Cluster Computing 0 (1999) ? ?

Design Issues for a High-Performance Distributed Shared

Memory on Symmetrical Multiprocessor Clusters

*

Sumit Roy and Vipin Chaudhary

Parallel and Distributed Computing Laboratory, Department of Electrical and Computer Engineering, Wayne State

1. Introduction

University, Detroit, Michigan 48202

E-mail: (sroy/vchaud)@ece.eng.wayne.edu

Clusters of Symmetrical Multiprocessors (SMPs) have recently become the norm for high-performance eco-
nomical computing solutions. Multiple nodes in a cluster can be used for parallel programming using a message
passing library. An alternate approach is to use a software Distributed Shared Memory (DSM) to provide a
view of shared memory to the application programmer. This paper describes Strings, a high performance
distributed shared memory system designed for such SMP clusters. The distinguishing feature of this system is
the use of a fully multi-threaded runtime system, using kernel level threads. Strings allows multiple application
threads to be run on each node in a cluster. Since most modern UNIX systems can multiplex these threads on
kernel level light weight processes, applications written using Strings can exploit multiple processors on a SMP
machine. This paper describes some of the architectural details of the system and illustrates the performance
improvements with benchmark programs from the SPLASH-2 suite, some computational kernels as well as a
full fledged application.

It is found that using multiple processes on SMP nodes provides good speedups only for a few of the
programs. Multiple application threads can improve the performance in some cases, but other programs show
a slowdown. If kernel threads are used additionally, the overall performance improves significantly in all

programs tested. Other design decisions also have a beneficial impact, though to a lesser degree.
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to solve such problems.

Instead, many vendors

Though current microprocessors are getting
faster at a very rapid rate, there are still some
very large and complex problems that can only be
solved by using multiple cooperating processors.
These problems include the so-called Grand Chal-
lenge Problems, such as Fuel combustion, Ocean
modeling, Image understanding, and Rational drug
design. There has recently been a decline in the
number of specialized parallel machines being built
* This research was supported in part by NSF grants MIP-

9309489, EIA-9729828, US Army Contract DAEA 32-
93D004 and Ford Motor Company grants 96-136R and 96-
628R. A preliminary version of this paper appeared in the

Proceedings of the High Performance Distributed Comput-
ing Conference, 1998.

of traditional workstations have adopted a de-
sign strategy wherein multiple state-of-the-art mi-
croprocessors are used to build high performance
shared-memory parallel workstations. These sym-
metrical multiprocessors (SMPs) are then con-
nected through high speed networks or switches
to form a scalable computing cluster. Examples of
this important class of machines include the SGI
Power Challenge Array, the IBM SP2 with multi-
ple POWERS based nodes, the Convex Exemplar,
the DEC AdvantageCluster 5000, the SUN HPC
cluster with the SUN Cluster Channel, as well as
the Cray/SGI Origin 2000 series.

Using multiple nodes on such SMP clusters re-

quires the programmer to either write explicit mes-
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sage passing programs, using libraries like MPI or
PVM; or to rewrite the code using a new language
HPF and Fortran

90. Message passing programs are cumbersome to

with parallel constructs, eg.

write, while parallel languages usually only work
well with code that has regular data access pat-
terns. In both cases the programmer has to be
intimately familiar with the application program
as well as the target architecture to get the best
possible performance. The shared memory model
on the other hand, is easier to program, since the
programmer does not have to worry about the
data layout and does not have to explicitly send
data from one process to another. Hence, an al-
ternate approach to using these computing clus-
ters is to provide a view of logically shared mem-
ory over physically distributed memory, known as
a Distributed Shared Memory (DSM) or Shared
Virtual Memory (SVM). Recent research projects
with DSMs have shown good performance, for ex-
ample IVY [1], Mirage [2], Munin [3], TreadMarks
[4], Quarks [5], CVM [6], and Strings [7]. This
model has also been shown to give good results for
programs that have irregular data access patterns,
which cannot be analyzed at compile time [8], or
indirect data accesses that are dependent on the
input data-set.

DSMs share data at the relatively large granu-
larity of a virtual memory page and can suffer from
a phenomenon known as “false sharing”, wherein
two processes simultaneously attempt to write to
different data items that reside on the same page.
If only a single writer is permitted, the page may
ping-pong between the nodes. One solution to this
problem is to “hold” on to a freshly arrived page for
some time before releasing it to another requester
[2]. Relaxed memory consistency models that al-
low multiple concurrent writers have also been pro-
posed to alleviate this symptom [9,10,4,11]. These
systems ensure that all nodes see the same data at
well defined points in the program, usually when
synchronization occurs. Extra effort is required to
ensure program correctness in this case.

