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Design Issues for a High-Performance Distributed SharedMemory on Symmetrical Multiprocessor Clusters �Sumit Roy and Vipin ChaudharyParallel and Distributed Computing Laboratory, Department of Electrical and Computer Engineering, Wayne StateUniversity, Detroit, Michigan 48202E-mail: (sroy/vchaud)@ece.eng.wayne.eduClusters of Symmetrical Multiprocessors (SMPs) have recently become the norm for high-performance eco-nomical computing solutions. Multiple nodes in a cluster can be used for parallel programming using a messagepassing library. An alternate approach is to use a software Distributed Shared Memory (DSM) to provide aview of shared memory to the application programmer. This paper describes Strings, a high performancedistributed shared memory system designed for such SMP clusters. The distinguishing feature of this system isthe use of a fully multi-threaded runtime system, using kernel level threads. Strings allows multiple applicationthreads to be run on each node in a cluster. Since most modern UNIX systems can multiplex these threads onkernel level light weight processes, applications written using Strings can exploit multiple processors on a SMPmachine. This paper describes some of the architectural details of the system and illustrates the performanceimprovements with benchmark programs from the SPLASH-2 suite, some computational kernels as well as afull edged application.It is found that using multiple processes on SMP nodes provides good speedups only for a few of theprograms. Multiple application threads can improve the performance in some cases, but other programs showa slowdown. If kernel threads are used additionally, the overall performance improves signi�cantly in allprograms tested. Other design decisions also have a bene�cial impact, though to a lesser degree.Keywords: Distributed Shared Memory, Symmetrical Multiprocessors, Multithreading, Performance Evaluation1. IntroductionThough current microprocessors are gettingfaster at a very rapid rate, there are still somevery large and complex problems that can only besolved by using multiple cooperating processors.These problems include the so-called Grand Chal-lenge Problems, such as Fuel combustion, Oceanmodeling, Image understanding, and Rational drugdesign. There has recently been a decline in thenumber of specialized parallel machines being built� This research was supported in part by NSF grants MIP-9309489, EIA-9729828, US Army Contract DAEA 32-93D004 and Ford Motor Company grants 96-136R and 96-628R. A preliminary version of this paper appeared in theProceedings of the High Performance Distributed Comput-ing Conference, 1998.

to solve such problems. Instead, many vendorsof traditional workstations have adopted a de-sign strategy wherein multiple state-of-the-art mi-croprocessors are used to build high performanceshared-memory parallel workstations. These sym-metrical multiprocessors (SMPs) are then con-nected through high speed networks or switchesto form a scalable computing cluster. Examples ofthis important class of machines include the SGIPower Challenge Array, the IBM SP2 with multi-ple POWER3 based nodes, the Convex Exemplar,the DEC AdvantageCluster 5000, the SUN HPCcluster with the SUN Cluster Channel, as well asthe Cray/SGI Origin 2000 series.Using multiple nodes on such SMP clusters re-quires the programmer to either write explicit mes-



2 S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clusterssage passing programs, using libraries like MPI orPVM; or to rewrite the code using a new languagewith parallel constructs, eg. HPF and Fortran90. Message passing programs are cumbersome towrite, while parallel languages usually only workwell with code that has regular data access pat-terns. In both cases the programmer has to beintimately familiar with the application programas well as the target architecture to get the bestpossible performance. The shared memory modelon the other hand, is easier to program, since theprogrammer does not have to worry about thedata layout and does not have to explicitly senddata from one process to another. Hence, an al-ternate approach to using these computing clus-ters is to provide a view of logically shared mem-ory over physically distributed memory, known asa Distributed Shared Memory (DSM) or SharedVirtual Memory (SVM). Recent research projectswith DSMs have shown good performance, for ex-ample IVY [1], Mirage [2], Munin [3], TreadMarks[4], Quarks [5], CVM [6], and Strings [7]. Thismodel has also been shown to give good results forprograms that have irregular data access patterns,which cannot be analyzed at compile time [8], orindirect data accesses that are dependent on theinput data-set.DSMs share data at the relatively large granu-larity of a virtual memory page and can su�er froma phenomenon known as \false sharing", whereintwo processes simultaneously attempt to write todi�erent data items that reside on the same page.If only a single writer is permitted, the page mayping-pong between the nodes. One solution to thisproblem is to \hold" on to a freshly arrived page forsome time before releasing it to another requester[2]. Relaxed memory consistency models that al-low multiple concurrent writers have also been pro-posed to alleviate this symptom [9,10,4,11]. Thesesystems ensure that all nodes see the same data atwell de�ned points in the program, usually whensynchronization occurs. Extra e�ort is required toensure program correctness in this case.One technique that has been investigated re-

