
Unique Sets Oriented Parallelizationof Loops with Non-uniformDependencesJialin Ju and Vipin ChaudharyParallel and Distributed Computing Laboratory, Wayne State University, Detroit, MI 48202,USAEmail: vipin@eng.wayne.eduAlthough many methods exist for nested loop partitioning, most of them per-form poorly when parallelizing loops with non-uniform dependences. This paperaddresses the issue of automatic parallelization of loops with non-uniform depen-dences. Such loops normally are not parallelized by existing parallelizing compilersand transformations. Even when parallelized in rare instances, the performanceis very poor. Our approach is based on the Convex Hull theory which has ade-quate information to handle non-uniform dependences. We introduce the conceptof Complete Dependence Convex Hull, Unique Head and Tail Sets and abstractthe dependence information into these sets. These sets form the basis of the itera-tion space partitions. The properties of the unique head and tail sets are derived.Depending on the relative placement of these unique sets, partitioning schemesare suggested for implementation of our technique. Implementation results of ourscheme on the Cray J916 and comparison with other schemes show the superiorityof our technique.Received November 4, 1996; revised July 15, 19971. INTRODUCTIONGiven a sequential program, a challenging problem forparallelizing compilers is to detect maximum paral-lelism. It is generally agreed upon and shown in thestudy by Kuck et. al. 1 that most of the computationtime is spent in loops. Current parallelizing compil-ers concentrate on loop parallelization 2. A loop canbe easily parallelized if there are no cross-iteration de-pendences. However, loops with cross-iteration depen-dences are very common. Parallelizing loops with cross-iteration dependences is a major concern facing paral-lelizing compilers today.Loops with cross-iteration dependences can beroughly divided into two groups. One is loops withstatic regular dependences, which can be analyzed dur-ing compile time. Example 1, 2 in Figure 1 belong tothis group. The other group is loops with dynamic ir-regular dependences, which have indirect access pat-terns. Example 3 shows a typical irregular loop, whichis used for edge-oriented representation of sparse matri-ces. These kind of loops cannot be parallelized at com-pile time, for lack of su�cient information. To executesuch loop e�ciently in parallel, runtime support mustbe provided. The major job of parallelizing compilersis to parallelize loops with static regular dependences.Static regular loops can be further divided into two

sub-groups. One is with uniform dependences and theother is with non-uniform dependences. The depen-dences are uniform only when the patterns of depen-dence vectors are uniform. In other words, the depen-dence vectors can be expressed by constants, i.e., dis-tance vectors. Example 1 illustrates a uniform depen-dence loop. Its dependence vectors are (1, 0) and (1, -1).Figure 2 (a) shows the dependence patterns of Example1 in the iteration space. In the same fashion, we callsome dependences non-uniform when dependence vec-tors are in irregular patterns which cannot be expressedby distance vectors. Figure 2 (b) shows the dependencepatterns of Example 2 in the iteration space.A lot of research has been done in parallelizing loopswith uniform dependences, from dependence analysisto loop transformation, such as loop interchange, looppermutation, skew, reversal, wavefront, tiling, etc. Butlittle research been done for the loops with non-uniformdependences.The existing commercial parallelizing compilers andresearch parallelizing compilers, such as Stanford'sSUIF 3, CSRD's Parafrase-2 4, and University of Mary-land's Omega Project 5, can parallelize most of theloops with uniform dependences. But they do not sat-isfactorily handle loops with non-uniform dependences.Most of the time, the compiler treats such loops as un-The Computer Journal, Vol. 40, No. 6, 1997



Unique Sets Oriented Parallelization of Loops with Non-uniform Dependences 323Example 1: Example 2: Example 3:do i = 1, 12 do i = 1, 12 do i = 1, 12do j = 1, 12 do j = 1, 12 do j = 1, 12A(i+ 1; j) = � � � A(2i+ 3; j + 1) = � � � A(B(i); C(j)) = � � �� � � = A(i; j) +A(i; j + 1) � � � = A(2j + i+ 1; i+ j + 3) � � � = A(B(i� 2); C(j + 5))enddo enddo enddoenddo enddo enddoFIGURE 1. Examples of loops with di�erent kinds of dependences
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( a )FIGURE 2. Iteration spaces with (a) Uniform dependences and (b) Non-uniform dependencesparallelizable and leaves them running sequentially. Forinstance, neither SUIF nor Parafrase-2 can parallelizethe loop in Example 2. Unfortunately, loops with non-uniform dependences are not so uncommon in the realworld. In an empirical study, Shen et al. 6 observedthat nearly 45% of two dimensional array references arecoupled, which means array subscripts are linear com-binations of loop indices. These coupled subscripts leadto non-uniform dependence. Hence, it is imperative togive loops with non-uniform dependence a serious con-sideration, even though they are more di�cult to par-allelize.This paper focuses on parallelization of perfectlynested loops with non-uniform dependences. The restof this paper is organized as follows. Section two sur-veys the research in parallelization of non-uniform de-pendence loops. Section three reviews the DependenceConvex Hull theory and introduces the Complete De-pendence Convex Hull. Section four gives the de�nitionof unique sets and the techniques to �nd them. Section�ve presents our unique set oriented partitioning ap-proach. Section six extends our technique to a generalprogram model with multiple nestings. Section sevencon�rms the superiority of our technique with an im-plementation on Cray J916 and comparison with pre-viously proposed techniques. Finally, we conclude insection eight.

2. SURVEY OF RELATED RESEARCHThe convex hull created by solving the linear Diophan-tine equations is required for detecting parallelism innon-uniform loops since it is the least abstraction tohave adequate information to accomplish the detectionof parallelism in non-uniform loops 7. Thus, most of thetechniques proposed for parallelizing loops with non-uniform dependences are based on dependence convexhull theory. These can be classi�ed into four categories:uniformization, uniform partitioning, non-uniform par-titioning, and integer programming based partitioning.2.1. UniformizationTzen and Ni8 proposed the dependence uniformizationtechnique. Based on solving a system of Diophantineequations and a system of inequalities, they computethe maximal and minimal dependence slopes of anyuniform and non-uniform dependence pattern in a two-dimensional iteration space. Then, by applying the ideaof vector decomposition, a set of basic dependences ischosen to replace all original dependence constraints inevery iteration so that the dependence pattern becomesuniform. They also proved that any doubly nested loopcould always be uniformized to a uniform dependenceloop with two dependence vectors. They proposed anindex synchronization method to reduce the synchro-nization, in which synchronization could be systemat-ically inserted. This uniformization helps in applyingexisting partitioning and scheduling techniques. But itThe Computer Journal, Vol. 40, No. 6, 1997