One technique that has been investigated re-

cently to improve DSM performance is the use of
multiple threads of control in the system. Multi-
threaded DSMs have been described as third gen-
eration systems [12]. Published efforts have been
restricted to non-preemptive, user-level thread im-
plementations [5,13]. However, user level threads
cannot be scheduled across multiple processors on
an SMP. Since SMP clusters are increasingly be-
coming the norm for High Performance Computing
sites, we consider this to be an important prob-
lem to be solved. This paper describes Strings,
a multi-threaded DSM designed for SMP clusters.
The distinguishing feature of Strings is that it is
built using POSIX threads, which can be multi-
plexed on kernel light-weight processes. The ker-
nel can schedule these lightweight processes across
multiple processors for better performance. Strings
is designed to exploit data parallelism by allowing
multiple application threads to share the same ad-
dress space on a node. Additionally, the protocol
handler is multithreaded and is able to use task
parallelism at the runtime level. The overhead of
interrupt driven network I/O is avoided by using
a dedicated communication thread. We show the
impact of each of these design choices using some
example programs, as well as some benchmark pro-
grams from the SPLASH-2 suite [14].

The following section describes some details of
the software system. The evaluation platform
and programs for the performance analysis are
described in section 3. Experimental results are
shown and analyzed in section 4. Section 5 sug-
gests some direction for future work and concludes

the paper.

2. System details

The Strings distributed shared memory was de-
rived from the publicly available system Quarks
[5]. It shares the use of the Release Consistency
model with that system, as well as the concept of
a dsm_server thread. We briefly describe the im-
plementation details and highlight the difference

between the two systems.



S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clusters 3

2.1. Exzecution model

The Strings system consists of a library that
is linked with a shared memory parallel program.
The program uses calls to the distributed shared
memory allocator to create globally shared mem-
ory regions. A typical program goes through the
initialization shown in Figure 1.

The master process starts up and forks child pro-

cesses on remote machines using rsh(). Each pro-

cess creates a dsm_server thread and a communication

thread. The forked processes then register their
listening ports with the master. The master pro-
cess then enters the application program proper,
and creates shared memory regions. Application
threads are then created by sending requests to the
remote dsm_servers. Shared region identifiers and
global synchronization primitives are sent as part
of the thread create call. The virtual memory sub-
system is used to enforce coherent access to the
globally shared regions.

The original Quarks system used user level
Cthreads and allowed only a single application
thread. Strings allows multiple application threads
to be created on a single node. This increases the

concurrency level on each node in a SMP cluster.

2.2. Kernel level threads

Threads are light-weight processes that have
minimal execution context, and share the global
address space of a program. The time to switch
from one thread to another is very small when
compared to the context switching time required
for full-fledged processes. Moreover the implicit
shared memory leads to a very simple program-
ming model. Thread implementations are distin-
guished as being user-level, usually implemented
as a library, or as being kernel level in terms of
light-weight processes. Kernel level threads are
a little more expensive to create, since the ker-
nel is involved in managing them. However, user
level threads suffer from some important limita-
tions. Since they are implemented as a user level

library, they cannot be scheduled by the kernel. If

any thread issues a blocking system call, the ker-
nel considers the process as a whole, and thus all
the associated threads, to be blocked. Also, on a
multiprocessor system, all user level threads can
only run on one processor at a time. User level
threads do allow the programmer to exercise very
fine control on their scheduling within the process.
In contrast, kernel level threads can be scheduled
by the operating system across multiple proces-
sors. Most modern UNIX implementations pro-
vide a light-weight process interface on which these
threads are then multiplexed. The thread pack-
age used in Strings is the standard Posix 1003.1c
thread library. Multi-threading has been suggested
for improving the performance of scientific code
by overlapping communications with computations
[15].
passing systems has pointed out that kernel-level

Previous work on multi-threaded message

implementations show better results than user level
threads for a message size greater than 4 K bytes
[16]. Since the page size is usually 4 K or 8 K bytes,
it suggests that kernel threads should be useful for
DSM systems.