cently to improve DSM performance is the use ofmultiple threads of control in the system. Multi-threaded DSMs have been described as third gen-eration systems [12]. Published e�orts have beenrestricted to non-preemptive, user-level thread im-plementations [5,13]. However, user level threadscannot be scheduled across multiple processors onan SMP. Since SMP clusters are increasingly be-coming the norm for High Performance Computingsites, we consider this to be an important prob-lem to be solved. This paper describes Strings,a multi-threaded DSM designed for SMP clusters.The distinguishing feature of Strings is that it isbuilt using POSIX threads, which can be multi-plexed on kernel light-weight processes. The ker-nel can schedule these lightweight processes acrossmultiple processors for better performance. Stringsis designed to exploit data parallelism by allowingmultiple application threads to share the same ad-dress space on a node. Additionally, the protocolhandler is multithreaded and is able to use taskparallelism at the runtime level. The overhead ofinterrupt driven network I/O is avoided by usinga dedicated communication thread. We show theimpact of each of these design choices using someexample programs, as well as some benchmark pro-grams from the SPLASH-2 suite [14].The following section describes some details ofthe software system. The evaluation platformand programs for the performance analysis aredescribed in section 3. Experimental results areshown and analyzed in section 4. Section 5 sug-gests some direction for future work and concludesthe paper.2. System detailsThe Strings distributed shared memory was de-rived from the publicly available system Quarks[5]. It shares the use of the Release Consistencymodel with that system, as well as the concept ofa dsm server thread. We briey describe the im-plementation details and highlight the di�erencebetween the two systems.



S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clusters 32.1. Execution modelThe Strings system consists of a library thatis linked with a shared memory parallel program.The program uses calls to the distributed sharedmemory allocator to create globally shared mem-ory regions. A typical program goes through theinitialization shown in Figure 1.The master process starts up and forks child pro-cesses on remote machines using rsh(). Each pro-cess creates a dsm server thread and a communicationthread. The forked processes then register theirlistening ports with the master. The master pro-cess then enters the application program proper,and creates shared memory regions. Applicationthreads are then created by sending requests to theremote dsm servers. Shared region identi�ers andglobal synchronization primitives are sent as partof the thread create call. The virtual memory sub-system is used to enforce coherent access to theglobally shared regions.The original Quarks system used user levelCthreads and allowed only a single applicationthread. Strings allows multiple application threadsto be created on a single node. This increases theconcurrency level on each node in a SMP cluster.2.2. Kernel level threadsThreads are light-weight processes that haveminimal execution context, and share the globaladdress space of a program. The time to switchfrom one thread to another is very small whencompared to the context switching time requiredfor full-edged processes. Moreover the implicitshared memory leads to a very simple program-ming model. Thread implementations are distin-guished as being user-level, usually implementedas a library, or as being kernel level in terms oflight-weight processes. Kernel level threads area little more expensive to create, since the ker-nel is involved in managing them. However, userlevel threads su�er from some important limita-tions. Since they are implemented as a user levellibrary, they cannot be scheduled by the kernel. If