324 J. Ju and V. Chaudharyimposes too many dependences to the iteration spacewhich otherwise has only a few of them.Chen and Yew9 presented a scheme which computesa Basic Dependence Vector Set and schedules the it-erations using Static Strip Scheduling. They extendedthe dependence uniformization technique of Tzen andNi8 and presented algorithms to compute better basicdependence vector sets which extract more parallelismfrom the nested loops. The program model is moregeneral, including non-perfect nested loops. While thistechnique is de�nitely an improvement over Tzen andNi's work, it also imposes too many dependences on theiteration space, thereby reducing the extractable par-allelism. Moreover, this uniformization needs a lot ofsynchronization.Chen and Shang10 proposed another uniformizationtechnique. They form the set of basic dependence vec-tors and improve this set using certain objective func-tions. They select those basic dependence vectors whichare time-optimal and cone-optimal. After uniformizingthe iteration space, they use optimal linear schedules11to order the execution of the iterations. This techniquelike both the previous uniformization techniques imposetoo many dependences.2.2. Uniform PartitioningPunyamurtula and Chaudhary12 extended the the-ory of Convex Hull to the Integer Dependence Con-vex Hull(IDCH) and proposed a Minimum DependenceDistance Tiling technique. Every integer point in theIDCH corresponds to a dependence vector in the iter-ation space of the nested loops. They showed that theminimum and maximum values of the dependence dis-tance function occur at the extreme points of the IDCH.Therefore, it is only necessary to calculate the depen-dence distance at the extreme points and compare allthe values of the distance to get the minimum depen-dence distance. These minimum dependence distancesare used to partition the iteration space into tiles of uni-form size and shape. The width of tiles is less than orequal to the minimum dependence distance in at leastone direction. This would guarantee that for any depen-dence vector, its head and tail would fall into di�erenttiles. Iterations in a tile would be executed in paral-lel. Tiles in a group would be executed in sequenceand the dependence slope information of Tzen and Ni8can be used to synchronize the execution of inter-grouptiles. This technique works very well for cases when theminimum distance in one direction is large. It does notwork as well for the case when the dependence distancesare small as it would involve too much synchronizationoverhead.2.3. Non-uniform PartitioningZaafrani and Ito13 proposed the three-region technique.This technique divides the iteration space into two par-allel regions and one sequential region. The iterations

in the parallel regions can be executed fully in parallelwhile the iterations in the sequential region can only beexecuted sequentially. Two parallel regions are calledArea1 and Area2, respectively, and the sequential re-gion is called Area3. Area1 represents the part of theiteration space where the destination iteration comeslexically before the source iteration. The iterations inArea1 can be fully executed in parallel provided thatvariable renaming is performed. Area1 corresponds tothe region where the direction vector is equal to (<, �)or equal to (=, <). Area2 represents the part of theiteration space where the destination iteration comeslexically after the source iteration and the source iter-ation is in Area1. If Area1 is executed �rst, then thenodes in Area2 can be executed in parallel. Area3 rep-resents the rest of the iteration space (iteration space- (Area1 [ Area2)). Once Area1 and Area2 are ex-ecuted, then the nodes in Area3 should be executedsequentially. Zaafrani and Ito apply their technique tothe entire iteration space, though it will su�ce to ap-plying it only to the DCH or IDCH. The nodes that arenot in the DCH can be executed in parallel because ofthe nonexistence of dependences for these nodes. Thisis equivalent to dividing the iteration space into fourregions (Area1, Area2, Area3, and non-DCH). Againthis technique has its disadvantages. The sequentialpart of the iteration space is the bottleneck for the per-formance. If the sequential part of iteration space issmall, this technique is �ne. Otherwise the sequentialpart can be a serious drawback in performance.2.4. Integer Programming Based ApproachTseng et. al.14 proposed a partitioning scheme usingInteger Programming techniques. They start with anoriginal dependence vector set and divide it into eightgroups. They �nd the minimum dependence vector setby solving integer programming formulations. Thenthey use minimum dependence vector set to representthe dependence vectors of nested loops and partitionthe iterations of loops into groups. All iterations in thesame group can be executed at the same time. Theyalso proposed a group synchronization method for ar-ranging synchronization. But the method they used tocompute the minimum dependence vector set may notalways give minimum dependence distances. Besides,integer programming approach is time-consuming.Pugh and Wonnacott 15 construct several sets of con-straints that describe, for each statement, which itera-tions of that statement can be executed concurrently.By constructing constraints that correspond to di�erentassumptions about which dependences might be elimi-nated through additional analysis, transformations, anduser assertions, they determine whether they can exposeparallelism by elimination dependences. Then they lookfor conditional parallelism, and try to identify the kindsof iteration-reordering transformations that could beused to produce parallel loops. However, their methodThe Computer Journal, Vol. 40, No. 6, 1997
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( a ) parallel to j axis ( b ) (c ) parallel to i axis ( d ) oo0 <     < 90θ -90  <     < 0FIGURE 3. Possible dependence directions in lexicographic ordermay produce false dependences.3. DEPENDENCE ANALYSISCross-iteration dependence is the major concern thatmay keep the program from running in parallel. For thefour types of data dependences, 
ow, anti, output, andinput dependence, input dependence imposes no order-ing constraints, so we only look at the other three types.We won't consider output dependences as real depen-dences either. We can always use the storage replicationtechnique to allow the statements which have output de-pendences to execute concurrently. This research willlook at the cases of 
ow dependences and anti depen-dences.Data dependence de�nes the execution order amongiterations. The execution order can be expressed as Lex-icographic order. Lexicographic order can be shown asan arrow in the iteration space, which also representsthe dependence vector. All the arrows in Figure 2 arein lexicographic order. The iteration corresponding tothe arrow head cannot be executed until the iterationcorresponding to the tail has been executed. All thedependences discussed in this paper are put into lexico-graphic order. If there is a dependence from iterationi to iteration j, and i executes before j, we represent itby drawing an arrow i! j.Figure 3 shows all four possible directions if all thedependence vectors are put in lexicographic order withtwo level of loops, where i is the index for the outerloop and j is the index for the inner loop. The runningorder imposes that there cannot exist an arrow pointingto the left or an arrow parallel to j axis and pointingdown. The arrows here are the dependence vectors.3.1. Dependence and Convex HullStudies16, 6 show that most of the loops with complexarray subscripts are two dimensional loops. We startwith this typical case. We simplify our general programmodel to a normalized, doubly nested loop with coupledsubscripts (i.e., with subscripts being linear functions ofloop indices) as shown in �gure 4.We wish to discover what cross-iteration dependences

do i = L1, U1do j = L2, U2A(a11 � i+ b11 � j + c11; a12 � i+ b12 � j + c12) = � � �� � � = A(a21 � i+ b21 � j + c21; a22 � i+ b22 � j + c22)enddoenddo FIGURE 4. Doubly Nested Loop Modelexist between the two references to array A in the pro-gram model. There are a large variety of tests thatcan prove independence in some cases. It is infeasibleto solve the problem directly, even for linear subscriptexpressions, because �nding dependences is equivalentto the NP-complete problem of �nding integer solutionsto systems of linear Diophantine equations17. Two gen-eral and approximate tests are GCD18 and Banerjee'sinequalities19. Recently, Subhlok and Kennedy 20 pro-posed a new search procedure that identi�es an integersolution in a convex region, or prove that no integersolutions exist.The most common methods to compute data depen-dence is to solve a set of linear Diophantine equationswith a set of constraints which are the iteration bound-aries. A dependence exists only if the equations have asolution.We want to �nd a set of integer solutions (i1; j1; i2; j2)that satisfy the system of Diophantine equations (1) andthe system of linear inequalities (2) .a11i1 + b11j1 + c11 = a21i2 + b21j2 + c21a12i1 + b12j1 + c12 = a22i2 + b22j2 + c22 (1)8>><>>: L1 � i1 � U1L2 � j1 � U2L1 � i2 � U1L2 � j2 � U2 (2)Once the general solutions are found, dependenceinformation can be represented by dependence vec-tor. The dependence is uniform when dependence vec-tors are constants. Otherwise the dependence is non-uniform.The Computer Journal, Vol. 40, No. 6, 1997