2.3. Shared memory implementation

Shared memory in the system is implemented by
using the UNIX mmap() call to map a file to the
bottom of the stack segment. Quarks used anony-
mous mappings of memory pages to addresses de-
termined by the system, but this works only with
statically linked binaries. With dynamically linked
programs, it was found that due to the presence of
shared libraries mmap () would map the same page
to different addresses in different processes. While
an address translation table can be used to access
opaquely shared data, it is not possible to pass
pointers to shared memory this way, since they
would potentially address different regions in dif-
ferent processes. An alternate approach would be
to preallocate a very large number of pages, as done
by CVM and TreadMarks, but this associates the
same large overhead with every program, regard-

less of its actual requirements.
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Figure 1. Initialization Phase of a Strings Program

Allowing multiple application threads on a node
leads to a peculiar problem with the DSM imple-
mentation. Once a page has been fetched from a re-
mote node, its contents must be written to the cor-
responding memory region, so the protection has
to be changed to writable. At this time no other
thread should be able to access this page. User
level threads can be scheduled to allow atomic up-
dates to the region. However, suspending all ker-
nel level threads can potentially lead to a deadlock,
and would also reduce concurrency. Figure 2 illus-
trates the approach used in Strings. Every page
It is then

possible to write to the ‘shadow’ address, without

is mapped to two different addresses.

changing the protection of the primary memory re-
gion.

The mprotect () call is used to control access to
the shared memory region. When a thread faults
while accessing a page, a page handler is invoked to
fetch the contents from the owning node. Strings
currently supports sequential consistency using an
invalidate protocol, as well as release consistency
using an update protocol [10,5]. When a thread
tries to write to a page, a twin copy of the page
is created. At releases time, ie. when a lock is
unlocked, or a barrier is entered, the difference
or diff between the current contents of the page
and its twin is sent to other threads that share the
page. The release consistency model implemented
in Quarks has been improved by aggregating mul-

tiple diffs to decrease the number of messages sent.

2.4. Polled network 1/0

Early generation DSM systems used interrupt
driven I/O to obtain pages, locks etc. from re-
mote nodes. This can cause considerable disrup-
tion at the remote end, and previous research tried
to overcome this by aggregating messages, reducing
communication by combining synchronization with
data, and other such techniques [17]. Strings uses a
dedicated communication thread, which monitors
the network port, thus eliminating the overhead
of an interrupt call. Incoming message queues are
maintained for each active thread at a node, and
message arrival is announced using condition vari-
ables. This prevents wasting CPU cycles with busy
waits. A reliable messaging system is implemented
on top of UDP.

2.5. Concurrent server

The original Quarks dsm server thread was an
iterative server that handled one incoming request
at a time. It was found that under certain condi-
tions, lock requests could give rise to a deadlock be-
tween two communicating processes. Strings solves
this by creating separate threads to handle each in-
coming request for pages, lock acquires and barrier
arrivals. Relatively fine grain locking of internal
data structures is used to maintain a high level of
concurrency while guaranteeing correctness when

handling multiple concurrent requests.
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Figure 2. Thread safe memory update for Strings

2.6. Synchronization primitives

Quarks provides barriers and locks as shared
memory primitives. Strings also implements condi-
tion variables for flag based synchronization. Bar-
Bar-

rier arrivals are first collected locally, and are then

riers are managed by the master process.

sent to the barrier manager. Dirty pages are also
purged at this time, as per Release Consistency
semantics [10].

Lock ownership is migratory with distributed
queues. For multiple application threads, only one
lock request is sent to the current owner, the sub-
sequent ones are queued locally, as are incoming
Requests on the same node pre-empt
While this does not
guarantee fairness or progress, this optimization

A

similar optimization was employed in CVM [18].

requests.

request from remote node.
works very well for data parallel programs.

Release Consistency operations are deferred if the

lock transfer is within the local node.

3. Performance analysis

We evaluated the performance of Strings us-
ing programs from the SPLASH-2 benchmark suite
[14]. These programs have been written for evalu-
ating the performance of shared address-space mul-

tiprocessors and include application kernels as well

as full fledged code. Additionally we show results
for matrix multiplication, a program from the field
of medical computing, as well as a kernel for solv-
ing partial differential equations by the successive
over-relaxation technique and the classical travel-

ing salesman problem.