any thread issues a blocking system call, the ker-nel considers the process as a whole, and thus allthe associated threads, to be blocked. Also, on amultiprocessor system, all user level threads canonly run on one processor at a time. User levelthreads do allow the programmer to exercise very�ne control on their scheduling within the process.In contrast, kernel level threads can be scheduledby the operating system across multiple proces-sors. Most modern UNIX implementations pro-vide a light-weight process interface on which thesethreads are then multiplexed. The thread pack-age used in Strings is the standard Posix 1003.1cthread library. Multi-threading has been suggestedfor improving the performance of scienti�c codeby overlapping communications with computations[15]. Previous work on multi-threaded messagepassing systems has pointed out that kernel-levelimplementations show better results than user levelthreads for a message size greater than 4 K bytes[16]. Since the page size is usually 4 K or 8 K bytes,it suggests that kernel threads should be useful forDSM systems.2.3. Shared memory implementationShared memory in the system is implemented byusing the UNIX mmap() call to map a �le to thebottom of the stack segment. Quarks used anony-mous mappings of memory pages to addresses de-termined by the system, but this works only withstatically linked binaries. With dynamically linkedprograms, it was found that due to the presence ofshared libraries mmap() would map the same pageto di�erent addresses in di�erent processes. Whilean address translation table can be used to accessopaquely shared data, it is not possible to passpointers to shared memory this way, since theywould potentially address di�erent regions in dif-ferent processes. An alternate approach would beto preallocate a very large number of pages, as doneby CVM and TreadMarks, but this associates thesame large overhead with every program, regard-less of its actual requirements.
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Figure 1. Initialization Phase of a Strings ProgramAllowing multiple application threads on a nodeleads to a peculiar problem with the DSM imple-mentation. Once a page has been fetched from a re-mote node, its contents must be written to the cor-responding memory region, so the protection hasto be changed to writable. At this time no otherthread should be able to access this page. Userlevel threads can be scheduled to allow atomic up-dates to the region. However, suspending all ker-nel level threads can potentially lead to a deadlock,and would also reduce concurrency. Figure 2 illus-trates the approach used in Strings. Every pageis mapped to two di�erent addresses. It is thenpossible to write to the `shadow' address, withoutchanging the protection of the primary memory re-gion.The mprotect() call is used to control access tothe shared memory region. When a thread faultswhile accessing a page, a page handler is invoked tofetch the contents from the owning node. Stringscurrently supports sequential consistency using aninvalidate protocol, as well as release consistencyusing an update protocol [10,5]. When a threadtries to write to a page, a twin copy of the pageis created. At releases time, ie. when a lock isunlocked, or a barrier is entered, the di�erenceor di� between the current contents of the pageand its twin is sent to other threads that share thepage. The release consistency model implementedin Quarks has been improved by aggregating mul-tiple di�s to decrease the number of messages sent.

2.4. Polled network I/OEarly generation DSM systems used interruptdriven I/O to obtain pages, locks etc. from re-mote nodes. This can cause considerable disrup-tion at the remote end, and previous research triedto overcome this by aggregating messages, reducingcommunication by combining synchronization withdata, and other such techniques [17]. Strings uses adedicated communication thread, which monitorsthe network port, thus eliminating the overheadof an interrupt call. Incoming message queues aremaintained for each active thread at a node, andmessage arrival is announced using condition vari-ables. This prevents wasting CPU cycles with busywaits. A reliable messaging system is implementedon top of UDP.2.5. Concurrent serverThe original Quarks dsm server thread was aniterative server that handled one incoming requestat a time. It was found that under certain condi-tions, lock requests could give rise to a deadlock be-tween two communicating processes. Strings solvesthis by creating separate threads to handle each in-coming request for pages, lock acquires and barrierarrivals. Relatively �ne grain locking of internaldata structures is used to maintain a high level ofconcurrency while guaranteeing correctness whenhandling multiple concurrent requests.
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Figure 2. Thread safe memory update for Strings2.6. Synchronization primitivesQuarks provides barriers and locks as sharedmemory primitives. Strings also implements condi-tion variables for ag based synchronization. Bar-riers are managed by the master process. Bar-rier arrivals are �rst collected locally, and are thensent to the barrier manager. Dirty pages are alsopurged at this time, as per Release Consistencysemantics [10].Lock ownership is migratory with distributedqueues. For multiple application threads, only onelock request is sent to the current owner, the sub-sequent ones are queued locally, as are incomingrequests. Requests on the same node pre-emptrequest from remote node. While this does notguarantee fairness or progress, this optimizationworks very well for data parallel programs. Asimilar optimization was employed in CVM [18].Release Consistency operations are deferred if thelock transfer is within the local node.3. Performance analysisWe evaluated the performance of Strings us-ing programs from the SPLASH-2 benchmark suite[14]. These programs have been written for evalu-ating the performance of shared address-space mul-tiprocessors and include application kernels as well