326 J. Ju and V. ChaudharyThe data dependence analysis techniques do well onloops with uniform dependences since dependence dis-tance vectors can be calculated precisely. A lot of re-search has been done for uniform dependence analysisand loop transformation techniques 21, 22, 23, 24. How-ever, for the case of non-uniform dependences, Yang,Ancourt and Irigoin7 showed that direction vector alonedoes not have enough information for transforming non-uniform dependence. Dependence Convex Hull (DCH)8 is the least requirement if we want to parallelize loopswith non-uniform dependence. DCHs are convex poly-hedrons and are subspace of the solution space. Firstof all, we show how to �nd DCHs.There are two approaches to solve the system of Dio-phantine equations of (1). One way is to set i1 to x1and j1 to y1 and get the solution to i2 and j2.� a21i2 + b21j2 + c21 = a11x1 + b11y1 + c11a22i2 + b22j2 + c22 = a12x1 + b12y1 + c12We have the solution as� i2 = �11x1 + �11y1 + 
11j2 = �12x1 + �12y1 + 
12where�11 = a11b22 � a12b21a21b22 � a22b21 �11 = b11b22 � b12b21a21b22 � a22b21
11 = b22c11 + b21c22 � b22c21 � b21c12a21b22 � a22b21�12 = a21a12 � a11b22a21b22 � a22b21 �12 = a21b12 � a22b11a21b22 � a22b21
12 = a21c12 + a22c21 � a21c22 � a22c11a21b22 � a22b21The solution space S is the set of points (x; y) satisfy-ing the solution given above. Now the set of inequalitiescan be written as8>><>>: L1 � x1 � U1L2 � y1 � U2L1 � �11x1 + �11y1 + 
11 � U1L2 � �12x1 + �12y1 + 
12 � U2 (3)where (3) de�nes a DCH denoted by DCH1.Another approach is to set i2 to x2 and j2 to y2 andsolve for the solution to i1 and j1.� a11i1 + b11j1 + c11 = a21x2 + b21y2 + c21a12i1 + b12j1 + c12 = a22x2 + b22y2 + c22We have the solution as� i1 = �21x2 + �21y2 + 
21j1 = �22x2 + �22y2 + 
22where�21 = a21b12 � a22b11a11b12 � a12b11 �21 = b12b21 � b11b22a11b12 � a12b11


21 = b12c21 + b11c12 � b12c11 � b11c22a11b12 � a12b11�22 = a11a22 � a12b21a11b12 � a12b11 �22 = a11b22 � a12b21a11b12 � a12b11
22 = a11c22 + a12c11 � a11c12 � a12c21a11b12 � a12b11The solution space S is the set of points (x; y) satisfy-ing the solution given above. Now the set of inequalitiescan be written as8>><>>: L1 � �21x2 + �21y2 + 
21 � U1L2 � �22x2 + �22y2 + 
22 � U2L1 � x2 � U1L2 � y2 � U2 (4)where (4) de�nes another DCH, denoted by DCH2.Both sets of solutions are valid. Each of them hasthe dependence information on one extreme. For somesimple cases, for instance, there is only one kind of de-pendence, either 
ow or anti dependence, one set ofsolutions(i:e: DCH) should be enough. Punyamurtulaand Chaudhary used constraints (3) for their technique12, while Zaafrani and Ito used (4) for their technique13. For those more complicated cases, where both 
owand anti dependences are involved and dependence pat-terns are irregular, we need to use both sets of solu-tions. We will introduce a new term Complete Depen-dence Convex Hull to summarize these two DCHs andwe demonstrate that the Complete DCH contains com-plete information about dependences.3.2. Complete Dependence Convex Hull(CDCH)Definition 3.1 (Complete DCH (CDCH)).Complete DCH is the union of two closed sets of inte-ger points in the iteration space, which satisfy (3) or(4).
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FIGURE 5. CDCH of Example 2Figure 5 shows the CDCH of Example 2. We use anarrow to represent a dependence in the iteration space.We call the arrow's head the dependence head and thearrow's tail the dependence tail.The Computer Journal, Vol. 40, No. 6, 1997



Unique Sets Oriented Parallelization of Loops with Non-uniform Dependences 327Theorem 3.1. All the dependence heads and tailslie within the CDCH. The head and tail of any partic-ular dependence lie in the two DCHs of the CDCH.Proof. Let us assume that (i2; j2) is dependent on(i1; j1). In the iteration space graph we can have an ar-row from (i1; j1) to (i2; j2). Here (i1; j1) is the arrowtail and (i2; j2) is the arrow head. Because of the ex-isting dependence, (i1; j1) and (i2; j2) must satisfy thesystem of linear Diophantine equations (1) and the sys-tem of linear inequalities (2). There are four unknownvariables. We can reduce two unknown variables by set-ting i1 = x and j1 = y and solve for i2 and j2. Then i1and j1 must satisfy (3). Hence (i1; j1) lies in the areade�ned by (3) which is one of the DCH of the CDCH.In the same way, we reduce i1 and j1 by setting i2 = xand j2 = y and solve for i1 and j1. Here (i2; j2) liesin the area de�ned by (4) which is another DCH of theCDCH. Therefore, both (i1; j1) and (i2; j2) fall into dif-ferent DCHs of the CDCH. 2If iteration (i2; j2) is dependent on (i1; j1), then de-pendence vector D(x, y) is expressed as:di(x; y) = i2 � i1dj(x; y) = j2 � j1So, for DCH1, we havedi(x1; y1) = (�11 � 1)x1 + �11y1 + 
11dj(x1; y1) = �12x1 + (�12 � 1)y1 + 
12 (5)For DCH2, we havedi(x2; y2) == (1� �21)x2 � �21y2 � 
21dj(x2; y2) = ��22x2 + (1� �22)y2 � 
22 (6)Clearly if there is a solution (x1; y1) in DCH1, theremust be a solution (x2; y2) in DCH2, because they havebeen solved from the same set of linear Diophantineequations (1).Given the dependence vectors above, there must ex-ist a minimum and a maximum value of D(x; y). Itwas shown by Punyamurtula and Chaudhary 12 thatthe minimum and maximum values of the dependenceD(x; y) occur at the extreme points of the DCH.4. UNIQUE SETS IN THE ITERATIONSPACEIf a loop has cross-iteration dependences, we can con-struct its CDCH (comprising of DCH1 and DCH2).As we have proved earlier, all dependences lie withinthe CDCH. In other words, the iterations lying out-side the CDCH can be executed in parallel. Punyamur-tula and Chaudhary proposed the concept of minimumdependence distance tiling 12, which gives an excel-lent partitioning of iteration space for the case when