3.1. SPLASH-2 programs

The data access patterns of the programs in the
SPLASH-2 suite have been characterized in ear-
lier research [19,11]. FFT performs a transform of
n complex data points and requires three all-to-
all interprocessor communication phases for a ma-
trix transpose. The data access is regular. LU-c
and LU-n perform factorization of a dense matrix.
The non-contiguous version has a single producer
and multiple consumers. It suffers from consid-
erable fragmentation and false sharing. The con-
tiguous version uses an array of blocks to improve
spatial locality. RADIX performs an integer radix
sort and suffers from a high-degree of false sharing
at page granularity during a permutation phase.
RAYTRACE renders a complex scene using an op-
timized ray tracing method. It uses a shared task
queue to allocate jobs to different threads. Since
the overhead of this approach is very high in a DSM
system, the code was modified, to maintain a lo-
cal as well as global queue per thread. Tasks were
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initially drained from the local queue, and then
from the shared queue. VOLREND renders three-
dimensional volume data. It has a multiple pro-
ducers with multiple consumers data sharing pat-
tern, with both fragmentation and false sharing.
WATER-sp evaluates the forces and potentials oc-
curring over time in a system of water molecules.
A 3-D grid of cells is used so that a processor
that owns a cell only needs to look at neighboring
cells to find interacting molecules. Communica-
tion arises out of the movement of molecules from
one cell to another at every time-step. WATER-
n2 solves the same problem as WATER-sp, though
with a less efficient algorithm that uses a simpler

data-structure.

3.2. Image deblurring

The application tested is a parallel algorithm for
deblurring of images obtained from Magnetic Res-
onance Imaging. Images generated by MRI may
suffer a loss of clarity due to inhomogeneities in
the magnetic field. One of the techniques for re-
moving this blurring artifact is the demodulation
of the data for each pixel of the image using the
value of the magnetic field near that point in space.
This method consists of acquiring a local field map,
finding the best fit to a linear map and using it to
deblur the image distortions due to local frequency
variations. This is a very computation intensive
operation and has previously been parallelized us-
ing a message passing approach [20]. The shared
memory implementation uses a work-pile model,
where each thread deblurs the input image around
a particular frequency points and then updates the
relevant portions to the final image. Since these
portions can overlap, each thread does the update

under the protection of a global lock.

3.3. Matriz multiplication

The matrix multiplication program (MATMULT)
computes the product of two dense, square matri-
ces. The resultant matrix is partitioned using a

block-wise distribution. The size of the blocks can

be set to a multiple of the page size of the machine.
Since each application thread computes a contigu-
ous block of values, this eliminates the problem of

false sharing.

3.4. Successive Quer Relaxation

The successive over relaxation program (SOR)
uses a red-black algorithm and was adapted from
the CVM sample code.
point in a grid is set to the average of its four

In every iteration, each

neighbors. Most of the traffic arises out of near-
est neighborhood communication at the borders of

a rectangular grid.

3.5. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) was
also adapted from the C'VM sample code. The pro-
gram solves the classic traveling salesman problem

using a branch-and-bound algorithm.
3.6. Fvaluation Environment

Our experiments were carried out so as to show
how various changes in the system impact perfor-
mance. The runs were carried out on a cluster of
four SUN UltraEnterprise Servers, connected using
a 155 Mbs ForeRunnerLE 155 ATM switch. The
first machine is a 6 processor UltraEnterprise 4000
with 1.5 Gbyte memory. The master process was
always run on this machine. The three other ma-
chines are 4 processor UltraEnterprise 3000s, with
0.5 Gbyte memory each. All the machines use
250 MHz UltraSparcll processors with 4 Mbyte
cache.

The program parameters and the memory re-
quirements for the sequential version are shown in
Table 1. It can be seen in each case that the mem-
ory requirements do not exceed the capacity of any

one node.

3.7. Runtime Versions

The Strings runtime was modified to demon-
strate the incremental effect of different design de-
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Program Parameters Size
FFT 1048576 points 54 Mbyte
LU-c 2048 x 2048, block size 128 37 Mbyte
LU-n 1024 x 512, block size 32 13 Mbyte
RADIX 1048576 integers 7.5 Mbyte
RAYTRACE balls 9 Mbyte
VOLREND head, 4 views 27 Mbyte
WATER-n2 4096 molecules, 3 steps 8.3 Mbyte
WATER-sp 4096 molecules, 3 steps 37 Mbyte
MATMULT 1024 x 1024 doubles, 16 blocks 29 Mbyte
MRI PHANTOM image, 14 frequency points 15 Mbyte
SOR 2002 x 1002 doubles, 100 iterations 13 Mbyte
TSP 19b 5 Mbyte

Table 1

Program Parameters and Memory Requirements

cisions. The following runs were carried out:

S Single Application Thread: sixteen processes,

four per machine, with a single application

thread per process. User level threads are used

throughout. The dsm server thread handles
one request at a time, and the network I/0 is
interrupt driven. This approximates typical ex-
isting DSMs that do not support multiple ap-
plication threads like TreadMarks, which has
been studied on ATM networked DECstation-
5000/240s [4].

