
Proceedings of the First SUIF Compiler Workshop, pp. 148-152, January 11-13, 1996, Stanford University
Automatic Parallelization of Non-uniform Dependences�Vipin Chaudhary, Jialin Ju, Laiwu Luo, Sumit Roy, Vikas Sinhaand Cheng Zhong XuParallel and Distributed Computing LaboratoryWayne State UniversityDetroit, Michigan 48202Venkat KondaMitsubishi Electric Research LaboratoriesSunnyvale, California

AbstractThis report summarizes our current experiences with Automatic Program Parallelization tools for convert-ing sequential Fortran code for use on a multiprocessor computer. A number of such tools were evaluated,including Parafrase, Adaptor, PAT, Petit and the SUIF compiler package. We evaluated the suitability ofsuch tools for parallelizing Computational Fluid Dynamics code supplied by the Army Research Laboratory,Aberdeen Proving Grounds. SUIF was found to be most suitable by carrying out extensive tests on a suiteof test programs and a matrix multiplication program. As a result of these experiments we suggest somemodi�cations to the existing SUIF toolkit for e�cient parallelization of the CFD code. Although SUIF doese�cient loop partitioning for uniform dependences, it cannot handle nested loops with irregular dependen-cies e�ciently. Unlike the case of nested loops with uniform dependencies these will have a complicateddependence pattern which forms a non-uniform dependence vector set. We propose to incorporate additionalpasses in SUIF based on results from our previous research, to generate code which will handle applicationswith non-uniform dependences.1 IntroductionThe Parallel and Distributed Computing Laboratory at Wayne State University has been investigating issuesin automatic program parallelization for the last couple of years. One phase of this research consisted ofevaluating various relevant public domain tools including Parafrase, Adaptor, PAT, Petit and SUIF. Basedon our experiences with these tools, we selected SUIF as the most suitable tool for automatically parallelizingComputational Fluid Dynamics code supplied by the Army Research Laboratory, Aberdeen Proving Grounds.Another phase of our work is related to the problem of parallelizing loops with non-uniform or irregulardependence vectors. Unlike the case of nested loops with uniform dependencies these will have a complicateddependence pattern which forms a non-uniform dependence vector set. In [9], we have proposed a a simpleway to compute minimum dependence distances. Using these minimum dependence distances the iterationspace of the nested loops can be tiled. Iterations in a tile can be executed in parallel and the tiles can beexecuted with proper synchronization.Hence we plan to add passes to the SUIF suite so that parallelism can be extracted from non-uniformdependences. These type of dependences are often found in various applications. We are also planning toconstruct a back-end for the SUIF suite to convert the intermediate format to Fortran instead of C. This�This work was supported in part by NSF MIP-9309489, US Army Contract DAEA-32-93-D-004 and Ford Motor CompanyGrant #0000952185 148



would let application programmers get an overview of the transformations introduced by SUIF and allowthem to add further directives as desired before passing the transformed code to the native compiler.2 Parallelization ToolsThere are a number of parallelization tools available in the public domain. We brie
y evaluated the followingtools for ease of use and suitability for the target code.� Parafrase[1] is a parallelization tool consisting of a number of passes, including constant propagation,loop interchanging, detection of possible doall loops and code generation. If the input code isin Fortran, the �nal code generated is in Cedar Fortran, for a hierarchical-memory multiprocessormachine. Analysis is also supported for C code but there is no code generation. It was found thatthis tool cannot recognize independence in linearized subscripts.(Which formed part of the CFD kerneltest suite).It is also not designed to be extended easily and the transformed code is not very portable.However a strong point of the tool is the graphic display of the 
ow graph, the dependence vectors andthe function call graph.� ADAPTOR [2] is a source-to-source translator, which takes programs written in Fortran with arrayextensions, parallel loops and layout directives and converts them to code with calls to an explicitmessage passing library. Support is provided for using PVM [5] on a cluster of workstations. Howeverit does not accept \C" code at all.� PAT [3] is a source analysis tool providing support for interactive transformation of serial Fortran code.The tool is under development and is being rewritten to adopt an object oriented approach.� Petit [4] is a dependence analysis and program transformation tool based on Michael Wolfe's Tiny tool.It requires transformation of source programs into a Fortran like language before use.� SUIF [6] is a parallel compiler research tool from Monica Lam's group at Stanford University. It isnot designed to be a particularly e�cient compiler in itself, rather it forms the basis for conductingresearch in parallelizing compilers. It o�ers a standard intermediate format, which can be passedthrough various compiler stages for doing dependence analysis, loop transformations etc. It is easilyextendible and has good support. Though the current distribution has support for a limited numberof machines, we were able to port most of the tool to a 4 processor SPARCserver 630MP and we wrotea runtime library to make use of Solaris kernel threads. A small FORTRAN preprocessor was alsowritten to convert newer constructs, like the \DO"- \ENDDO" pair, to traditional Fortran 77 code(\DO line-number" - \line-number CONTINUE").3 SUIF: Results and AnalysisThe SUIF compiler tool-kit was chosen for this project based on the evaluations in the previous section. Forthis stage, we wanted to concentrate our investigations on the e�ciency of the SUIF compiler for the codeat hand. Since the performance yardstick would be the speed-up due to the compiler, we had to add someextensions to the compiler package.After porting SUIF to the 4 processor SUN, we performed various timing measurements. The codesused were three test routines from ARL and a matrix multiplication program. The chief di�erence in thetest programs was in the format of their array declarations. The matrix multiplication program was usedas a basis to determine performance losses. Di�erent problem sizes were considered to investigate scalingissues. The number of processors used was changed from one to four, by increasing the number of concurrentthreads appropriately. (Individual threads will always attempt to run on every available processor. )The matrix multiplication program consisted of two nested loops, one for initializing the elements, thenext for multiplying them. The �rst loop was doubly nested, and the second loop was triply nested. Wecompared the execution times for the following versions of the program:� A single-threaded Fortran version using the native compiler.149



