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Although many methods exist for nested loop partitioning, most of them per-
form poorly when parallelizing loops with non-uniform dependences. This paper
addresses the issue of automatic parallelization of loops with non-uniform depen-
dences. Such loops normally are not parallelized by existing parallelizing compilers
and transformations. Even when parallelized in rare instances, the performance
is very poor. Our approach is based on the Convex Hull theory which has ade-
quate information to handle non-uniform dependences. We introduce the concept
of Complete Dependence Convex Hull, Unique Head and Tail Sets and abstract
the dependence information into these sets. These sets form the basis of the itera-
tion space partitions. The properties of the unique head and tail sets are derived.
Depending on the relative placement of these unique sets, partitioning schemes
are suggested for implementation of our technique. Implementation results of our
scheme on the Cray J916 and comparison with other schemes show the superiority
of our technique.
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INTRODUCTION

Given a sequential program, a challenging problem for
parallelizing compilers is to detect maximum paral-
lelism. It is generally agreed upon and shown in the
study by Kuck et. al. 1 that most of the computation
time is spent in loops. Current parallelizing compil-
ers concentrate on loop parallelization 2. A loop can
be easily parallelized if there are no cross-iteration de-
pendences. However, loops with cross-iteration depen-
dences are very common. Parallelizing loops with cross-
iteration dependences is a major concern facing paral-
lelizing compilers today.

Loops with cross-iteration dependences can be
roughly divided into two groups. One is loops with
static regular dependences, which can be analyzed dur-
ing compile time. Ezxample 1, 2 in Figure 1 belong to
this group. The other group is loops with dynamic ir-
regular dependences, which have indirect access pat-
terns. Fzample 3 shows a typical irregular loop, which
is used for edge-oriented representation of sparse matri-
ces. These kind of loops cannot be parallelized at com-
pile time, for lack of sufficient information. To execute
such loop efficiently in parallel, runtime support must
be provided. The major job of parallelizing compilers
is to parallelize loops with static regular dependences.

Static regular loops can be further divided into two

sub-groups. One is with uniform dependences and the
other is with non-uniform dependences. The depen-
dences are uniform only when the patterns of depen-
dence vectors are uniform. In other words, the depen-
dence vectors can be expressed by constants, i.e., dis-
tance vectors. Ezxample 1 illustrates a uniform depen-
dence loop. Its dependence vectors are (1, 0) and (1, -1).
Figure 2 (a) shows the dependence patterns of Example
1 in the iteration space. In the same fashion, we call
some dependences non-uniform when dependence vec-
tors are in irregular patterns which cannot be expressed
by distance vectors. Figure 2 (b) shows the dependence
patterns of Exzample 2 in the iteration space.

A lot of research has been done in parallelizing loops
with uniform dependences, from dependence analysis
to loop transformation, such as loop interchange, loop
permutation, skew, reversal, wavefront, tiling, etc. But
little research been done for the loops with non-uniform
dependences.

The existing commercial parallelizing compilers and
research parallelizing compilers, such as Stanford’s
SUIF 3, CSRD’s Parafrase-2 4, and University of Mary-
land’s Omega Project 5, can parallelize most of the
loops with uniform dependences. But they do not sat-
isfactorily handle loops with non-uniform dependences.
Most, of the time, the compiler treats such loops as un-
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Example 1: Example 2: Example 3:
doi=1,12 doi=1,12 doi=1,12
doj=1,12 doj=1,12 doj=1,12
A +1,5)="--- A2i+3,j+1)="--- A(B(1),C(j)) ="---
o= A, j)+ A@, j + 1) o= AQ2j+i+1,i4+j5+3) <= A(B@# —2),C(j +5))
enddo enddo enddo
enddo enddo enddo

FIGURE 1. Ezamples of loops with different kinds of dependences
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FIGURE 2. [teration spaces with (a) Uniform dependences and (b) Non-uniform dependences

parallelizable and leaves them running sequentially. For
instance, neither SUIF nor Parafrase-2 can parallelize
the loop in Ezample 2. Unfortunately, loops with non-
uniform dependences are not so uncommon in the real
world. In an empirical study, Shen et al. 6 observed
that nearly 45% of two dimensional array references are
coupled, which means array subscripts are linear com-
binations of loop indices. These coupled subscripts lead
to non-uniform dependence. Hence, it is imperative to
give loops with non-uniform dependence a serious con-
sideration, even though they are more difficult to par-
allelize.

This paper focuses on parallelization of perfectly
nested loops with non-uniform dependences. The rest
of this paper is organized as follows. Section two sur-
veys the research in parallelization of non-uniform de-
pendence loops. Section three reviews the Dependence
Convex Hull theory and introduces the Complete De-
pendence Convex Hull. Section four gives the definition
of unique sets and the techniques to find them. Section
five presents our unique set oriented partitioning ap-
proach. Section six extends our technique to a general
program model with multiple nestings. Section seven
confirms the superiority of our technique with an im-
plementation on Cray J916 and comparison with pre-
viously proposed techniques. Finally, we conclude in
section eight.

2. SURVEY OF RELATED RESEARCH

The convex hull created by solving the linear Diophan-
tine equations is required for detecting parallelism in
non-uniform loops since it is the least abstraction to
have adequate information to accomplish the detection
of parallelism in non-uniform loops 7. Thus, most of the
techniques proposed for parallelizing loops with non-
uniform dependences are based on dependence convex
hull theory. These can be classified into four categories:
uniformization, uniform partitioning, non-uniform par-
titioning, and integer programming based partitioning.

2.1. Uniformization

Tzen and Ni8 proposed the dependence uniformization
technique. Based on solving a system of Diophantine
equations and a system of inequalities, they compute
the maximal and minimal dependence slopes of any
uniform and non-uniform dependence pattern in a two-
dimensional iteration space. Then, by applying the idea
of vector decomposition, a set of basic dependences is
chosen to replace all original dependence constraints in
every iteration so that the dependence pattern becomes
uniform. They also proved that any doubly nested loop
could always be uniformized to a uniform dependence
loop with two dependence vectors. They proposed an
index synchronization method to reduce the synchro-
nization, in which synchronization could be systemat-
ically inserted. This uniformization helps in applying
existing partitioning and scheduling techniques. But it
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imposes too many dependences to the iteration space
which otherwise has only a few of them.

Chen and Yew9 presented a scheme which computes
a Basic Dependence Vector Set and schedules the it-
erations using Static Strip Scheduling. They extended
the dependence uniformization technique of Tzen and
Ni8 and presented algorithms to compute better basic
dependence vector sets which extract more parallelism
from the nested loops. The program model is more
general, including non-perfect nested loops. While this
technique is definitely an improvement over Tzen and
Ni’s work, it also imposes too many dependences on the
iteration space, thereby reducing the extractable par-
allelism. Moreover, this uniformization needs a lot of
synchronization.

Chen and Shangl0 proposed another uniformization
technique. They form the set of basic dependence vec-
tors and improve this set using certain objective func-
tions. They select those basic dependence vectors which
are time-optimal and cone-optimal. After uniformizing
the iteration space, they use optimal linear schedules11
to order the execution of the iterations. This technique
like both the previous uniformization techniques impose
too many dependences.