as full edged code. Additionally we show resultsfor matrix multiplication, a program from the �eldof medical computing, as well as a kernel for solv-ing partial di�erential equations by the successiveover-relaxation technique and the classical travel-ing salesman problem.3.1. SPLASH-2 programsThe data access patterns of the programs in theSPLASH-2 suite have been characterized in ear-lier research [19,11]. FFT performs a transform ofn complex data points and requires three all-to-all interprocessor communication phases for a ma-trix transpose. The data access is regular. LU-cand LU-n perform factorization of a dense matrix.The non-contiguous version has a single producerand multiple consumers. It su�ers from consid-erable fragmentation and false sharing. The con-tiguous version uses an array of blocks to improvespatial locality. RADIX performs an integer radixsort and su�ers from a high-degree of false sharingat page granularity during a permutation phase.RAYTRACE renders a complex scene using an op-timized ray tracing method. It uses a shared taskqueue to allocate jobs to di�erent threads. Sincethe overhead of this approach is very high in a DSMsystem, the code was modi�ed, to maintain a lo-cal as well as global queue per thread. Tasks were



6 S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clustersinitially drained from the local queue, and thenfrom the shared queue. VOLREND renders three-dimensional volume data. It has a multiple pro-ducers with multiple consumers data sharing pat-tern, with both fragmentation and false sharing.WATER-sp evaluates the forces and potentials oc-curring over time in a system of water molecules.A 3-D grid of cells is used so that a processorthat owns a cell only needs to look at neighboringcells to �nd interacting molecules. Communica-tion arises out of the movement of molecules fromone cell to another at every time-step. WATER-n2 solves the same problem as WATER-sp, thoughwith a less e�cient algorithm that uses a simplerdata-structure.3.2. Image deblurringThe application tested is a parallel algorithm fordeblurring of images obtained from Magnetic Res-onance Imaging. Images generated by MRI maysu�er a loss of clarity due to inhomogeneities inthe magnetic �eld. One of the techniques for re-moving this blurring artifact is the demodulationof the data for each pixel of the image using thevalue of the magnetic �eld near that point in space.This method consists of acquiring a local �eld map,�nding the best �t to a linear map and using it todeblur the image distortions due to local frequencyvariations. This is a very computation intensiveoperation and has previously been parallelized us-ing a message passing approach [20]. The sharedmemory implementation uses a work-pile model,where each thread deblurs the input image arounda particular frequency points and then updates therelevant portions to the �nal image. Since theseportions can overlap, each thread does the updateunder the protection of a global lock.3.3. Matrix multiplicationThe matrix multiplication program (MATMULT)computes the product of two dense, square matri-ces. The resultant matrix is partitioned using ablock-wise distribution. The size of the blocks can