~d(x; y) = ~0 does not pass through any DCH. How-ever, minimum dependence distance cannot be calcu-lated when ~d(x; y) = ~0 passes through the DCH. Ourtechnique works well for both the cases.Suppose all dependence tails fall into DCH1 and alldependence heads fall into DCH2 (Figure 6(a)) and thetwo DCHs do not overlap. Partition can be done bydrawing a line between the two DCHs. The area con-taining the DCH of tail will execute �rst followed bythe area containing the DCH of heads. Figure 6(b) il-lustrates this fact by �rst executing area 1 followed byarea 2. The iterations within the two areas are fullyparallelizable.The idea behind the above example is to �nd sepa-rate sets that contain the dependence heads and tails.We want to minimize these sets and then partition theiteration space by drawing lines separating these sets inthe iteration space. The execution order is determinedby whether the set contains heads or tails.The next problem how is to �nd unique sets. Theproblem is compounded if these sets overlap.4.1. Unique Head and Unique Tail SetsThere are only two DCHs given the program model inFigure 4. All the dependence heads and tails will liewithin these two DCHs. These areas are our primitivesets. For one particular set, it is quite possible that itcontains both the dependence heads and tails. Becauseof the complexity of the problem, we have to� distinguish between the 
ow and anti dependences,and� partition the iteration space in a non-uniform waybecause the dependence itself is non-uniform.Let us look at Figure 5 which shows the CDCH ofExample 2. We note that DCH1 contains all anti de-pendence heads and all 
ow dependence tails. DCH2contains all the 
ow dependence heads and anti depen-dence's tails. Figure 7 separates the 
ow and anti de-pendences to give a clearer picture. It can be found outthat DCH1 is the union of 
ow dependence tail set andanti dependence head set, and DCH2 is the union of
ow dependence head set and anti dependence tail set.Hence, the following de�nition is derived to distinguishthe sets.Definition 4.1 (Unique Head(Tail) Set).Unique head(tail) set is a set of integer points in theiteration space that satis�es the following conditions:1. it is subset of one of the DCH (or is the DCHitself).2. it contains all the dependence arrow'sheads(tails), but does not contain any otherdependence arrow's tails(heads).Obviously the DCHs in Figure 7 are not the uniquesets we are trying to �nd, because each DCH containsThe Computer Journal, Vol. 40, No. 6, 1997
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FIGURE 7. (a) Flow dependence, (b) Anti dependencethe dependence heads of one kind and the dependencetails of the other kind. Therefore, these DCHs must befurther partitioned into smaller unique sets.4.2. Finding Unique Head and Unique Tail SetsFirst properties of DCH1 and DCH2 must be examined.Theorem 4.1. DCH1 contains all 
ow dependencetails and all anti dependence heads (if they exist) andDCH2 contains all anti dependence tails and all 
owdependence heads (if they exist).Proof. The system of inequalities in (3) de�nes DCH1and i1 = x1j1 = y1i2 = �11x1 + �11y1 + 
11j2 = �12x1 + �12y1 + 
12If there exists a 
ow dependence, we can assume that(i1; j1; i2; j2) is a solution to the 
ow dependence. Fromthe de�nition of 
ow dependence, (i1; j1) should bewritten somewhere in the iteration space before (i2; j2)is referenced. So we can draw an arrow from (i1; j1)

to (i2; j2) in the iteration space to represent the de-pendence and execution order as (i1; j1) ! (i2; j2)which is equivalent to (x1; y1) ! (�11x1 + �11y1 +
11; �12x1 + �12y1 + 
12). Here (x1; y1) is the arrowtail. Since (x1; y1) satis�es (3) and we have assumedthat (i1; j1; i2; j2) is a solution, DCH1 must contains all
ow dependence tails.If there exists an anti dependence, we can again as-sume that (i1; j1; i2; j2) is a solution to the anti depen-dence. From the de�nition of anti dependence, we havean arrow from (i2; j2) to (i1; j1), i.e., (�11x1 + �11y1 +
11; �12x1+�12y1+
12)! (x1; y1). Since (x1; y1) is thearrow's head and (x1; y1) satis�es (3), DCH1 containsall anti dependence heads.The proof that DCH2 contains all anti dependencetails and 
ow dependence heads (if they exist) is similarto the proof for DCH1. 2The above theorem tells us that DCH1 and DCH2 arenot unique head or unique tail sets if there are both 
owand anti dependences. If there exist only 
ow or antidependence, DCH1 either contains all the 
ow depen-dence tails or anti dependence heads, and DCH2 eithercontains all the 
ow dependence heads or anti depen-dence tails. Under these conditions, both DCH1 andThe Computer Journal, Vol. 40, No. 6, 1997



Unique Sets Oriented Parallelization of Loops with Non-uniform Dependences 329DCH2 are unique sets. The following theorem statesthe condition for DCH1 and DCH2 to be unique sets.Theorem 4.2. If di(x; y) = 0 does not pass throughany DCH, then there is only one kind of dependence,either 
ow or anti dependence, and the DCH itself isthe unique head set or the unique tail set.Proof. [Part 1] di(x1; y1) corresponds to DCH1 anddi(x2; y2) corresponds to DCH2. Suppose di(x1; y1)does not pass through DCH1. Since di(x1; y1) = i2 �i1 = (�11� 1)x1+�11y1+ 
11 and the iteration (x1; y1)that satis�es (3) must not satisfy (�11� 1)x1+�11y1+
11 = 0 (di(x1; y1) = 0 is a line in the iteration space),DCH1 must be on one side of di(x1; y1) = 0, i.e., ei-ther di(x1; y1) < 0 or di(x1; y1) > 0. First let us lookat the case when di(x1; y1) < 0. If di(x1; y1) < 0, then�11x1+�11y1+
11 is always less than x1. Thus, i1 > i2is always true. Also, the array element corresponding toindex i1 is written and the array element correspondingto index i2 is read. Clearly, only anti dependence cansatisfy this condition. Therefore, DCH1 contains onlyanti dependences. Next, let us look at the case whendi(x1; y1) > 0. Here i1 < i2. Clearly, only 
ow de-pendence can satisfy this condition. Therefore, DCH1contains only anti dependence.The proof for DCH2 follows similarly. Thus, ifdi(x; y) = 0 does not pass through any DCH, then thereis only one kind of dependence.[Part 2] We have already shown above that ifdi(x; y) = 0 does not pass through DCH1, then thereis only one kind of dependence. If the dependence is
ow dependence, then from theorem 2, DCH1 containsonly the 
ow dependence tails or anti dependence heads,making DCH1 a unique tail or head set. Similarly, ifthe dependence is anti dependence, then from theorem2, DCH2 contains only the anti dependence tails or 
owdependence heads, making DCH2 a unique tail or headset. 2DCH1 and DCH2 are constructed from the same sys-tem of linear Diophantine equations and system of in-equalities. The following two theorems highlight thecommon attributes.Theorem 4.3. If di(x1; y1) = 0 does not passthrough DCH1, then di(x2; y2) = 0 does not passthrough DCH2.Proof. If di(x1; y1) = 0 does not pass through DCH1,then either DCH1 lies on the side where di(x1; y1) < 0or on the side where di(x1; y1) > 0. First let us considerthe case when DCH1 is on same side of di(x1; y1) < 0.Since di(x1; y1) is i2� i1, we have that i2 < i1. We can�nd the same solution (i1; j1; i2; j2) for DCH2, becausethey are solved from the same set of linear Diophantineequations. di(x2; y2) is also de�ned as i2 � i1. Hence,we can get di(x2; y2) < 0 which means di(x2; y2) = 0does not pass through DCH2.The second case when DCH1 is on the same side of