2.2. Uniform Partitioning

Punyamurtula and Chaudharyl2 extended the the-
ory of Convex Hull to the Integer Dependence Con-
vex Hull(IDCH) and proposed a Minimum Dependence
Distance Tiling technique. Every integer point in the
IDCH corresponds to a dependence vector in the iter-
ation space of the nested loops. They showed that the
minimum and maximum values of the dependence dis-
tance function occur at the extreme points of the IDCH.
Therefore, it is only necessary to calculate the depen-
dence distance at the extreme points and compare all
the values of the distance to get the minimum depen-
dence distance. These minimum dependence distances
are used to partition the iteration space into tiles of uni-
form size and shape. The width of tiles is less than or
equal to the minimum dependence distance in at least
one direction. This would guarantee that for any depen-
dence vector, its head and tail would fall into different
tiles. Iterations in a tile would be executed in paral-
lel. Tiles in a group would be executed in sequence
and the dependence slope information of Tzen and Ni8
can be used to synchronize the execution of inter-group
tiles. This technique works very well for cases when the
minimum distance in one direction is large. It does not
work as well for the case when the dependence distances
are small as it would involve too much synchronization
overhead.

2.3. Non-uniform Partitioning

Zaafrani and Ito13 proposed the three-region technique.
This technique divides the iteration space into two par-
allel regions and one sequential region. The iterations

in the parallel regions can be executed fully in parallel
while the iterations in the sequential region can only be
executed sequentially. Two parallel regions are called
Areal and Area2, respectively, and the sequential re-
gion is called Area3. Areal represents the part of the
iteration space where the destination iteration comes
lexically before the source iteration. The iterations in
Areal can be fully executed in parallel provided that
variable renaming is performed. Areal corresponds to
the region where the direction vector is equal to (<, *)
or equal to (=, <). Area2 represents the part of the
iteration space where the destination iteration comes
lexically after the source iteration and the source iter-
ation is in Areal. If Areal is executed first, then the
nodes in Area2 can be executed in parallel. Area3 rep-
resents the rest of the iteration space (iteration space
- (Areal U Area2)). Once Areal and Area2 are ex-
ecuted, then the nodes in Area3 should be executed
sequentially. Zaafrani and Ito apply their technique to
the entire iteration space, though it will suffice to ap-
plying it only to the DCH or IDCH. The nodes that are
not in the DCH can be executed in parallel because of
the nonexistence of dependences for these nodes. This
is equivalent to dividing the iteration space into four
regions (Areal, Area2, Area3, and non-DCH). Again
this technique has its disadvantages. The sequential
part of the iteration space is the bottleneck for the per-
formance. If the sequential part of iteration space is
small, this technique is fine. Otherwise the sequential
part can be a serious drawback in performance.

2.4. Integer Programming Based Approach

Tseng et. al.14 proposed a partitioning scheme using
Integer Programming techniques. They start with an
original dependence vector set and divide it into eight
groups. They find the minimum dependence vector set
by solving integer programming formulations. Then
they use minimum dependence vector set to represent
the dependence vectors of nested loops and partition
the iterations of loops into groups. All iterations in the
same group can be executed at the same time. They
also proposed a group synchronization method for ar-
ranging synchronization. But the method they used to
compute the minimum dependence vector set may not
always give minimum dependence distances. Besides,
integer programming approach is time-consuming.
Pugh and Wonnacott 15 construct several sets of con-
straints that describe, for each statement, which itera-
tions of that statement can be executed concurrently.
By constructing constraints that correspond to different
assumptions about which dependences might be elimi-
nated through additional analysis, transformations, and
user assertions, they determine whether they can expose
parallelism by elimination dependences. Then they look
for conditional parallelism, and try to identify the kinds
of iteration-reordering transformations that could be
used to produce parallel loops. However, their method
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(a) parallel to axis (b) 0<6 <9d

(c) parallel toi axis (d) -90°< 8<0

FIGURE 3. Possible dependence directions in lexicographic order

may produce false dependences.

3. DEPENDENCE ANALYSIS

Cross-iteration dependence is the major concern that
may keep the program from running in parallel. For the
four types of data dependences, flow, anti, output, and
input dependence, input dependence imposes no order-
ing constraints, so we only look at the other three types.
We won’t consider output dependences as real depen-
dences either. We can always use the storage replication
technique to allow the statements which have output de-
pendences to execute concurrently. This research will
look at the cases of flow dependences and anti depen-
dences.

Data dependence defines the execution order among
iterations. The execution order can be expressed as Lex-
tcographic order. Lexicographic order can be shown as
an arrow in the iteration space, which also represents
the dependence vector. All the arrows in Figure 2 are
in lexicographic order. The iteration corresponding to
the arrow head cannot be executed until the iteration
corresponding to the tail has been executed. All the
dependences discussed in this paper are put into lexico-
graphic order. If there is a dependence from iteration
i to iteration j, and i executes before j, we represent it
by drawing an arrow i — j.

Figure 3 shows all four possible directions if all the
dependence vectors are put in lexicographic order with
two level of loops, where i is the index for the outer
loop and j is the index for the inner loop. The running
order imposes that there cannot exist an arrow pointing
to the left or an arrow parallel to j axis and pointing
down. The arrows here are the dependence vectors.

3.1. Dependence and Convex Hull

Studies16, 6 show that most of the loops with complex
array subscripts are two dimensional loops. We start
with this typical case. We simplify our general program
model to a normalized, doubly nested loop with coupled
subscripts (i.e., with subscripts being linear functions of
loop indices) as shown in figure 4.

We wish to discover what cross-iteration dependences

dO?::Ll., U1

dOjZLQ., UQ
Alars xi+ b *j+cin,araxi+biaxj+cio) =---
<o = A(agr %@+ bar * j + a1, Q29 %0 + bao * j + C29)
enddo

enddo

FIGURE 4. Doubly Nested Loop Model

exist between the two references to array A in the pro-
gram model. There are a large variety of tests that
can prove independence in some cases. It is infeasible
to solve the problem directly, even for linear subscript
expressions, because finding dependences is equivalent
to the NP-complete problem of finding integer solutions
to systems of linear Diophantine equations17. Two gen-
eral and approximate tests are GCD18 and Banerjee’s
inequalities19. Recently, Subhlok and Kennedy 20 pro-
posed a new search procedure that identifies an integer
solution in a convex region, or prove that no integer
solutions exist.

The most common methods to compute data depen-
dence is to solve a set of linear Diophantine equations
with a set of constraints which are the iteration bound-
aries. A dependence exists only if the equations have a
solution.

We want to find a set of integer solutions (i1, j1, 2, j2)
that satisfy the system of Diophantine equations (1) and
the system of linear inequalities (2) .

a1ty + birji + ci1 = a21i2 + ba1j2 + 21

1211 + bi2j1 + c12 = @22tz + baaja + C22 (1)
L, <iy <Up
L2 S .jl S U2 (2)
L, <iy <Up
Ly <j2 < U

Once the general solutions are found, dependence
information can be represented by dependence vec-
tor. The dependence is uniform when dependence vec-
tors are constants. Otherwise the dependence is non-
uniform.
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The data dependence analysis techniques do well on
loops with uniform dependences since dependence dis-
tance vectors can be calculated precisely. A lot of re-
search has been done for uniform dependence analysis
and loop transformation techniques 21, 22, 23, 24. How-
ever, for the case of non-uniform dependences, Yang,
Ancourt and Irigoin7 showed that direction vector alone
does not have enough information for transforming non-
uniform dependence. Dependence Convex Hull (DCH)
8 is the least requirement if we want to parallelize loops
with non-uniform dependence. DCHs are convex poly-
hedrons and are subspace of the solution space. First
of all, we show how to find DCHs.