M Multiple Application Threads: four processes,
one per machine with four application threads
per process. This case is similar to other DSMs
that allow multiple application threads but are
restricted to using user level threads, eg. CVM
results were presented on a cluster of SMP DEC
Alpha machines [18]. This was approximated by
setting the thread scheduler to only allow pro-
cess level contention for the threads. These were
then constrained to run on a single processor per
node.

K Kernel Threads: This version allows the use of
kernel level threads that can be scheduled across
multiple processors on an SMP node.

C Concurrent Server: The dsm_server thread

now creates explicit handler threads so that mul-

tiple requests can be handled in parallel.

P Polled I/O: A communication_thread waits on
message arrivals and notifies the other threads
on node. The overhead of generating a signal
and switching to the user level signal handler
are thus avoided.

B Summing Barrier: Instead of each application
thread sending an arrival message to the barrier
manager, the arrivals are first collected locally,
and then a single message is sent.

Release Consistency model was used in each

case.

4. Experimental Results and Analysis

The overall speedup results are shown for each
version on the runtime in Figure 3. The time mea-
sured in this case excludes the initialization times
of the application programs.

To better analyze the performance behavior due
the various design choices, the overall execution
times are split up into components in Figure 4.
The results are normalized to the total execution
time of the sequential case. The data is separated
into the time for:

Page Fault: the total time spent in the page-fault
handler.

Lock: the time spent to acquire a lock.

Barrier Wait: the time spent waiting on the bar-
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Figure 3. Speed-Up Results for Benchmark programs

rier after completing Release Consistency re-
lated protocol actions.

Compute: this includes the compute time, as
well as some miscellaneous components like the

startup time.

All times are wall clock times and thus include

time spent in the operating system.

4.1. Single Application Thread

If multiple processes are used on a node, only
programs with very little false sharing and com-
munication are seen to provide speedups. These
include VOLREND, MATMULT, and TSP. On the
other hand, many programs have a significant slow-
down, including FFT, RADIX, RAYTRACE, and
WATER-sp. From Figure 4, it can be seen that a
significant part of the execution time is spent on
page faults and synchronization. Since each pro-
cess on an SMP node executes in its own address
space, the pages have to be faulted in separately.
This leads to an increase in network contention as

well as disruption at the server side.

4.2. Multiple Application Threads

The use of multiple application threads signifi-
cantly affects the number of page faults incurred
per thread, as seen in Figure 5. Since the threads
on a single SMP node share the same memory
space, a page that is required by multiple threads
has to be faulted in only once. The very high im-

provement for MRI is due to the use of a work-
Essentially, the first thread does all

the work, and incurs all the faults. This can be

pile model.

verified by looking at the high compute time for
this program. From Figure 6, the time per page
fault does not decrease as significantly as the total
number of faults. This is a result of using user level
threads, which are sequentialized on a single pro-
cessor. When a user level thread has a page fault,
the thread library will schedule another runnable
thread. Once the page arrives, the faulted thread
will be allowed to run only after the current thread
is blocked in a system call, or its timeslice expires.
This can also be seen in the increased compute
time in programs like LU-¢, LU-n, RAYTRACE,
MATMULT, and TSP.

4.3. Kernel Threads

When the application threads are executed on
top of kernel threads, the operating system can
schedule them across multiple processors in an
SMP. This is clearly seen in the reduction in over-
all execution time. Figure 7 shows that the time
spent on each barrier decreases substantially when
using kernel threads, since the application threads
are no longer serialized on a single processor.
This effect is particularly visible in programs with
high computational components like LU-c, LU-n,
RAYTRACE, WATER-n2, MATMULT, MRI, and
TSP.
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4.4. Concurrent Server

Programs like WATER-n2 and WATER-sp have
a high overhead due to locking of shared regions.
This is effectively reduced by using the concurrent
server, which allows requests for different locks to
be served in parallel. The decrease is close to 50 %
in case of WATER-sp, as seen from Figure 8. How-
ever in may of the programs tested, the overhead

due to lock base synchronization is very low.

4.5. Polled 1/0

The behavior of signal driven I/O compared to
polled I/O can be explained by referring to Table 2.
The overhead of signal generation becomes appar-
ent as soon as the message size drops below 4 k
bytes. For larger average packet sizes, as seen in

FFT, LU-n, and RADIX, the signal driven I/O ver-
sion performs as well if not better than polled I/0.
The polled I/O provides visible benefits when the

number of messages is small, and the packet size is
moderate, as in RAYTRACE and VOLREND.