di(x1; y1) > 0 can be proved similarly.. 2Corollary 4.4. When di(x1; y1) = 0 does not passthrough DCH1,1. if di(x1; y1) > 0 in DCH1,(a) DCH1 is 
ow dependence unique tail set.(b) DCH2 is 
ow dependence unique head set.2. if di(x1; y1) < 0 in DCH1,(a) DCH1 is anti dependence unique head set.(b) DCH2 is anti dependence unique tail set.Proof. It follows from theorems 2 and 3. 2Corollary 4.5. When di(x1; y1) = 0 does not passthrough DCH1,1. if di(x1; y1) > 0 in DCH1, then di(x2; y2) > 0 inDCH2.2. if di(x1; y1) < 0 in DCH1, then di(x2; y2) < 0 inDCH2.Proof. It is obvious from the above theorems and proofsgiven. 2We have now established that if di(x1; y1) = 0 doesnot pass through DCH1, then both DCH1 and DCH2are unique sets.When di(x; y) = 0 passes through the CDCH, a DCHmight contain both the dependence heads and tails(even if DCH1 and DCH2 do not overlap). This makesit harder to �nd the unique head and tail sets. Thenext theorem looks at some common attributes whendi(x; y) = 0 passes through the CDCH.Theorem 4.6. If di(x1; y1) = 0 passes throughDCH1, then di(x2; y2) = 0 must pass through DCH2.Proof. Suppose di(x1; y1) = 0 passes through DCH1.Then we must be able to �nd (x01; y01) such thatdi(x01; y01) < 0 and (x001 ; y001 ) such that dj(x001 ; y001 ) > 0in DCH1. Correspondingly we can �nd (x02; y02) and(x002 ; y002 ) in DCH2 such that di(x01; y01) = i02 � i01 =di(x02; y02) and di(x001 ; y001 ) = i002 � i001 = di(x002 ; y002 ). There-fore, we have di(x02; y02) < 0 and di(x002 ; y002 ) > 0. Hence,di(x2; y2) = 0 must pass through DCH2. 2Using the above theorem we can now deal with thecase where a DCH contains all the dependence tails ofone kind and all the dependence heads of another kind.Theorem 4.7. If di(x; y) = 0 passes through a DCH,then it will divide that DCH into a unique tail set anda unique head set. Furthermore, dj(x; y) = 0 decidesthe inclusion of di(x; y) = 0 in one of the sets.Proof. The proof for DCH1 and DCH2 are symmet-ric. Let us consider the case where di(x1; y1) = 0 passesthrough DCH1. First consider 
ow dependences. With-out loss of generality, let (i1; j1) and (i2; j2) be the iter-ations which cause any 
ow dependence. Then, (i1; j1)and (i2; j2) satisfy (1). Thus, from the de�nition ofThe Computer Journal, Vol. 40, No. 6, 1997
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ow dependence, we have either i1 < i2 or i1 = i2 andj1 < j2. We can now solve (1) withi1 = x1j1 = y1i2 = �11x1 + �11y1 + 
11 (7)j2 = �12x1 + �12y1 + 
12Since x1 < �11x1 + �11y1 + 
11, we have (�11 �1)x1 + �11y1 + 
11 = di(x1; y1) > 0. From the aboveequations we also have x1 = �11x1 + �11y1 + 
11 andy1 < �12x1 + �12y1 + 
12, which gives us di(x1; y1) = 0and dj(x1; y1) > 0.Now let us consider anti dependence. We eitherhave i1 > i2 or i1 = i2 and j1 > j2. Since x1 >�11x1 + �11y1 + 
11, we have (�11 � 1)x1 + �11y1 +
11 = di(x1; y1) < 0. From the set of equations (7)above we also have x1 = �11x1 + �11y1 + 
11 andy1 > �12x1 + �12y1 + 
12, which gives us di(x1; y1) = 0and dj(x1; y1) < 0.di(x1; y1) = 0 divides DCH1 into two parts,di(x1; y1) > 0 and di(x1; y1) < 0. Flow dependencessatisfy di(x1; y1) > 0. From theorem 2 we knowthat these are the 
ow dependence tails. Whetherdi(x1; y1) = 0 belongs to this set is dependent onwhether dj(x1; y1) > 0 or not. Therefore, di(x1; y1) � 0decides the 
ow dependence unique tail set. Similarlydi(x1; y1) � 0 decides the anti dependence unique headset. 2Note that if dj(x1; y1) > 0, then the line segmentcorresponding to di(x1; y1) = 0 belongs to the 
ow de-pendence unique tail set and if dj(x1; y1) < 0, then theline segment corresponding to di(x1; y1) = 0 belongsto the anti dependence unique head set. The iterationcorresponding to the intersection of di(x1; y1) = 0 anddj(x1; y1) = 0, has no cross-iteration dependence. If theintersection point of di(x1; y1) = 0 and dj(x1; y1) = 0lies in DCH1, then one segment of the line di(x1; y1) = 0inside DCH1 is a subset of the 
ow dependence uniquetail set and the other segment of the line di(x1; y1) = 0inside DCH1 is a subset of the anti dependence uniquehead set.For DCH2, we have similar results as above. To sum-marize, the following corollary is derived.Corollary 4.8. The 
ow dependence unique tailset is expressed by8>>>>>><>>>>>>: L1 � x1 � U1L2 � y1 � U2L1 � �11x1 + �11y1 + 
11 � U1L2 � �12x1 + �12y1 + 
12 � U2di(x1; y1) > 0 and di(x1; y1) = 0dj(x1; y1) > 0The anti dependence unique head set is expressed by

8>>>>>><>>>>>>: L1 � x1 � U1L2 � y1 � U2L1 � �11x1 + �11y1 + 
11 � U1L2 � �12x1 + �12y1 + 
12 � U2di(x1; y1) < 0 and di(x1; y1) = 0dj(x1; y1) < 0The 
ow dependence unique head set is expressed by8>>>>>><>>>>>>: L1 � �21x2 + �21y2 + 
21 � U1L2 � �22x2 + �22y2 + 
22 � U2L1 � x2 � U1L2 � y2 � U2di(x2; y2) > 0 and di(x1; y1) = 0dj(x2; y2) > 0The ant- dependence unique tail set is expressed by8>>>>>><>>>>>>: L1 � �21x2 + �21y2 + 
21 � U1L2 � �22x2 + �22y2 + 
22 � U2L1 � x2 � U1L2 � y2 � U2di(x2; y2) < 0 and di(x1; y1) = 0dj(x2; y2) < 0Proof. It follows directly from Theorem 6. 2Corollary 4.9. When di(x1; y1) = 0 passesthrough DCH1, then1. DCH1 is the union of the 
ow dependence uniquetail set and the anti dependence unique head set.2. DCH2 is the union of the 
ow dependence uniquehead set and the anti dependence unique tail set.Proof. It follows from Corollary 3. 2Figure 8 illustrates the applications of our results toExample 2. Clearly di(x1; y1) = 0 divides DCH1 intotwo parts. The area on the left side of di(x1; y1) = 0is the 
ow dependence unique tail set and the area onthe right side of di(x1; y1) = 0 is the anti dependenceunique head set. di(x1; y1) = 0 belongs to anti depen-dence unique head set. di(x2; y2) = 0 divides DCH2into two parts too. The area below di(x2; y2) = 0 is the
ow dependence unique head set and the area abovedi(x2; y2) = 0 is the anti dependence unique tail set.di(x2; y2) = 0 belongs to anti dependence unique tailset.5. UNIQUE SETS ORIENTED PARTITION-INGIn the previous sections we have grouped iterationsbased on their being unique head or tail sets. Clearlythe unique head set will execute after the unique tailset. For our program model, there are at most foursets, i.e., 
ow dependence unique tail set, 
ow depen-dence head set, anti dependence unique tail set, andanti dependence unique head set. The iterations out-side these sets can be executed concurrently. Moreover,the iterations within each set can be executed concur-rently. In order to maximize the parallelism, we want topartition the iteration space according to unique sets.The Computer Journal, Vol. 40, No. 6, 1997