There are two approaches to solve the system of Dio-
phantine equations of (1). One way is to set i1 to
and j; to 1 and get the solution to i and js.

a1tz + ba1j2 + €21 = a1 + by + e
222 + b22jo + 22 = a12x1 + biay1 + 12

We have the solution as

io = an1xr + By + 7
Jo = araxy + Brayr + Y12

B ai1bas — aiaba

_ b]1b22 - 61262]

11
2122 — a22b21

2122 — a22b21

basci1 + baican — bazcar — barcro

Y11 =
a21b2s — a22ba;
1o = asiars — airbas Bro = az1bia — azsbiy

12 = ————— 12=—FF
a21b22 — az2bay a21b22 — a22b21

A21C12 + A22C21 — A21C22 — A22C11

Y12 =
az1baz — azzba

The solution space S is the set of points (z, y) satisfy-
ing the solution given above. Now the set of inequalities
can be written as

&
A

< 1 <U
< Y1 < U
Li < anzi+puyi+yn <Up
< x4+ Py 72 <Us

where (3) defines a DCH denoted by DCH1.
Another approach is to set iy to x5 and jy to y» and
solve for the solution to i; and j;.

a1t + biij1 + c11 = a2122 + barys + 21
a1281 + b12J1 + €12 = a22%2 + basys + c22

We have the solution as

i1 = s + Pary2 + Y21
J1 = aaa + Pasys + Yoo

az1b12 — azabii B b12b21 — b11b22
e e = ——— ==

ai1bia — ai2by ai1bia — ai2by

biacar + biicia — biacin — biican
a11b12 — aiabiy

Y21 =

_ G11022 — a12bay .
Qoo = ————————— B2z =
a11br2 — a12b11

a11ba2 — ai2b2;
a11b12 — aiabiy
a11C22 + 12€11 — A11C12 — G12C21

V22 =
a11b12 — aiabiy

The solution space S is the set of points (z, y) satisfy-
ing the solution given above. Now the set of inequalities
can be written as

Li < anza+faryz+v21 <Up
Ly < axo + fosya + 722 < Us (4)
L, < T2 <U
L, < Yo < U,

where (4) defines another DCH, denoted by DCH2.

Both sets of solutions are valid. Each of them has
the dependence information on one extreme. For some
simple cases, for instance, there is only one kind of de-
pendence, either flow or anti dependence, one set of
solutions(i.e. DCH) should be enough. Punyamurtula
and Chaudhary used constraints (3) for their technique
12, while Zaafrani and Ito used (4) for their technique
13. For those more complicated cases, where both flow
and anti dependences are involved and dependence pat-
terns are irregular, we need to use both sets of solu-
tions. We will introduce a new term Complete Depen-
dence Conver Hull to summarize these two DCHs and
we demonstrate that the Complete DCH contains com-
plete information about dependences.
3.2. Complete Convex Hull
(CDCH)

DEFINITION 3.1 (ComMPLETE DCH (CDCH)).
Complete DCH is the union of two closed sets of inte-
ger points in the iteration space, which satisfy (3) or

(4).

Dependence

P N W A~ OO N 0 ©
T

0 1 2 3 45 6 7 8 9 1011 12

FIGURE 5. CDCH of Example 2

Figure 5 shows the CDCH of Ezxample 2. We use an
arrow to represent a dependence in the iteration space.
We call the arrow’s head the dependence head and the
arrow’s tail the dependence tail.
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THEOREM 3.1. All the dependence heads and tails
lie within the CDCH. The head and tail of any partic-
ular dependence lie in the two DCHs of the CDCH.

Proof. Let us assume that (is,j2) is dependent on
(i1,71). In the iteration space graph we can have an ar-
row from (i1,j1) to (i2,j2). Here (i1,j1) is the arrow
tail and (i, j2) is the arrow head. Because of the ex-
isting dependence, (i1, j1) and (ia, jo) must satisfy the
system of linear Diophantine equations (1) and the sys-
tem of linear inequalities (2). There are four unknown
variables. We can reduce two unknown variables by set-
ting i1 = = and j; = y and solve for i3 and jo. Then i
and j; must satisty (3). Hence (i1,71) lies in the area
defined by (3) which is one of the DCH of the CDCH.
In the same way, we reduce ¢; and j; by setting i = @
and j» = y and solve for iy and j;. Here (is,j2) lies
in the area defined by (4) which is another DCH of the
CDCH. Therefore, both (i1, 1) and (i, j2) fall into dif-
ferent DCHs of the CDCH. 2

If iteration (is,j2) is dependent on (i1, j1), then de-
pendence vector D(x, y) is expressed as:

di(z,y) =iz — i1
di(z,y) = j2 — Jr

So, for DCHI1, we have

di(x1,y1) = (011 — Vg + By + 711
dj(r1,y1) = arawr + (Biz — Dy1 + 12 (5)

For DCH2, we have

di(x2,y2) == (1 — a21)x2 — B21y2 — Y2
d;j(za,y2) = —azs + (1 — B22)y2 — Y22 (6)

Clearly if there is a solution (x1,y1) in DCH1, there
must be a solution (x2,ys) in DCH2, because they have
been solved from the same set of linear Diophantine
equations (1).

Given the dependence vectors above, there must ex-
ist a minimum and a maximum value of D(z,y). It
was shown by Punyamurtula and Chaudhary 12 that
the minimum and maximum values of the dependence
D(z,y) occur at the extreme points of the DCH.

4. UNIQUE SETS IN THE ITERATION
SPACE

If a loop has cross-iteration dependences, we can con-
struct its CDCH (comprising of DCH1 and DCH2).
As we have proved earlier, all dependences lie within
the CDCH. In other words, the iterations lying out-
side the CDCH can be executed in parallel. Punyamur-
tula and Chaudhary proposed the concept of minimum
dependence distance tiling 12, which gives an excel-
lent partitioning of iteration space for the case when

-

d(x,y) = 0 does not pass through any DCH. How-
ever, minimum dependence distance cannot be calcu-
lated when (T(T,’l/) = 0 passes through the DCH. Our
technique works well for both the cases.

Suppose all dependence tails fall into DCH1 and all
dependence heads fall into DCH2 (Figure 6(a)) and the
two DCHs do not overlap. Partition can be done by
drawing a line between the two DCHs. The area con-
taining the DCH of tail will execute first followed by
the area containing the DCH of heads. Figure 6(b) il-
lustrates this fact by first executing area 1 followed by
area 2. The iterations within the two areas are fully
parallelizable.

The idea behind the above example is to find sepa-
rate sets that contain the dependence heads and tails.
We want to minimize these sets and then partition the
iteration space by drawing lines separating these sets in
the iteration space. The execution order is determined
by whether the set contains heads or tails.

The next problem how is to find unique sets. The
problem is compounded if these sets overlap.