be set to a multiple of the page size of the machine.Since each application thread computes a contigu-ous block of values, this eliminates the problem offalse sharing.3.4. Successive Over RelaxationThe successive over relaxation program (SOR)uses a red-black algorithm and was adapted fromthe CVM sample code. In every iteration, eachpoint in a grid is set to the average of its fourneighbors. Most of the tra�c arises out of near-est neighborhood communication at the borders ofa rectangular grid.3.5. Traveling Salesman ProblemThe Traveling Salesman Problem (TSP) wasalso adapted from the CVM sample code. The pro-gram solves the classic traveling salesman problemusing a branch-and-bound algorithm.3.6. Evaluation EnvironmentOur experiments were carried out so as to showhow various changes in the system impact perfor-mance. The runs were carried out on a cluster offour SUN UltraEnterprise Servers, connected usinga 155 Mbs ForeRunnerLE 155 ATM switch. The�rst machine is a 6 processor UltraEnterprise 4000with 1.5 Gbyte memory. The master process wasalways run on this machine. The three other ma-chines are 4 processor UltraEnterprise 3000s, with0.5 Gbyte memory each. All the machines use250 MHz UltraSparcII processors with 4 Mbytecache.The program parameters and the memory re-quirements for the sequential version are shown inTable 1. It can be seen in each case that the mem-ory requirements do not exceed the capacity of anyone node.3.7. Runtime VersionsThe Strings runtime was modi�ed to demon-strate the incremental e�ect of di�erent design de-



S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clusters 7Program Parameters SizeFFT 1048576 points 54 MbyteLU-c 2048 � 2048, block size 128 37 MbyteLU-n 1024 � 512, block size 32 13 MbyteRADIX 1048576 integers 7.5 MbyteRAYTRACE balls 9 MbyteVOLREND head, 4 views 27 MbyteWATER-n2 4096 molecules, 3 steps 8.3 MbyteWATER-sp 4096 molecules, 3 steps 37 MbyteMATMULT 1024 � 1024 doubles, 16 blocks 29 MbyteMRI PHANTOM image, 14 frequency points 15 MbyteSOR 2002 � 1002 doubles, 100 iterations 13 MbyteTSP 19b 5 MbyteTable 1Program Parameters and Memory Requirementscisions. The following runs were carried out:S Single Application Thread: sixteen processes,four per machine, with a single applicationthread per process. User level threads are usedthroughout. The dsm server thread handlesone request at a time, and the network I/O isinterrupt driven. This approximates typical ex-isting DSMs that do not support multiple ap-plication threads like TreadMarks, which hasbeen studied on ATM networked DECstation-5000/240s [4].M Multiple Application Threads: four processes,one per machine with four application threadsper process. This case is similar to other DSMsthat allow multiple application threads but arerestricted to using user level threads, eg. CVMresults were presented on a cluster of SMP DECAlpha machines [18]. This was approximated bysetting the thread scheduler to only allow pro-cess level contention for the threads. These werethen constrained to run on a single processor pernode.K Kernel Threads: This version allows the use ofkernel level threads that can be scheduled acrossmultiple processors on an SMP node.C Concurrent Server: The dsm server threadnow creates explicit handler threads so that mul-tiple requests can be handled in parallel.

P Polled I/O: A communication thread waits onmessage arrivals and noti�es the other threadson node. The overhead of generating a signaland switching to the user level signal handlerare thus avoided.B Summing Barrier: Instead of each applicationthread sending an arrival message to the barriermanager, the arrivals are �rst collected locally,and then a single message is sent.Release Consistency model was used in eachcase.4. Experimental Results and AnalysisThe overall speedup results are shown for eachversion on the runtime in Figure 3. The time mea-sured in this case excludes the initialization timesof the application programs.To better analyze the performance behavior duethe various design choices, the overall executiontimes are split up into components in Figure 4.The results are normalized to the total executiontime of the sequential case. The data is separatedinto the time for:Page Fault: the total time spent in the page-faulthandler.Lock: the time spent to acquire a lock.Barrier Wait: the time spent waiting on the bar-
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Figure 3. Speed-Up Results for Benchmark programsrier after completing Release Consistency re-lated protocol actions.Compute: this includes the compute time, aswell as some miscellaneous components like thestartup time.All times are wall clock times and thus includetime spent in the operating system.4.1. Single Application ThreadIf multiple processes are used on a node, onlyprograms with very little false sharing and com-munication are seen to provide speedups. Theseinclude VOLREND, MATMULT, and TSP. On theother hand, many programs have a signi�cant slow-down, including FFT, RADIX, RAYTRACE, andWATER-sp. From Figure 4, it can be seen that asigni�cant part of the execution time is spent onpage faults and synchronization. Since each pro-cess on an SMP node executes in its own addressspace, the pages have to be faulted in separately.This leads to an increase in network contention aswell as disruption at the server side.4.2. Multiple Application ThreadsThe use of multiple application threads signi�-cantly a�ects the number of page faults incurredper thread, as seen in Figure 5. Since the threadson a single SMP node share the same memoryspace, a page that is required by multiple threadshas to be faulted in only once. The very high im-