Real/Float IntegerArray Size F77 CC SUIF Hand F77 CC SUIF Hand50 � 50 0.223 0.177 0.222 0.200 0.266 0.244 0.289 0.239100 � 100 0.556 0.780 0.442 0.449 1.566 1.477 0.733 0.626200 � 200 3.752 6.134 2.241 1.954 12.625 12.416 3.766 4.329500 � 500 81.718 116.909 41.502 38.515 251.399 253.193 74.828 71.6891000 � 1000 869.368 1231.317 466.334 482.201 2434.053 2468.806 717.615 714.940Table 1: Matrix Multiplication Timings� A single-threaded C version compiled with the native CC compiler.� A multi-threaded C version, coded by hand.� A Fortran version passed through SUIF with calls to the multi-threaded runtime.All compilations were done with maximum optimization setting for the native compiler. Integer andreal/
oat were used to isolate language or hardware dependent behavior. We investigated scaling issues byusing various array sizes.[Table 1]. We also studied the e�ect of increasing the number of available threads,beyond the actual number of processors.[Fig. 1(a)] shows the relative performance of the di�erently compiled programs for 
oating point numbersand [Fig. 1(b)] for integers.

0.1

1

10

100

1000

50 x 50 100 x 100 200 x 200 500 x 500 1000 x 1000

E
xe

cu
tio

n 
tim

e 
(s

)

Problem Size

f77
cc

SUIF
Hand

(a) Floating Point Timings 0.1

1

10

100

1000

50 x 50 100 x 100 200 x 200 500 x 500 1000 x 1000

E
xe

cu
tio

n 
tim

e 
(s

)

Problem Size

f77
cc

SUIF
Hand

(b) Integer TimingsFigure 1: Execution timings with various compilersAs can be seen from the data, there is a performance penalty of approximately 100 % when using C for
oating point operations as compared to Fortran on the SPARCserver 630 MP.The multiprocessor machine has a very e�cient 
oating point unit. In case of Fortran, the 
oating pointversion is 3 times faster than the integer code [Table 1]. The integer and 
oat sizes on this machine wereidentically 32 bits, hence there is no performance loss due to di�ering memory requirements for the data. Itis to be noted that the Fortran and C versions of the program have identical execution times when usingintegers.Comparing the results of the hand coded parallel program and that of the SUIF version, it is seen thatthere is very little overhead due to calls to the SUIF runtime library. Allowing for statistical variation in theexecution times, the results lie within 10 % of their mean. One would expect very little performance gainby manually embedding parallel routines in the target code.150