4.1. Unique Head and Unique Tail Sets

There are only two DCHs given the program model in
Figure 4. All the dependence heads and tails will lie
within these two DCHs. These areas are our primitive
sets. For one particular set, it is quite possible that it
contains both the dependence heads and tails. Because
of the complexity of the problem, we have to

e  distinguish between the flow and anti dependences,
and

e partition the iteration space in a non-uniform way
because the dependence itself is non-uniform.

Let us look at Figure 5 which shows the CDCH of
Ezample 2. We note that DCH1 contains all anti de-
pendence heads and all flow dependence tails. DCH2
contains all the flow dependence heads and anti depen-
dence’s tails. Figure 7 separates the flow and anti de-
pendences to give a clearer picture. It can be found out
that DCH1 is the union of flow dependence tail set and
anti dependence head set, and DCH2 is the union of
flow dependence head set and anti dependence tail set.
Hence, the following definition is derived to distinguish
the sets.

DEFINITION 4.1 (UNIQUE HEAD(TAIL) SET).
Unique head(tail) set is a set of integer points in the
iteration space that satisfies the following conditions:

1. it is subset of one of the DCH (or is the DCH
itself).

2.it  contains all the dependence arrow’s
heads(tails), but does not contain any other
dependence arrow’s tails(heads).

Obviously the DCHs in Figure 7 are not the unique
sets we are trying to find, because each DCH contains
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@
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FIGURE 6. Partitioning with two non-overlapping DCHs
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FIGURE 7. (a) Flow dependence, (b) Anti dependence

the dependence heads of one kind and the dependence
tails of the other kind. Therefore, these DCHs must be
further partitioned into smaller unique sets.

4.2. Finding Unique Head and Unique Tail Sets
First properties of DCH1 and DCH2 must be examined.

THEOREM 4.1. DCH1 contains all flow dependence
tails and all anti dependence heads (if they exist) and
DCH2 contains all anti dependence tails and all flow
dependence heads (if they exist).

Proof. The system of inequalities in (3) defines DCH1
and

1 = X1
J1 =
is = apzr + Byt + 71
J2 = a2z + Brayr + 712

If there exists a flow dependence, we can assume that
(41,791,192, j2) is a solution to the flow dependence. From
the definition of flow dependence, (i1,71) should be
written somewhere in the iteration space before (is, jo)
is referenced. So we can draw an arrow from (i1, j1)

to (is, j2) in the iteration space to represent the de-
pendence and execution order as (iy,j1) — (i2,J2)
which is equivalent to (z1,y1) — (o111 + Briyr +
V11,0121 + Brayr + Y12). Here (x1,y1) is the arrow
tail. Since (x1,y:) satisfies (3) and we have assumed
that (i1, 1,142, j2) is a solution, DCH1 must contains all
flow dependence tails.

If there exists an anti dependence, we can again as-
sume that (i1, j1,72,J2) is a solution to the anti depen-
dence. From the definition of anti dependence, we have
an arrow from (ig, j2) to (i1,71), é-e., (1121 + Brayr +
Y11, 01221 + Brayr +712) = (@1, 91). Since (21, y;) is the
arrow’s head and (x1,y;) satisfies (3), DCHI1 contains
all anti dependence heads.

The proof that DCH2 contains all anti dependence
tails and flow dependence heads (if they exist) is similar
to the proof for DCHI. 2

The above theorem tells us that DCH1 and DCH2 are
not unique head or unique tail sets if there are both flow
and anti dependences. If there exist only flow or anti
dependence, DCH1 either contains all the flow depen-
dence tails or anti dependence heads, and DCH2 either
contains all the flow dependence heads or anti depen-
dence tails. Under these conditions, both DCH1 and
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DCH2 are unique sets. The following theorem states
the condition for DCH1 and DCH2 to be unique sets.

THEOREM 4.2. If d;(z,y) = 0 does not pass through
any DCH, then there is only one kind of dependence,
either flow or anti dependence, and the DCH itself is
the unique head set or the unique tail set.

Proof. [Part 1] d;(z1,y1) corresponds to DCH1 and
d;(z2,y2) corresponds to DCH2. Suppose d;(x1,y1)
does not pass through DCH1. Since d;(x1,y1) = ia —
7:1 = ((111 — ].)T1 +511y1 +’}/11 and the iteration (.7,‘1.,1/1)
that satisfies (3) must not satisfy (a11 — 1)x1 + B11y1 +
~v11 = 0 (d;(z1,y1) = 0 is a line in the iteration space),
DCH1 must be on one side of d;(z1,y1) = 0, i.e., ei-
ther d;(z1,y1) < 0 or d;(z1,y1) > 0. First let us look
at the case when d;(x1,y1) < 0. If d;(x1,y1) < 0, then
a1121 + B11y1 +711 is always less than x1. Thus, i1 > iy
is always true. Also, the array element corresponding to
index 47 is written and the array element corresponding
to index i is read. Clearly, only anti dependence can
satisfy this condition. Therefore, DCH1 contains only
anti dependences. Next, let us look at the case when
di(z1,y1) > 0. Here i1 < iy. Clearly, only flow de-
pendence can satisfy this condition. Therefore, DCH1
contains only anti dependence.

The proof for DCH2 follows similarly. Thus, if
d;(z,y) = 0 does not pass through any DCH, then there
is only one kind of dependence.

[Part 2] We have already shown above that if
d;(z,y) = 0 does not pass through DCH1, then there
is only one kind of dependence. If the dependence is
flow dependence, then from theorem 2, DCH1 contains
only the flow dependence tails or anti dependence heads,
making DCH1 a unique tail or head set. Similarly, if
the dependence is anti dependence, then from theorem
2, DCH2 contains only the anti dependence tails or flow
dependence heads, making DCH2 a unique tail or head
set. 2

DCH1 and DCH2 are constructed from the same sys-
tem of linear Diophantine equations and system of in-
equalities. The following two theorems highlight the
common attributes.

THEOREM 4.3. If d;(z1,51) = 0 does not pass
through DCH1, then d;(z2,y2) = 0 does not pass
through DCH2.

Proof. If d;(x1,y1) = 0 does not pass through DCH1,
then either DCHI lies on the side where d;(z1,y1) < 0
or on the side where d;(z1,y1) > 0. First let us consider
the case when DCHI is on same side of d;(z1,y1) < 0.
Since d;(x1,y1) is i2 — i1, we have that i» < i;. We can
find the same solution (i1, j1, 42, j2) for DCH2, because
they are solved from the same set of linear Diophantine
equations. d;(xa,y2) is also defined as io — ;. Hence,
we can get d;(x2,y2) < 0 which means d;(z2,y2) = 0
does not pass through DCH2.

The second case when DCH1 is on the same side of

d;(z1,y1) > 0 can be proved similarly.. 2

COROLLARY 4.4. When d;(z1,y1) = 0 does not pass
through DCH1,

1.if di($],y]) >0 in DCI‘Il7

(a) DCH1 is flow dependence unique tail set.
(b) DCH2 is flow dependence unique head set.

2.if di(x1,y1) < 0 in DCHI,

(a) DCHI1 is anti dependence unique head set.
(b) DCH2 is anti dependence unique tail set.