Unique Sets Oriented Parallelization of Loops with Non-uniform Dependences 331
unique tail set

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

0

(b)(a)

di(x1, y1) = 0

di(x2, y2) = 0

di(x1, y1) = 0

di(x2, y2) = 0

Flow dependence unique tail set

Flow dependence
unique head set

Anti dependence
unique head set

Anti dependence

FIGURE 8. Unique head sets and unique tail sets of (a) Flow dependence, (b) Anti dependence
Anti dependence unique tail set

0 0

(b)(a)

DCH1 DCH1

DCH2 DCH2

i

j j

i

2

1unique tail set

Anti dependence unique head set

Anti dependence

Anti dependence unique head set

FIGURE 9. One kind of dependence and DCH1 does not overlap with DCH2It is important, however, to note that the e�ective-ness of a partitioning scheme depends on the architec-ture of the parallel machine being used. In this paperwe do not recommend partitions for particular archi-tectures, rather, we explore the various partitions thatcan be generated from the available information. Thesuitability of a particular partition for a speci�c archi-tecture is not studied.Based on the unique head and tail sets that we canidentify that there exist various combinations of over-laps (and/or disjointness) of these unique head and tailsets. We categorize these combinations as various casesstarting from simpler cases and leading up to the morecomplicated ones.Case1: There is only one kind of dependence andDCH1 does not overlap with DCH2.Figure 9(a) illustrates this relatively easy case withan example. Any line drawn between DCH1 and DCH2divides the iteration space into two areas. Inside eacharea, all iteration are independent. The DCHs in thiscase are unique head and unique tail sets. The iterationswithin each DCH can be executed concurrently. How-ever, DCH2 needs to execute before DCH1 as shown bythe partitioning in Figure 9(b). The execution order is

given as 1! 2.From the implementation point of view, it is advisableto partition the iteration space along the i or j axis sothat the partitioned areas can be easily represented as aloop. It is also advisable to partition the iteration spaceas evenly as possible. However, the �nal decision onpartitioning will depend on the underlying architecture.Case 2: There is only one kind of dependence andDCH1 overlaps with DCH2.Figure 10(a) illustrates this case. DCH1 and DCH2overlap to produce three distinct areas denoted byArea1, Area2, and Area3, respectively. Area2 andArea3 are either unique tail or unique head sets andthus iterations within each set can execute concurrently.Area1 contains both dependence heads and tails. Wecan apply the Minimum Dependence Distance Tilingtechnique proposed by Punyamurtula and Chaudhary12 to Area1. Depending on the type of dependencethere are two distinct execution orders possible. IfDCH2 is a unique tail set, then the execution orderis Area3 ! Area1 ! Area2. Otherwise the executionorder is Area2! Area1! Area3.From the implementation point of view, we want touse a straight line to partition the iteration space, soThe Computer Journal, Vol. 40, No. 6, 1997
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FIGURE 11. Two kinds of dependence and DCH1 does not overlap with DCH2that the generated code will be much simpler. An exam-ple partitioning is shown in Figure 10(b) for the prob-lem in Figure 10(a). The execution order is given as1! 2! 3! 4.Another approach to parallelize the iteration space inthis case is to apply theMinimum Dependence DistanceTiling technique 12 directly to the entire iteration space.Case 3: There are two kinds of dependence and DCH1does not overlap with DCH2.Figure 11 illustrates this case. Since DCH1 andDCH2 are disjoint we can partition the iteration spaceinto two, with DCH1 and DCH2 belonging to distinctpartitions. From Theorem 6 we know that di(x; y) = 0will divide the DCHs into unique tail and unique headsets. Next, we partition the area within DCH1 bythe line di(x1; y1) = 0, and the area within DCH2by the line di(x2; y2) = 0. So, we have four parti-tions, each of which is totally parallelizable. Figure11(b) gives one possible partition with execution orderas 1 ! 2 ! 3 ! 4. Note that the unique head setsmust execute after the unique tail sets.Case 4: There are two kinds of dependence and DCH1overlaps with DCH2, and there is at least one isolatedunique set.

Figure 12 (a) and (c) illustrate this case. What wewant to do is to separate this isolated unique set fromthe others. The line di(x; y) = 0 is the best candidateto do this. If di(x; y) = 0 does not intersect with anyother unique set or another DCH, then it will dividethe iteration space into two parts as shown in Figure12(b). If di(x; y) = 0 does intersect with other uniquesets or another DCH, we can add one edge of the otherDCH as the boundary to partition the iteration spaceinto two as shown in Figure 12(d). Let us denote thepartition containing the isolated unique set by Area2.The other partition is denoted by Area1. If Area2 con-tains a unique tail set, then Area2 must execute beforeArea1, otherwise Area2 must execute after Area1. Thenext step is to partition Area1. Since Area1 has onlyone kind of dependence (as long as we maintain the ex-ecution order de�ned above) and DCH1 overlaps withDCH2, it falls under the category of case 2 and can befurther partitioned.Case 5: There are two kinds of dependence and allunique sets overlap each other.Figure 13(a) illustrates this case. The CDCH can bepartitioned into at most eight parts as shown in Figure13(b). These partitions are areas that containThe Computer Journal, Vol. 40, No. 6, 1997



Unique Sets Oriented Parallelization of Loops with Non-uniform Dependences 333

2

0

unique tail set 

0
i

j j

i

DCH1

DCH2

DCH1

DCH2
1

0 0

(b)(a)

i

j j

i

DCH1

DCH2

DCH1

DCH2

2

1

Area 2

Area 1

(c) (d)

Area 2

Area 1

Anti dependence
unique head set

Flow dependence
unique tail set

Flow dependence
unique head set

Anti dependence unique tail set

Anti dependence unique head set

Flow dependence
unique head set

Anti dependence unique tail set

Flow dependence

FIGURE 12. Two kinds of dependence and one unique set isolated� only 
ow dependence tails, and we denote it byArea1.� only anti dependence tails, and we denote it byArea2.� only anti dependence heads,and we denote it byArea3.� only 
ow dependence heads, and we denote it byArea4.� 
ow dependence tails and anti dependence tails,and we denote it by Area5.� 
ow dependence heads and anti dependence heads,and we denote it by Area6.� 
ow dependence tails and 
ow dependence heads,and we denote it by Area7.� anti dependence tails and anti dependence heads,and we denote it by Area8.Area1, Area2, and Area5 can be combined togetherinto a larger area, because they contain only the de-pendence tails. Let us denote this combined area byAreaI . In the same way, Area3, Area4, and Area6can also be combined together, because they containonly the dependence heads. Let us denote this com-bined area by AreaII . AreaI and AreaII are fullyparallelizable. The execution order becomes AreaI !Area7 ! Area8 ! AreaII . Since Area7 and Area8contain both dependence heads and tails, we can ap-ply Minimum Dependence Distance Tiling technique toparallelize this area.We may not always have all eight areas in this