0

1

2

3

4

5

0 2 4 6 8 10

Sp
ee

d 
U

p

Number of Threads

100x100
200x200
500x500

1000x1000
2000x2000

Figure 2: Speed-Ups vs Number of ThreadsIt is also apparent that there was a memory bottle neck on our machine, since the performance droppedfor a matrix size of 1000� 1000.[Fig. 2]4 Non-uniform DependencesAccording to an empirical study reported by Shen et. al. [7], subscripts that are linear functions of loopindices or coupled subscripts appear quite frequently in real programs. They observed that nearly 45% oftwo-dimensional array references are coupled. Coupled array subscripts in nested loops generate non-uniformdependence vectors.To parallelize the nested loops with irregular dependence vectors, we adopt the following approach. Aset of Diophantine equations is formed from the array subscripts of the nested loops. These Diophantineequations are solved for integer solutions. The loop bounds are applied to these solutions to obtain a set ofinequalities. These inequalities are then used to form a dependence convex hull (DCH) as an intersection ofa set of half-spaces. We use the algorithm presented by Tzen and Ni [8] to construct this dependence convexhull. Every integer point in the convex hull corresponds to a dependence vector of the iteration space. Ifthere are no integer points within the convex hull, then there are no cross-iteration dependencies among thenested loop iterations. The corner points of this convex hull form the set of extreme points for the convexhull. These extreme points have the property that any point in the convex hull can be represented as aconvex combination of these extreme points. Since the extreme points of a DCH are formed by intersectionsof a set of hyper-planes, they might have real coordinates. Therefore these extreme points need not be validiterations.We have developed an algorithm to convert these extreme points with real coordinates to extreme pointswith integer coordinates [9]. The main reason for doing this is that we use the dependence vectors ofthese extreme points to compute the minimum and maximum dependence distances. This information isotherwise not available for non-uniform dependence vector sets. Also, it can be easily proven that thedependence vectors of these extreme points form a set of extreme vectors for the dependence vector set [10].We refer to the convex hull with all integer extreme points as Integer Dependence Convex Hull (IDCH). Nouseful dependence information is lost while changing the DCH to IDCH [10].The dependence vectors of the extreme points form a set of extreme vectors for the dependence vector set.The minimum and maximum values of the dependence distance can be found from these extreme vectors.In [9] we have proposed a number of theorems and schemes to compute the minimum dependence distance.Using the minimum dependence distances , we can tile the iteration space.
151



5 ConclusionsBased on the work done so far, the SUIF compiler system seems to be the ideal candidate for furtherdevelopment into an automatic parallelization system. We have tested the current implementation on a 4processor SPARCserver and have had some excellent results. SUIF is able to e�ciently recognize parallelismin the code of interest and has a minimal overhead in its runtime library. Some performance penalty washowever experienced due to the use of \C' as the �nal output language. When compared to the Fortranversion, the maximum speed-up was never more than 2, using 4 processors. This seems to be the e�ectof the more e�cient 
oating point library in case of Fortran. The direction for future work would be toconstruct a back-end for the SUIF suite to convert the intermediate format to Fortran instead of C. Weare also planning to incorporate our work on irregular dependence analysis into the SUIF compiler passes.References[1] C. Polychronopoulos et al, \Parafrase-2 Home Page",http://www.csrd.uiuc.edu/parafrase2/index.[2] T. Brandes, \Adaptor (HPF Compilation System)", http://www.gmd.de/SCAI/lab/adaptor/adaptor home.[3] W. Applebe, \Parallelization Assistant (PAT)", http://www.tc.cornell.edu/UserDoc/Software/PTools/pat.[4] W. Pugh et al, \Petit", http://www.cs.umd.edu/projects/omega/petit.html.[5] J. Dongarra et al, \Parallel Virtual Machine (PVM) Version 3", http://www.epm.ornl.gov/pvm/pvmhome.html[6] M. Lam et al, \The Stanford SUIF Compiler", http://suif.stanford.edu.[7] Z. Shen, Z. Li, and P.-C. Yew, \An empirical study on array subscripts and data dependencies," inProceedings of the International Conference on Parallel Processing, pp. II{145 to II{152, 1989.[8] T. H. Tzen and L. M. Ni, \Dependence uniformization: A loop parallelization technique," IEEE Trans-actions on Parallel and Distributed Systems, vol. 4, pp. 547 to 558, May 1993.[9] S. Punyamurtula and V. Chaudhary, \Minimum dependence distance tiling of nested loops with non-uniform dependences," in Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Pro-cessing, (Dallas, Texas), IEEE Computer Society Press, October 1994, pp. 74 to 81.[10] S. Punyamurtula and V. Chaudhary, \On tiling nested loop iteration spaces with irregular dependencevectors," Tech. Rep. TR-94-02-22, Parallel and Distributed Computing Laboratory, Wayne State Uni-versity, Detroit, Mar 1994.

152