Proof. 1t follows from theorems 2 and 3. 2

COROLLARY 4.5. When d;(z1,y1) = 0 does not pass
through DCH1,

1. if d;(z1,y1) > 0 in DCHI1, then d;(2z2,y2) > 0 in
DCH2.
2.if d;i(z1,y1) < 0 in DCHI, then d;(z2,y2) < 0 in
DCH2.

Proof. It is obvious from the above theorems and proofs
given. 2

We have now established that if d;(z1,y1) = 0 does
not pass through DCH1, then both DCH1 and DCH2
are unique sets.

When d;(z,y) = 0 passes through the CDCH, a DCH
might contain both the dependence heads and tails
(even if DCHI1 and DCH2 do not overlap). This makes
it harder to find the unique head and tail sets. The
next theorem looks at some common attributes when
di(z,y) = 0 passes through the CDCH.

THEOREM 4.6. If d;(x1,51) = 0 passes through
DCH]1, then d;(x2,y2) = 0 must pass through DCH2.

Proof. Suppose d;(z1,y1) = 0 passes through DCH1.
Then we must be able to find (z},y]) such that
di(x7,y1) < 0 and (z,y;) such that d;(z},y7) > 0
in DCH1. Correspondingly we can find (z4,y5) and
(x4,y4) in DCH2 such that d;(z},y}) = iy — i} =
d;(zh,ybh) and d;(=f,yy) = i§ — i} = d;(«},yY). There-
fore, we have d;(z},y5) < 0 and d;(z},yy) > 0. Hence,
di(x2,y2) = 0 must pass through DCH2. 2

Using the above theorem we can now deal with the
case where a DCH contains all the dependence tails of
one kind and all the dependence heads of another kind.

THEOREM 4.7. If d;(x,y) = 0 passes through a DCH,
then it will divide that DCH into a unique tail set and
a unique head set. Furthermore, d;(z,y) = 0 decides
the inclusion of d;(x,y) = 0 in one of the sets.

Proof. The proof for DCH1 and DCH2 are symmet-
ric. Let us consider the case where d;(x1,y1) = 0 passes
through DCHI1. First consider flow dependences. With-
out loss of generality, let (i1, j1) and (i2, j2) be the iter-
ations which cause any flow dependence. Then, (i1, j1)
and (ia,jo) satisfy (1). Thus, from the definition of
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flow dependence, we have either iy < iy or i1 = iy and
j1 < j2. We can now solve (1) with

i = 1

J = W

iy = anzi+ Buy + 7 (7)
J2 = a2z + Brayr + 712

Since ry < a1’y + ﬁllyl + Y11, We have ((111 —
a1 + Briyr + y11 = di(x1,y1) > 0. From the above
equations we also have 1 = aji1x1 + B11yn + 111 and
Y1 < a12x1 + Brayr + Y12, which gives us di(z1,31) =0
and dj(ml,yl) > 0.

Now let us consider anti dependence. We either
have i1 > iy or iy = iy and j; > jo. Since z; >
a1z1 + friya + 71, we have (a1 — Doy + By +
v11 = di(z1,y1) < 0. From the set of equations (7)
above we also have z; = aji1z1 + Briyi + 111 and
Y1 > 1911 + 5121/1 + 712, which gives us di(-ﬁ,l}l) =0
and d;(z1,y1) < 0.

di(x1,1) = 0 divides DCH1 into two parts,
di(z1,y1) > 0 and d;(z1,y1) < 0. Flow dependences
satisfy d;(x1,y1) > 0. From theorem 2 we know
that these are the flow dependence tails. Whether
di(z1,91) = 0 belongs to this set is dependent on
whether d;(x1,y1) > 0 or not. Therefore, d;(x1,y1) >0
decides the flow dependence unique tail set. Similarly
d;(z1,y1) < 0 decides the anti dependence unique head
set. 2

Note that if d;(z1,y1) > 0, then the line segment
corresponding to d;(x1,y1) = 0 belongs to the flow de-
pendence unique tail set and if d;(z1,y1) < 0, then the
line segment corresponding to d;(x1,y1) = 0 belongs
to the anti dependence unique head set. The iteration
corresponding to the intersection of d;(z1,y1) = 0 and
d;(z1,y1) = 0, has no cross-iteration dependence. If the
intersection point of d;(z1,y1) = 0 and d;(z1,31) = 0
lies in DCH1, then one segment of the line d;(x1,31) =0
inside DCH1 is a subset of the flow dependence unique
tail set and the other segment of the line d;(x1,y1) =0
inside DCH1 is a subset of the anti dependence unique
head set.

For DCH2, we have similar results as above. To sum-
marize, the following corollary is derived.

COROLLARY 4.8. The flow dependence unique tail
set is expressed by

L, < x1 <U
L, < (7 < U,
Li< anzi+ /iy +ym <0
Ly < appzy + frayr + 712 < Us

di(z1,y1) >0 and di(xi,51) =0
dj(z1,y1) >0
The anti dependence unique head set is expressed by

L, < T <U
Ly < Y1 <U;
Li < anzi+puyi+vy1 <U;
Ly < apzr + fiayr + 2 < Us

di(z1,91) <0 and di(z1,y1) =0

dj(ﬂjhy]) <0
The flow dependence unique head set is expressed by
(L1 < asmrs+ Borypr+y21 < Un

Ly < 9229 + Booya + Y22 < Us
L < T2 <U
L, < Y2 <U

di(x2,y2) >0 and di(xi,11) =
dj(x2,y2) >0
The ant- dependence unique tail set is expressed by

(L1 < anxa+ PBayr+ya <Ui
Ly < axo + faaya + 722 < Us
L] S i) S U]
Ly < Y2 <U;
di(w2,y2) <0 and di(x1,y1) =0
dj(x2,y2) <0
Proof. 1t follows directly from Theorem 6. 2

COROLLARY 4.9. When d;(z1,y1) =
through DCH1, then

0 passes

1. DCH1 is the union of the flow dependence unique
tail set and the anti dependence unique head set.
2. DCH2 is the union of the flow dependence unique
head set and the anti dependence unique tail set.

Proof. 1t follows from Corollary 3. 2

Figure 8 illustrates the applications of our results to
Ezxzample 2. Clearly d;(z1,y1) = 0 divides DCH1 into
two parts. The area on the left side of d;(z1,y1) = 0
is the flow dependence unique tail set and the area on
the right side of d;(x1,y1) = 0 is the anti dependence
unique head set. d;(z1,y1) = 0 belongs to anti depen-
dence unique head set. d;(z2,y2) = 0 divides DCH2
into two parts too. The area below d;(z2,y2) = 0 is the
flow dependence unique head set and the area above
d;(z2,y2) = 0 is the anti dependence unique tail set.
d;(z2,y2) = 0 belongs to anti dependence unique tail
set.

5. UNIQUE SETS ORIENTED PARTITION-
ING

In the previous sections we have grouped iterations
based on their being unique head or tail sets. Clearly
the unique head set will execute after the unique tail
set. For our program model, there are at most four
sets, i.e., flow dependence unique tail set, flow depen-
dence head set, anti dependence unique tail set, and
anti dependence unique head set. The iterations out-
side these sets can be executed concurrently. Moreover,
the iterations within each set can be executed concur-
rently. In order to maximize the parallelism, we want to
partition the iteration space according to unique sets.