case. For example, if di(x1; y1) = 0 does not inter-sect di(x2; y2) = 0 inside the CDCH, then either Area7or Area8 exists, but not both. However, the proposedpartitioning and execution order still hold.Now let us go back to Example 2. From Figure 8, weknow that it �ts in the category of Case 4.
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FIGURE 13. Two kinds of dependence and all unique sets overlapped each otheris shown below./* area 1 */doparallel i = 1, 12doparallel j = ceil(i=2+ 1), min(floor(i+ 3:5); 12)A(2 � i+ 3; j + 1) = � � �� � � = A(2 � j + i+ 1; i+ j + 3)enddoenddo/* area 2 */doparallel i = 1, 6doparallel j = (floor((3i)=2 + 3) + 1), 12A(2 � i+ 3; j + 1) = � � �� � � = A(2 � j + i+ 1; i+ j + 3)enddoenddo/* area 3 */doparallel i = floor((3i)=2 + 3), ceil(x+ 7=2)doparallel j = 5, 8A(2 � i+ 3; j + 1) = � � �� � � = A(2 � j + i+ 1; i+ j + 3)enddoenddo/* area 4 */doparallel i = floor((3i)=2 + 3), ceil(x+ 7=2)doparallel j = 9, 12A(2 � i+ 3; j + 1) = � � �� � � = A(2 � j + i+ 1; i+ j + 3)enddoenddo/* area 5 */doparallel i = 1, 12doparallel j = 1, (ceil(i=2+ 1)� 1)A(2 � i+ 3; j + 1) = � � �� � � = A(2 � j + i+ 1; i+ j + 3)enddoenddoThis partitioning scheme seems to be worse thanother techniques at �rst glance. This is because the loopupper bounds is only 12. As the loop upper bounds in-crease, this scheme will show the advantage. No matterhow large the loop is, it synchronizes only �ve times.

Synchronization overhead is always the major factorthat a�ects the performance.6. EXTENSION TO GENERAL NESTEDLOOPSWe discussed the parallelization of two dimensional pro-gram model in the former sections. We now look atloops with n levels of nestings whose indices are i1, i2,� � �, in. The array subscripts are linear functions of loopindices as shown in �gure 15.do i1 = L1, U1� � �do in = Ln, UnS1: A[f1(i1; : : : ; in); : : : ; fm(i1; : : : ; in)] = � � �S2: � � � = A[g1(i1; : : : ; in); : : : ; gm(i1; : : : ; in)]enddo� � �enddoFIGURE 15. General Program ModelWe want to �nd a set of integer solutions(i1; : : : ; in; i01; : : : ; i0n) that satisfy the system of Dio-phantine equations (8) and the system of linear inequal-ities (9). f1(i1; : : : ; in) = g1(i01; : : : ; i0n)... (8)fm(i1; : : : ; in) = gm(i01; : : : ; i0n)8>>>><>>>>: L1 � i1 � U1L1 � i01 � U1� � �Ln � in � UnLn � i0n � Un (9)To avoid lengthy repetition, we consider DCH2 asan example to illustrate how to get unique sets. Fromformer sections, we know that DCH2 should containThe Computer Journal, Vol. 40, No. 6, 1997
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ow dependence unique head set and anti dependenceunique tail set. Using the second approach to solve theset of Diophantine equations, we have integer solutions(i1; � � � ; in; i01; � � � ; i0n) which are functions of x1; � � � ; xn.They can be written as:(i1; � � � ; in; i01; � � � ; i0n) = (s1(x1; � � � ; xn); � � � ; sn(x1; � � � ;xn); sn+1(x1; � � � ; xn); � � � ; sn+n(x1; � � � ; xn))From the general solution the dependence vectorfunction D(x1; � � � ; xn) can be written asD(x1; � � � ; xn) = f(sn+1(x1; � � � ; xn)� s1(x1; � � � ; xn));� � � ; (sn+n(x1; � � � ; xn)� sn(x1; � � � ; xn))gHence the dependence vectors are:8><>: d1(x1; � � � ; xn) = (sn+1(x1; � � � ; xn)� s1(x1; � � � ; xn))...dn(x1; � � � ; xn) = (sn+n(x1; � � � ; xn)� sn(x1; � � � ; xn))The dependence vector D(x1; � � � ; xn) divides thisDCH into two parts. One is 
ow dependence uniquehead set and the other is anti dependence unique tailset. The decision on the ownership of D(x1; � � � ; xn)comes next.The theorems proposed in section 4.2 are alsovalid for multi-dimensional loops. d1(x1; � � � ; xn) >0 belongs to 
ow dependence unique head set andd1(x1; � � � ; xn) < 0 belongs to 
ow anti depen-dence unique tail set. When d1(x1; � � � ; xn) = 0,d2(x1; � � � ; xn) has to be checked. If d2(x1; � � � ; xn) >0, then 
ow dependence unique head set containsd1(x1; � � � ; xn) = 0 and d2(x1; � � � ; xn) > 0. Ifd2(x1; � � � ; xn) < 0, then anti dependence unique headtail contains d1(x1; � � � ; xn) = 0 and d2(x1; � � � ; xn) <0. For d2(x1; � � � ; xn) = 0, d3(x1; � � � ; xn) hasto be checked. We continue in this fashion untildn(x1; � � � ; xn) is checked.Using this method, we can get the unique sets for thegiven general program model. According to the posi-tions of these sets, we can partition the iteration space.During the partitioning, the area containing unique tailset must be run before the area containing unique headset. The partitioning process is basically the same asfor doubly nested loops, except that we now deal ev-erything with multi-dimensional iteration space. Theshape of the unique set is also multi-dimensional.An alternative way to parallelize multi-dimensionalloops is to parallelize only the two outer most loopnests, leaving inner loops running sequentially. Theadvantages of one approach over the other is left forfuture work. However, we feel that multi-dimensionalunique set of partitioning will give us greater 
exibilityto transform the loops to adapt speci�c architectures.7. EXPERIMENTAL RESULTSWe present results for two programs. The �rst programis similar to Example 2 as shown in Figure 16. We tested