4.6. Summing Barrier

From Figure 7, collecting all the barrier arrivals
locally reduces the time per barrier, by a factor of
10 20 % in most cases. This provides an addi-
tional source of performance improvement in the

programs.

5. Related Work

When compared to message passing programs,
additional sources of overhead for traditional soft-
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Program Number Average Latency (ms)
of Messages  Size (byte) Polled Interrupt
FFT 7894.13 4164.32 67.56 77.82
LU-c 5419.66 3336.62 44.64 208.08
LU-n 6045.73 4957.07 14.07 45.97
RADIX 2655.20 4225.83 20.33 34.67
RAYTRACE 784.66 2703.32 17.11 17.61
VOLREND 1736.40 2320.78 29.89 35.70
WATER-NSQUARED 97006.53 165.32  475.45 499.03
WATER-SPATIAL 4625.16 3694.65 414.78 380.93
MATMULT 2582.33 3311.59 22.61 34.26
MRI 1135.06 3448.16 3.00 3.12
SOR 1537.91 1480.63 16.09 17.38
TSP 588.33 947.28 7.45 9.36
Table 2

Communication characteristics (per node)

11

ware DSM systems have been identified to include
separation of data and synchronization, overhead
in detecting memory faults, and absence of aggre-
gation [21]. Researchers have attempted to use
compiler assisted analysis of the program to re-
duce these overheads. Prefetching of pages has
been suggested by a number of groups for improv-
ing the performance of TreadMarks, by saving the
overhead of a memory fault [17,8]. This technique
sacrifices the transparency of a page oriented DSM,
but can be incorporated in parallelizing compil-
ers. In Strings, a faulting thread does not block
the execution of other application threads on the
same process, hence the benefit of prefetching is
not expected to be very large. Asynchronous data
fetching was also identified to be a source of per-
formance improvement [22]. In our system, the
dedicated dsm_server and communication thread
together hide the consistency related actions from
the application threads.

SoftFLASH [23] is a similar project, but uses
kernel modifications to implement a SVM on an
SMP cluster. In contrast, our implementation is
completely in user space and thus more portable.
Some other research has studied the effect of clus-
tering in SMPs using simulations [19]. We have
shown results from runs on an actual network of
SMPs. HLRC-SMP is another DSM for SMP clus-

ters [24]. The consistency model used is a modi-
fied version of invalidate base lazy release consis-
tency. They do not use a threaded system since
they claim that it leads to more page invalidations
in some irregular applications. Strings uses an up-
date based protocol, and it is not clear whether the
same results can be applied. Cashmere2l. exploits
features found in the DEC MemoryChannel net-
work interface to implement a DSM on a cluster of
Alpha SMPs [25]. Our system is more general and
provides good performance even with commodity
networks. We have observed similar speed-up re-
sults with a hub based FastEthernet network [26].
Brazos [12] is another DSM system designed to run
on multiprocessor cluster, but only under Windows
NT. The Strings runtime on the other hand is very
portable and has currently been tested on Solaris
2.6, Linux 2.1.x, and AIX 4.1.5.

6. Conclusions

Though the performance of each implementa-
tion can be seen to depend on the data sharing
and communication pattern of the application pro-
gram, some general trends can be observed. It is
found that using multiple processes on SMP nodes
provides good speedups only in programs that have
very little data sharing and communication. In
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all other cases, the number of page faults is very
high, and causes excess communication. Multiple
application threads can improve the performance
in some cases, by reducing the number of page
faults. This is very effective when there is a large
degree of sharing across the threads in a node.
However, the use of user level threads causes an
increase in computation time and response time,
since all the threads compete for CPU time on a
single processor. If kernel threads are used addi-
tionally, the overall performance improves signifi-
cantly in all the programs tested. Using a dedi-
cated communication thread to poll for incoming
messages is a preferred alternative to signal driven
I/O. The concurrent dsm_server approach reduces
the latencies for page-faults by allowing multiple
requests to be handled concurrently. Finally, us-
ing a hierarchical summing barrier improves the
barrier wait times in most of the programs.
Overall, using kernel threads is very promis-
ing, especially for regular programs with little false
sharing. Additional work needs to be done to iden-
tify the sources of overhead in the barrier imple-
mentation, since this dominates the execution time
in the cases where the overall results are not that
good. Our current work is to improve the perfor-

mance of the release consistency protocol.
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