THE COMPUTER JOURNAL,

Vol. 40, No. 6, 1997




UNIQUE SETS ORIENTED PARALLELIZATION OF LOOPS WITH NON-UNIFORM DEPENDENCES 331

12 Flow dependence unique tail set
7

P N W s 00O N 0 ©
T

0 123 456 7 89 101112
@

12 | -
1 | dicLyn=o
10 | 4 Anti dependence
9 | unique head set
8 L
7 L
6 Anti dependence
s [ unique tail set

[ di(x2,y2)=0
4| (x2,y2)
3 L
2 L

N
1| S~ ______ ~
1 1 1 1 1 1 1 1 1 1 1 1

0 123 456 7 8 9 101112
(b)

FIGURE 8. Unique head sets and unique tail sets of (a) Flow dependence, (b) Anti dependence
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FIGURE 9. One kind of dependence and DCH1 does not overlap with DCH2

It is important, however, to note that the effective-
ness of a partitioning scheme depends on the architec-
ture of the parallel machine being used. In this paper
we do not recommend partitions for particular archi-
tectures, rather, we explore the various partitions that
can be generated from the available information. The
suitability of a particular partition for a specific archi-
tecture is not studied.

Based on the unique head and tail sets that we can
identify that there exist various combinations of over-
laps (and/or disjointness) of these unique head and tail
sets. We categorize these combinations as various cases
starting from simpler cases and leading up to the more
complicated ones.

Casel: There is only one kind of dependence and
DCHI1 does not overlap with DCH2.

Figure 9(a) illustrates this relatively easy case with
an example. Any line drawn between DCH1 and DCH2
divides the iteration space into two areas. Inside each
area, all iteration are independent. The DCHs in this
case are unique head and unique tail sets. The iterations
within each DCH can be executed concurrently. How-
ever, DCH2 needs to execute before DCH1 as shown by
the partitioning in Figure 9(b). The execution order is

given as 1 — 2.

From the implementation point of view, it is advisable
to partition the iteration space along the i or j axis so
that the partitioned areas can be easily represented as a
loop. It is also advisable to partition the iteration space
as evenly as possible. However, the final decision on
partitioning will depend on the underlying architecture.

Case 2: There is only one kind of dependence and
DCHT1 overlaps with DCH2.

Figure 10(a) illustrates this case. DCH1 and DCH2
overlap to produce three distinct areas denoted by
Areal, Area2, and Area3, respectively. Area2 and
Area3 are either unique tail or unique head sets and
thus iterations within each set can execute concurrently.
Areal contains both dependence heads and tails. We
can apply the Minimum Dependence Distance Tiling
technique proposed by Punyamurtula and Chaudhary
12 to Areal. Depending on the type of dependence
there are two distinct execution orders possible. If
DCH2 is a unique tail set, then the execution order
is Area3 — Areal — Area2. Otherwise the execution
order is Area2 — Areal — Area3.

From the implementation point of view, we want to
use a straight line to partition the iteration space, so
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FIGURE 10. One kind of dependence and DCH1 overlaps with DCH2
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FIGURE 11. Two kinds of dependence and DCH1 does not overlap with DCH2

that the generated code will be much simpler. An exam-
ple partitioning is shown in Figure 10(b) for the prob-
lem in Figure 10(a). The execution order is given as
1=-2—=3—=4

Another approach to parallelize the iteration space in
this case is to apply the Minimum Dependence Distance
Tiling technique 12 directly to the entire iteration space.

Case 3: There are two kinds of dependence and DCH1
does not overlap with DCH2.

Figure 11 illustrates this case. Since DCH1 and
DCH2 are disjoint we can partition the iteration space
into two, with DCH1 and DCH2 belonging to distinct
partitions. From Theorem 6 we know that d;(x,y) =0
will divide the DCHs into unique tail and unique head
sets. Next, we partition the area within DCHI1 by
the line d;(x1,y1) = 0, and the area within DCH2
by the line d;(x2,y2) = 0. So, we have four parti-
tions, each of which is totally parallelizable. Figure
11(b) gives one possible partition with execution order
as 1 = 2 — 3 — 4. Note that the unique head sets
must execute after the unique tail sets.

Case 4: There are two kinds of dependence and DCH1
overlaps with DCH2, and there is at least one isolated
unique set.

Figure 12 (a) and (c) illustrate this case. What we
want to do is to separate this isolated unique set from
the others. The line d;(x,y) = 0 is the best candidate
to do this. If d;(z,y) = 0 does not intersect with any
other unique set or another DCH, then it will divide
the iteration space into two parts as shown in Figure
12(b). If d;(x,y) = 0 does intersect with other unique
sets or another DCH, we can add one edge of the other
DCH as the boundary to partition the iteration space
into two as shown in Figure 12(d). Let us denote the
partition containing the isolated unique set by Area?2.
The other partition is denoted by Areal. If Area2 con-
tains a unique tail set, then Area2 must execute before
Areal, otherwise Area2 must execute after Areal. The
next step is to partition Areal. Since Areal has only
one kind of dependence (as long as we maintain the ex-
ecution order defined above) and DCHI overlaps with
DCH2, it falls under the category of case 2 and can be
further partitioned.

Case 5: There are two kinds of dependence and all
unique sets overlap each other.

Figure 13(a) illustrates this case. The CDCH can bhe
partitioned into at most eight parts as shown in Figure
13(b). These partitions are areas that contain
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FIGURE 12. Two kinds of dependence and one unique set isolated
e only flow dependence tails, and we denote it by case. For example, if d;(z1,y1) = 0 does not inter-
Areal. sect d;(x2,y2) = 0 inside the CDCH, then either Area7
e only anti dependence tails, and we denote it by or Area8 exists, but not both. However, the proposed
Area2. partitioning and execution order still hold.
e only anti dependence heads,and we denote it by Now let us go back to Ezample 2. From Figure 8, we
Area3. know that it fits in the category of Case 4.
e only flow dependence heads, and we denote it by
Aread.

e flow dependence tails and anti dependence tails,
and we denote it by Areab.

e flow dependence heads and anti dependence heads,
and we denote it by Area6.

e flow dependence tails and flow dependence heads,
and we denote it by AreaT.

e anti dependence tails and anti dependence heads,
and we denote it by Area8.

Areal, Area2, and Areab can be combined together
into a larger area, because they contain only the de-
pendence tails. Let us denote this combined area by
Areal. In the same way, Area3, Aread, and Area6
can also be combined together, because they contain
only the dependence heads. Let us denote this com-
bined area by Areall. Areal and Areall are fully
parallelizable. The execution order becomes Areal —
Area?” — Area8 — Areall. Since Area7 and Area8
contain both dependence heads and tails, we can ap-
ply Minimum Dependence Distance Tiling technique to
parallelize this area.