provement for MRI is due to the use of a work-pile model. Essentially, the �rst thread does allthe work, and incurs all the faults. This can beveri�ed by looking at the high compute time forthis program. From Figure 6, the time per pagefault does not decrease as signi�cantly as the totalnumber of faults. This is a result of using user levelthreads, which are sequentialized on a single pro-cessor. When a user level thread has a page fault,the thread library will schedule another runnablethread. Once the page arrives, the faulted threadwill be allowed to run only after the current threadis blocked in a system call, or its timeslice expires.This can also be seen in the increased computetime in programs like LU-c, LU-n, RAYTRACE,MATMULT, and TSP.4.3. Kernel ThreadsWhen the application threads are executed ontop of kernel threads, the operating system canschedule them across multiple processors in anSMP. This is clearly seen in the reduction in over-all execution time. Figure 7 shows that the timespent on each barrier decreases substantially whenusing kernel threads, since the application threadsare no longer serialized on a single processor.This e�ect is particularly visible in programs withhigh computational components like LU-c, LU-n,RAYTRACE, WATER-n2, MATMULT, MRI, andTSP.
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Figure 8. Average time required to acquire a Lock4.4. Concurrent ServerPrograms like WATER-n2 and WATER-sp havea high overhead due to locking of shared regions.This is e�ectively reduced by using the concurrentserver, which allows requests for di�erent locks tobe served in parallel. The decrease is close to 50 %in case of WATER-sp, as seen from Figure 8. How-ever in may of the programs tested, the overheaddue to lock base synchronization is very low.4.5. Polled I/OThe behavior of signal driven I/O compared topolled I/O can be explained by referring to Table 2.The overhead of signal generation becomes appar-ent as soon as the message size drops below 4 kbytes. For larger average packet sizes, as seen in

FFT, LU-n, and RADIX, the signal driven I/O ver-sion performs as well if not better than polled I/O.The polled I/O provides visible bene�ts when thenumber of messages is small, and the packet size ismoderate, as in RAYTRACE and VOLREND.4.6. Summing BarrierFrom Figure 7, collecting all the barrier arrivalslocally reduces the time per barrier, by a factor of10 { 20 % in most cases. This provides an addi-tional source of performance improvement in theprograms.5. Related WorkWhen compared to message passing programs,additional sources of overhead for traditional soft-



