1000 St
a5 Hand
100
100
z z
o °
E E
8 10 5
g g 10
o] o]
1 1
0.1 0.1
50x 50 100 x 100 200 x 200 500 x 500 1000 x 1000 50x 50 100 x 100 200 x 200 500 x 500 1000 x 1000
Problem Size Problem Size
(a) Floating Point Timings (b) Integer Timings

Figure 1: Execution timings with various compilers

As can be seen from the data, there is a performance penalty of approximately 100 % when using C for
floating point operations as compared to Fortran on the SPARCserver 630 MP.

The multiprocessor machine has a very efficient floating point unit. In case of Fortran, the floating point
version is 3 times faster than the integer code [Table 1]. The integer and float sizes on this machine were
identically 32 bits, hence there is no performance loss due to differing memory requirements for the data. It
is to be noted that the Fortran and C versions of the program have identical execution times when using
integers.

Comparing the results of the hand coded parallel program and that of the SUIF version, it is seen that
there is very little overhead due to calls to the SUIF runtime library. Allowing for statistical variation in the
execution times, the results lie within 10 % of their mean. One would expect very little performance gain
by manually embedding parallel routines in the target code.

150

Speed Up

4 6
Number of Threads

Figure 2: Speed-Ups vs Number of Threads

It is also apparent that there was a memory bottle neck on our machine, since the performance dropped
for a matrix size of 1000 x 1000.[Fig. 2]

4 Non-uniform Dependences

According to an empirical study reported by Shen et. al. [7], subscripts that are linear functions of loop
indices or coupled subscripts appear quite frequently in real programs. They observed that nearly 45% of
two-dimensional array references are coupled. Coupled array subscripts in nested loops generate non-uniform
dependence vectors.

To parallelize the nested loops with irregular dependence vectors, we adopt the following approach. A
set of Diophantine equations is formed from the array subscripts of the nested loops. These Diophantine
equations are solved for integer solutions. The loop bounds are applied to these solutions to obtain a set of
inequalities. These inequalities are then used to form a dependence convex hull (DCH) as an intersection of
a set of half-spaces. We use the algorithm presented by Tzen and Ni [8] to construct this dependence convex
hull. Every integer point in the convex hull corresponds to a dependence vector of the iteration space. If
there are no integer points within the convex hull, then there are no cross-iteration dependencies among the
nested loop iterations. The corner points of this convex hull form the set of extreme points for the convex
hull. These extreme points have the property that any point in the convex hull can be represented as a
convex combination of these extreme points. Since the extreme points of a DCH are formed by intersections
of a set of hyper-planes, they might have real coordinates. Therefore these extreme points need not be valid
iterations.

We have developed an algorithm to convert these extreme points with real coordinates to extreme points
with integer coordinates [9]. The main reason for doing this is that we use the dependence vectors of
these extreme points to compute the minimum and maximum dependence distances. This information is
otherwise not available for non-uniform dependence vector sets. Also, it can be easily proven that the
dependence vectors of these extreme points form a set of extreme vectors for the dependence vector set [10].
We refer to the convex hull with all integer extreme points as Integer Dependence Convex Hull (IDCH). No
useful dependence information is lost while changing the DCH to IDCH [10].

The dependence vectors of the extreme points form a set of extreme vectors for the dependence vector set.
The minimum and maximum values of the dependence distance can be found from these extreme vectors.
In [9] we have proposed a number of theorems and schemes to compute the minimum dependence distance.
Using the minimum dependence distances , we can tile the iteration space.

151

5 Conclusions

Based on the work done so far, the SUIF compiler system seems to be the ideal candidate for further
development into an automatic parallelization system. We have tested the current implementation on a 4
processor SPARCserver and have had some excellent results. SUIF'is able to efficiently recognize parallelism
in the code of interest and has a minimal overhead in its runtime library. Some performance penalty was
however experienced due to the use of “C’ as the final output language. When compared to the Fortran
version, the maximum speed-up was never more than 2, using 4 processors. This seems to be the effect
of the more efficient floating point library in case of Fortran. The direction for future work would be to
construct a back-end for the SUIF suite to convert the intermediate format to Fortran instead of C. We
are also planning to incorporate our work on irregular dependence analysis into the SUIF compiler passes.

References

[1] C. Polychronopoulos et al, “Parafrase-2 Home Page” http://www.csrd.uiuc.edu/parafrase2/index.

[2] T. Brandes, “Adaptor (HPF Compilation System)”, http://www.gmd.de/SCAI/lab/adaptor/
adaptor_home.

[3] W. Applebe, “Parallelization Assistant (PAT)”, http://www.tc.cornell.edu/UserDoc/Software/
PTools/pat.

[4] W. Pugh et al, “Petit”, http://www.cs.umd.edu/projects/omega/petit.html.

[5] J. Dongarra et al, “Parallel Virtual Machine (PVM) Version 3”, http://www.epm.ornl.gov/pvm/pvm
_home.html

[6] M. Lam et al, “The Stanford SUIF Compiler”, http://suif.stanford.edu.

[7] Z. Shen, Z. Li, and P.-C. Yew, “An empirical study on array subscripts and data dependencies,” in
Proceedings of the International Conference on Parallel Processing, pp. 11-145 to 11-152, 1989.

[8] T. H. Tzen and L. M. Ni, “Dependence uniformization: A loop parallelization technique,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 4, pp. 547 to 558, May 1993.

[9] S. Punyamurtula and V. Chaudhary, “Minimum dependence distance tiling of nested loops with non-
uniform dependences,” in Proceedings of the Sizth IEEE Symposium on Parallel and Distributed Pro-
cessing, (Dallas, Texas), IEEE Computer Society Press, October 1994, pp. 74 to 81.

[10] S. Punyamurtula and V. Chaudhary, “On tiling nested loop iteration spaces with irregular dependence
vectors,” Tech. Rep. TR-94-02-22, Parallel and Distributed Computing Laboratory, Wayne State Uni-
versity, Detroit, Mar 1994.

152