We may not always have all eight areas in this

j ' D

) P \

5 N7AN

) Wk

A S/ARTANY

3 | 5

FIGURE 14. Partitioning scheme for Ezample 2

The partitioning scheme is shown in figure 14. There
are five areas. All the iterations in each area are fully
parallelizable. These area should be run in the order of
1—-2—3—>4— 5 Area 3 is the overlapping area.
Minimum Dependence Distance Tiling technique25 is
adopted to partition along the j direction with mini-
mum distance of 4. The parallelized code of Example 2
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FIGURE 13. Two kinds of dependence and all unique sets overlapped each other

is shown below.
/* area 1*/
doparallel + =1, 12
doparallel j = ceil(i/2 + 1), min(floor(i + 3.5),12)
A2xi+3,j+1)="---
o= AR2xj+i+1,i+j5+3)
enddo
enddo
/* area 2 */
doparallel : =1, 6
doparallel j = (floor((3i)/2+ 3) + 1), 12
AQxi+3,j+1)="---
o= AQ2xj+i+1,i+j5+3)
enddo
enddo
/* area 3 */
doparallel i = floor((3i)/2 + 3), ceil(x +7/2)
doparallel j = 5, 8
ARxi+3,j4+1)=---
o= AQ2xj+i+1,i+j+3)
enddo
enddo
/¥ area 4 */
doparallel i = floor((3i)/2 + 3), ceil(x +7/2)
doparallel j =9, 12
ARxi+3,j+1)="---
o= AR2xj+i+1i+ 5+ 3)
enddo
enddo
/* area 5 */
doparallel ¢t = 1, 12
doparallel j =1, (ceil(i/2+ 1) — 1)
A2xi+3,j+1)="---
o= AR2xj+i+1i+j+3)
enddo
enddo
This partitioning scheme seems to be worse than
other techniques at first glance. This is because the loop
upper bounds is only 12. As the loop upper bounds in-
crease, this scheme will show the advantage. No matter
how large the loop is, it synchronizes only five times.

Synchronization overhead is always the major factor
that affects the performance.

6. EXTENSION TO GENERAL
LOOPS

NESTED

We discussed the parallelization of two dimensional pro-
gram model in the former sections. We now look at
loops with n levels of nestings whose indices are iy, io,
-+, in. The array subscripts are linear functions of loop
indices as shown in figure 15.

do ’i] = L], U]
do i, =L,, U,
Sy AlfiGin,oin), oo f(in, i) = -
SQI :A[g](l]772n)77gm(l]7‘Zn)]
enddo
enddo

FIGURE 15. General Program Model

We want to find a set of integer solutions
(41, yin,dy,...,1,) that satisfy the system of Dio-
phantine equations (8) and the system of linear inequal-
ities (9).

fl(ih"':in) = g](Z’177ZIn)
(8)
fm(ih"':in) = gm(zlh Z;z)
Ly < i < U
L < i < U
L, < i, < Uy
L, < i, < U,

To avoid lengthy repetition, we consider DCH2 as
an example to illustrate how to get unique sets. From
former sections, we know that DCH2 should contain
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flow dependence unique head set and anti dependence

unique tail set. Using the second approach to solve the

set of Diophantine equations, we have integer solutions

(41, in, 34, -,1),) which are functions of xy, - -, x,.

They can be written as:

. .y y

(’L],"',Zn7217"'72n) - (S](QU].,'",$n)7"'75n(33]7"'7

mn)'/ Sn-|-1('7’l17 Ty 7"7’1)/ Ty Sn+n('7"1-, e 77:77.))

From the general solution the dependence vector
function D(z1,---,2,) can be written as

73371) _51(3317"'73371))-,

:xn) - Sn(xh" xn))}

D@y, an) = {(sng (1,
"'1(8n+n(3317"'

Hence the dependence vectors are:

di(zr, - xn) = (Sppr (@, 2n) — s1(21, -+, 2p))

dp(r1,-- 00) = (Spgn(@1, - 20) = sp(T1, -+, )

The dependence vector D(xy,---,x,) divides this
DCH into two parts. One is flow dependence unique
head set and the other is anti dependence unique tail
set. The decision on the ownership of D(zy, -, 2y)
comes next.

The theorems proposed in section 4.2 are also
valid for multi-dimensional loops. di(x1, -+, z,) >
0 belongs to flow dependence unique head set and

dy(x1, - ,m,) < 0 belongs to flow anti depen-
dence unique tail set. When di(z1, - ,2,) = 0,
da(x1,- -, xy,) has to be checked. If do(x1, -, 2,) >

0, then flow dependence unique head set contains
d1($17"',f13n) = 0 and d2(.7)1,"'.,.7/'n) > 0. If
dy(xq,---,xn) < 0, then anti dependence unique head
tail contains dy(x1,- -, 2,) = 0 and do(z1, -+, 2pn) <
0. For do(z1, -+,2n) = 0, ds(x1,---,2,) has
to be checked. We continue in this fashion until
dp (1, -+, xy,) is checked.

Using this method, we can get the unique sets for the
given general program model. According to the posi-
tions of these sets, we can partition the iteration space.
During the partitioning, the area containing unique tail
set must be run before the area containing unique head
set. The partitioning process is basically the same as
for doubly nested loops, except that we now deal ev-
erything with multi-dimensional iteration space. The
shape of the unique set is also multi-dimensional.

An alternative way to parallelize multi-dimensional
loops is to parallelize only the two outer most loop
nests, leaving inner loops running sequentially. The
advantages of one approach over the other is left for
future work. However, we feel that multi-dimensional
unique set of partitioning will give us greater flexibility
to transform the loops to adapt specific architectures.

7. EXPERIMENTAL RESULTS

We present results for two programs. The first program
is similar to Ezample 2 as shown in Figure 16. We tested

the performance for varying loop sizes. The loop sizes
(SIZE) used in the experiments are 50, 100, 500, and
1000.

doi=1,SIZFE
doj=1, SIZE
A2*i+3,7+1)="--
e =Al+2j+1i+ 5+ 3)
enddo
enddo

FIGURE 16. Program 1

% c SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B)
3 C CHOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.

4 C

g g 11/28/84 D H BAILEY MODIFIED FOR NAS KERNEL TEST

7 REAL A(0:IDA, -M:0, O:N), B(O:NRHS, 0:IDB, 0:N), EPSS(0:256)
g c DATA EPS/1E-13/

%(1) g CHOLESKY DECOMPOSITION

12 DO1J=0,N

13 10 = MAX ( -M, -J)

14 ¢

%g g OFF DIAGONAL ELEMENTS

17 D0 2 I = 10, -1

18 D0 3 JJ =10 - I, -1

19 DO 3 L = 0, NMAT

20 3 A(L,I,J) = A(L,I,J) - A(L,JJ,I+J) * A(L,I+JJ,J)
21 DO 2 L = 0, NMAT

%g % A(L,I,J) = A(L,I,J) * A(L,0,I+J)

%4 g STORE INVERSE OF DIAGONAL ELEMENTS

5

26 DO 4 L = 0, NMAT

27 4 EPSS(L) = EPS % A(L,0,J)

28 D0 5 JJ = 10, -1

29 DO 5 L = 0, NMAT

30 5 A(L,0,J) = A(L,0,J) - A(L,JJ,J) ** 2

31 DO 1 L = 0O, NMAT

gg (1: A(L,0,3) = 1. / SQRT ( ABS (EPSS(L) + A(L,0,J)) )
34 C SOLUTION

35 C

36 DO 6 I = 0, NRHS

37 DO 7 K =0, N

38 DO 8 L = 0, NMAT

39 8 B(I,L,K) = B(I,L,K) * A(L,0,K)

40 DO 7 JJ = 1, MIN (M, N-K)

41 DO 7 L = 0, NMAT

g E B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K)
44 DO 6 K =N, 0, -1

45 DO 9 L = 0, NMAT

46 9 B(I,L,K) = B(I,L,K) * A(L,0,K)

a7 DO 6 JJ = 1, MIN (M, K)