S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clusters 11Program Number Average Latency (ms)of Messages Size (byte) Polled InterruptFFT 7894.13 4164.32 67.56 77.82LU-c 5419.66 3336.62 44.64 208.08LU-n 6045.73 4957.07 14.07 45.97RADIX 2655.20 4225.83 20.33 34.67RAYTRACE 784.66 2703.32 17.11 17.61VOLREND 1736.40 2320.78 29.89 35.70WATER-NSQUARED 97006.53 165.32 475.45 499.03WATER-SPATIAL 4625.16 3694.65 414.78 380.93MATMULT 2582.33 3311.59 22.61 34.26MRI 1135.06 3448.16 3.00 3.12SOR 1537.91 1480.63 16.09 17.38TSP 588.33 947.28 7.45 9.36Table 2Communication characteristics (per node)ware DSM systems have been identi�ed to includeseparation of data and synchronization, overheadin detecting memory faults, and absence of aggre-gation [21]. Researchers have attempted to usecompiler assisted analysis of the program to re-duce these overheads. Prefetching of pages hasbeen suggested by a number of groups for improv-ing the performance of TreadMarks, by saving theoverhead of a memory fault [17,8]. This techniquesacri�ces the transparency of a page oriented DSM,but can be incorporated in parallelizing compil-ers. In Strings, a faulting thread does not blockthe execution of other application threads on thesame process, hence the bene�t of prefetching isnot expected to be very large. Asynchronous datafetching was also identi�ed to be a source of per-formance improvement [22]. In our system, thededicated dsm server and communication threadtogether hide the consistency related actions fromthe application threads.SoftFLASH [23] is a similar project, but useskernel modi�cations to implement a SVM on anSMP cluster. In contrast, our implementation iscompletely in user space and thus more portable.Some other research has studied the e�ect of clus-tering in SMPs using simulations [19]. We haveshown results from runs on an actual network ofSMPs. HLRC-SMP is another DSM for SMP clus-

ters [24]. The consistency model used is a modi-�ed version of invalidate base lazy release consis-tency. They do not use a threaded system sincethey claim that it leads to more page invalidationsin some irregular applications. Strings uses an up-date based protocol, and it is not clear whether thesame results can be applied. Cashmere2L exploitsfeatures found in the DEC MemoryChannel net-work interface to implement a DSM on a cluster ofAlpha SMPs [25]. Our system is more general andprovides good performance even with commoditynetworks. We have observed similar speed-up re-sults with a hub based FastEthernet network [26].Brazos [12] is another DSM system designed to runon multiprocessor cluster, but only under WindowsNT. The Strings runtime on the other hand is veryportable and has currently been tested on Solaris2.6, Linux 2.1.x, and AIX 4.1.5.6. ConclusionsThough the performance of each implementa-tion can be seen to depend on the data sharingand communication pattern of the application pro-gram, some general trends can be observed. It isfound that using multiple processes on SMP nodesprovides good speedups only in programs that havevery little data sharing and communication. In



12 S. Roy, V. Chaudhary / Design Issues for a High-Performance DSM on SMP Clustersall other cases, the number of page faults is veryhigh, and causes excess communication. Multipleapplication threads can improve the performancein some cases, by reducing the number of pagefaults. This is very e�ective when there is a largedegree of sharing across the threads in a node.However, the use of user level threads causes anincrease in computation time and response time,since all the threads compete for CPU time on asingle processor. If kernel threads are used addi-tionally, the overall performance improves signi�-cantly in all the programs tested. Using a dedi-cated communication thread to poll for incomingmessages is a preferred alternative to signal drivenI/O. The concurrent dsm server approach reducesthe latencies for page-faults by allowing multiplerequests to be handled concurrently. Finally, us-ing a hierarchical summing barrier improves thebarrier wait times in most of the programs.Overall, using kernel threads is very promis-ing, especially for regular programs with little falsesharing. Additional work needs to be done to iden-tify the sources of overhead in the barrier imple-mentation, since this dominates the execution timein the cases where the overall results are not thatgood. Our current work is to improve the perfor-mance of the release consistency protocol.AcknowledgmentsWe would like to thank John Carter and DilipKhandekar for putting the Quarks source code inthe public domain. This allowed us to concentrateour e�orts on developing a multithreaded DSM.We thank the anonymous reviewers, whose helpfulcomments shaped an earlier version of this paper.We also thank Padmanabhan Menon for portingthe MRI code to Strings.References[1] K. Li and P. Hudak, \Memory Coherence in SharedVirtual Memory Systems," ACM Transactions onComputer Systems, vol. 7, pp. 321{359, November1989.
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