the performance for varying loop sizes. The loop sizes(SIZE) used in the experiments are 50, 100, 500, and1000. do i = 1, SIZEdo j = 1, SIZEA(2 � i+ 3; j + 1) = � � �� � � = A(i+ 2j + 1; i+ j + 3)enddoenddoFIGURE 16. Program 11 SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B)2 C3 C CHOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.4 C5 C 11/28/84 D H BAILEY MODIFIED FOR NAS KERNEL TEST6 C7 REAL A(0:IDA, -M:0, 0:N), B(0:NRHS, 0:IDB, 0:N), EPSS(0:256)8 DATA EPS/1E-13/9 C10 C CHOLESKY DECOMPOSITION11 C12 DO 1 J = 0, N13 I0 = MAX ( -M, -J )14 C15 C OFF DIAGONAL ELEMENTS16 C17 DO 2 I = I0, -118 DO 3 JJ = I0 - I, -119 DO 3 L = 0, NMAT20 3 A(L,I,J) = A(L,I,J) - A(L,JJ,I+J) * A(L,I+JJ,J)21 DO 2 L = 0, NMAT22 2 A(L,I,J) = A(L,I,J) * A(L,0,I+J)23 C24 C STORE INVERSE OF DIAGONAL ELEMENTS25 C26 DO 4 L = 0, NMAT27 4 EPSS(L) = EPS * A(L,0,J)28 DO 5 JJ = I0, -129 DO 5 L = 0, NMAT30 5 A(L,0,J) = A(L,0,J) - A(L,JJ,J) ** 231 DO 1 L = 0, NMAT32 1 A(L,0,J) = 1. / SQRT ( ABS (EPSS(L) + A(L,0,J)) )33 C34 C SOLUTION35 C36 DO 6 I = 0, NRHS37 DO 7 K = 0, N38 DO 8 L = 0, NMAT39 8 B(I,L,K) = B(I,L,K) * A(L,0,K)40 DO 7 JJ = 1, MIN (M, N-K)41 DO 7 L = 0, NMAT42 7 B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K)43 C44 DO 6 K = N, 0, -145 DO 9 L = 0, NMAT46 9 B(I,L,K) = B(I,L,K) * A(L,0,K)47 DO 6 JJ = 1, MIN (M, K)48 DO 6 L = 0, NMAT49 6 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I,L,K)50 C51 RETURN52 END FIGURE 17. Program 2The second program is shown in Figure 17. Thisis a subroutine taken from a benchmark test programwhich has been developed for use by the NAS programat NASA Ames Research Center to aid in the evalua-tion of supercomputer. This subroutine deals with theproblem of Cholesky Decomposition and Substitution.We are more interested in the part from line 17 to line22. Non-uniform dependences can be found in this partof the program. To illustrate the impact of non-uniformdependence and to make our experiment more compre-hensive, we use the entire subroutine to evaluate theperformance of our technique. In fact, the variable Nand NMAT decide the program size in this part of pro-gram. When we say the the program size is 50, bothN and NMAT are set to 50. We present results forThe Computer Journal, Vol. 40, No. 6, 1997



336 J. Ju and V. Chaudhary
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

CPUs

Speedup of Unique Sets method
Speedup of Chen and Yew’s method

Speedup of Cray’s autotasking
Speedup of Omega project 

Speedup of Zaafrani and Ito’s method
Linear Speedup

(a) SIZE =50 0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

CPUs

Speedup of Unique Sets method
Speedup of Chen and Yew’s method

Speedup of Cray’s autotasking
Speedup of Omega project 

Speedup of Zaafrani and Ito’s method
Linear Speedup

(b) SIZE = 100
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(c) SIZE = 500 0
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(d) SIZE = 1000FIGURE 18. Performance Results for Program 1 on Crayprogram sizes 50, 100, 200, and 300, respectively.All the experiments are done on a Cray J916 with16 processors. Autotasking Expert System(atexpert) areused to analyze the program. Atexpert is a tool devel-oped by CRI (Cray Research, Inc.) for accurately mea-suring and graphically displaying tasking performancefrom a job run on an arbitrarily loaded CRI system. Itcan predict speedups on a dedicated system from datacollected from a single run on a non-dedicated system.It shows where a program is spending most of its timeand whether those areas are executed sequentially or inparallel.User-Directed Tasking directives are used to con-struct parallelizable areas in the iteration space.Synchronizations are implemented with the help ofguarded region. The format is as below.#pragma CRI parallel defaults#pragma CRI tasklooploop#pragma CRI endparallel#pragma CRI guardloop or variable#pragma CRI endguardOur results are compared with those of Chen andYew's method 9, Cray's native Autotasking, Omega

project of University of Maryland 5, and Zaafrani andIto's method 13. Zaafrani and Ito's method is not im-plemented for Program 2, because it is unable to handlenon-perfect nestings of loops. To implement Chen andYew's method, guarded regions were used to simulatethe function of semaphore. For the method of Omegaproject, version 1.1 of the Omega Project software wasused. We run the source codes through Petit, a re-search tool developed by University of Maryland. Itcalls both the Omega library and the Uniform library5 and generates parallelized c source code. We rewritethe parallelized source codes with Cray's Autotaskingdirectives to do the experiments.Figure 18 shows the speedup comparison of our tech-nique, Chen and Yew's technique, Cray's autotasking,Omega project, and Zaafrani and Ito's three-regiontechnique. Cray's autotasking did not give any speedupat all, running the loops sequentially. Omega projectdid not parallelize this program either. It is not so clearin Figure 18, because the speedups of Omega projectand those of Cray's autotasking are overlapped. Bothare 1.Our method shows near linear speedup with the loopsize of 500 and 1000, which are the models closer tothe real world programs. Our technique is consistentlyoutperforms other techniques considerably for all sizes.Chen and Yew's gave some speedup, but not too much,The Computer Journal, Vol. 40, No. 6, 1997



Unique Sets Oriented Parallelization of Loops with Non-uniform Dependences 337
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

CPUs

Speedup of Unique Sets method
Speedup of Chen and Yew’s method

Speedup of Cray’s autotasking
Speedup of Omega project

Linear Speedup

(a) Program size = 50 0
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(b) Program size = 100
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(c) Program size = 200 0
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(d) Program size = 300FIGURE 19. Performance Results for Program 2 on Craybecause of the synchronization overhead. Zaafrani andIto's method showed very little speedup. The sequen-tial region of their method is the bottle neck for goodperformance. The �gure shows that the loop sizes havea tremendous impact on the performance even for thesame loop using the same parallelization technique. Inpractice, we alway want to parallelize the loops whereprograms spend most of their time.Figure 19 shows the performance for the CholeskyDecomposition subroutine. From the plots, it is clearthat our technique outperforms all the other techniques.As program size increases, our technique shows betterresults. Cray's Autotasking got some speed up for thisroutine. It parallelized the inner most loop. This ismore like vectorizing than parallelizing. The result ofOmega project is worse than that of Cray's autotask-ing when the program size of 50, as shown in Figure19(a). As the program size increases, it outperformedthe Cray's autotasking. When the program size is 300,the performance of Omega project is nearly twice that ofCray's autotasking. The reason is that Cray's autotask-ing only parallelizes the innermost loops, while Omegaproject does not. Overall, Chen and Yew's techniqueperformed worst. Again, increased synchronization isresponsible for this.

8. CONCLUSIONIn this paper, we systematically analyzed the charac-teristics of the dependences in the iteration space. Weproposed the concept of Complete Dependence ConvexHull, which contains the entire dependence informa-tion of the program. We also proposed the conceptsof Unique head sets and Unique tail sets which iso-lated the dependence information and showed the re-lationship among the dependences. The relationshipof the unique head and tail sets forms the foundationfor partitioning the iteration space. Depending on therelative placement of these unique sets, various caseswere considered. Several partitioning schemes were alsosuggested for implementating our technique. The sug-gested scheme was implemented on a Cray J916 andcompared with Chen and Yew's method 9, Cray's nativeAutotasking, Omega project of University of Maryland5, and Zaafrani and Ito's method 13. The implemen-tation results of real benchmark code shows that ourtechnique consistently outperformed all the other tech-niques considerably.ACKNOWLEDGMENTSWe would like to thank Sumit Roy for his help in theimplementation of the techniques on the Cray J916 andhis comments on a preliminary draft of the paper. WeThe Computer Journal, Vol. 40, No. 6, 1997
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