48 DO 6 L = 0, NMAT

49 6 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I,L,K)
50 C

51 RETURN

52 END

FIGURE 17. Program 2

The second program is shown in Figure 17. This
is a subroutine taken from a benchmark test program
which has been developed for use by the NAS program
at NASA Ames Research Center to aid in the evalua-
tion of supercomputer. This subroutine deals with the
problem of Cholesky Decomposition and Substitution.
We are more interested in the part from line 17 to line
22. Non-uniform dependences can be found in this part
of the program. To illustrate the impact of non-uniform
dependence and to make our experiment more compre-
hensive, we use the entire subroutine to evaluate the
performance of our technique. In fact, the variable N
and N M AT decide the program size in this part of pro-
gram. When we say the the program size is 50, both
N and NM AT are set to 50. We present results for
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Speedup of Unique Sets method —
Speedup of Chen and Yew's method --
14+ Speedup of Cray's autotasking -
Speedup of Omega project
Speedup of Zaalrani and Ito's method ~--
Linear Speedup -

Speedup
®

8
CcPUs

(a) SIZE =50

Speedup of Unique Sets method —
Speedup of Chen and Yew's method --
14+ Speedup of Cray's autotasking -
pecdup of Omega projct
Speedup of Zaalrani and Ito's method ~--
Uinear Speedup -

Speedup
®

8
CcPUs

(c) SIZE = 500

Speedup of Unique Sets method —
Speedup of Chen and Yew's method --
14+ Speedup of Cray's autotasking -
Speedup of Omega project
Speedup of Zaalrani and Ito's method ~--
Linear Speedup -~

Speedup
®

8
CcPUs

(b) SIZE = 100

Speedup of Unique Sets method —
Speedup of Chen and Yew's method -
14+ Speedup of Cray's autolasking -

pecdup of Omega projct
Speedup of Zaalrani and Ito's method -~
Linear Speedup -

Speedup
®

8
CcPUs

(d) SIZE = 1000

FIGURE 18. Performance Results for Program 1 on Cray

program sizes 50, 100, 200, and 300, respectively.

All the experiments are done on a Cray J916 with
16 processors. Autotasking Expert System(atexpert) are
used to analyze the program. Atexpert is a tool devel-
oped by CRI (Cray Research, Inc.) for accurately mea-
suring and graphically displaying tasking performance
from a job run on an arbitrarily loaded CRI system. It
can predict speedups on a dedicated system from data
collected from a single run on a non-dedicated system.
It shows where a program is spending most of its time
and whether those areas are executed sequentially or in
parallel.

User-Directed Tasking directives are used to con-
struct parallelizable areas in the iteration space.
Synchronizations are implemented with the help of
guarded region. The format is as below.

#pragma _CRI parallel defaults
#pragma _CRI taskloop

loop
#pragma _CRI endparallel

#pragma _CRI guard
loop or variable
#pragma _CRI endguard

Our results are compared with those of Chen and
Yew’s method 9, Cray’s native Autotasking, Omega

project of University of Maryland 5, and Zaafrani and
Tto’s method 13. Zaafrani and Ito’s method is not im-
plemented for Program 2, because it is unable to handle
non-perfect nestings of loops. To implement Chen and
Yew’s method, guarded regions were used to simulate
the function of semaphore. For the method of Omega
project, version 1.1 of the Omega Project software was
used. We run the source codes through Petit, a re-
search tool developed by University of Maryland. Tt
calls both the Omega library and the Uniform library
5 and generates parallelized ¢ source code. We rewrite
the parallelized source codes with Cray’s Autotasking
directives to do the experiments.

Figure 18 shows the speedup comparison of our tech-
nique, Chen and Yew’s technique, Cray’s autotasking,
Omega project, and Zaafrani and Ito’s three-region
technique. Cray’s autotasking did not give any speedup
at all, running the loops sequentially. Omega project
did not parallelize this program either. It is not so clear
in Figure 18, because the speedups of Omega project
and those of Cray’s autotasking are overlapped. Both
are 1.

Our method shows near linear speedup with the loop
size of 500 and 1000, which are the models closer to
the real world programs. Our technique is consistently
outperforms other techniques considerably for all sizes.
Chen and Yew’s gave some speedup, but not too much,
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Speedup of Unique Sets method —
Speedup of Chen and Yew's method ----
14+ Speedup of Cray’s autotasking -

‘Speedup of Omega project
Linear Speedup -~

Speedup
®

(a) Program size = 50

Speedup of Unique Sets method —
Speedup of Chen and Yew's method ----
14+ Speedup of Cray’s autotasking -

‘Speedup of Omega project
Linear Speedup -

Speedup
®

8
CcPUs

(¢) Program size = 200

Speedup of Unique Sets method —
Speedup of Chen and Yew's method ----
14+ Speedup of Cray's autotasking -

‘Speedup of Omega project
Linear Speedup -~

Speedup
®

8
CcPUs

(b) Program size = 100

Speedup of Unique Sets method —
Speedup of Chen and Yew's method ----
14+ Speedup of Cray’s autotasking -

‘Speedup of Omega project
Linear Speedup -

Speedup
®

8
CcPUs

(d) Program size = 300

FIGURE 19. Performance Results for Program 2 on Cray

because of the synchronization overhead. Zaafrani and
Tto’s method showed very little speedup. The sequen-
tial region of their method is the bottle neck for good
performance. The figure shows that the loop sizes have
a tremendous impact on the performance even for the
same loop using the same parallelization technique. In
practice, we alway want to parallelize the loops where
programs spend most of their time.

Figure 19 shows the performance for the Cholesky
Decomposition subroutine. From the plots, it is clear
that our technique outperforms all the other techniques.
As program size increases, our technique shows better
results. Cray’s Autotasking got some speed up for this
routine. It parallelized the inner most loop. This is
more like vectorizing than parallelizing. The result of
Omega project is worse than that of Cray’s autotask-
ing when the program size of 50, as shown in Figure
19(a). As the program size increases, it outperformed
the Cray’s autotasking. When the program size is 300,
the performance of Omega project is nearly twice that of
Cray’s autotasking. The reason is that Cray’s autotask-
ing only parallelizes the innermost loops, while Omega
project does not. Overall, Chen and Yew’s technique
performed worst. Again, increased synchronization is
responsible for this.

8. CONCLUSION

In this paper, we systematically analyzed the charac-
teristics of the dependences in the iteration space. We
proposed the concept of Complete Dependence Convex
Hull, which contains the entire dependence informa-
tion of the program. We also proposed the concepts
of Unique head sets and Unique tail sets which iso-
lated the dependence information and showed the re-
lationship among the dependences. The relationship
of the unique head and tail sets forms the foundation
for partitioning the iteration space. Depending on the
relative placement of these unique sets, various cases
were considered. Several partitioning schemes were also
suggested for implementating our technique. The sug-
gested scheme was implemented on a Cray J916 and
compared with Chen and Yew’s method 9, Cray’s native
Autotasking, Omega project of University of Maryland
5, and Zaafrani and Ito’s method 13. The implemen-
tation results of real benchmark code shows that our
technique consistently outperformed all the other tech-
niques considerably.
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