

On the Performance of Bus Interconnection for SOCs
Liqiang Zhang

Department of Computer Science
Wayne State University

liqiang@cs.wayne.edu

Vipin Chaudhary
Institute for Scientific Computing

Wayne State University and Cradle Technologies, Inc.
vipin@wayne.edu

ABSTRACT
The choice and design of communication architecture are
critical for SOC design. The communication architecture may
heavily influence the overall performance, and also determines
the salability of the whole system. Among several
communication architectures proposed for SOCs, shared-bus has
been widely used. Some doubts are cast on this approach today,
as it is likely to be the bottleneck for the current and future
SOCs. In this paper, we use analytical model based simulator
and abstracted traces of image processing applications to
simulate the Global Bus architecture of Cradle’s Universal
Micro System (UMS). Our simulation shows that (i) with
carefully designed protocols, shared-bus is efficient enough for
current and future high performance SOCs; (ii) instead of the
shared-bus, the SDRAM is more likely to be the bottleneck,
especially for streaming applications. For the applications in our
experiments, the SDRAM gets saturated as early as 30% of the
Global Bus utilization. We also explore the relationship between
the depth of buffers and the performance of the Global Bus in
our work.

1. INTRODUCTION
Modern system-on-chip (SOC) design shows a clear trend
towards integration of multiple processor cores. The SOC
System Driver section of the “International Technology
Roadmap for Semiconductors” (http://public.itrs.net) predicts
that the number of processor cores will increase dramatically to
match the processing demands of future applications. While
network processor provider like IBM, embedded processor
provider like Cradle have already detailed multi-core
processors, mainstream computer companies like Intel and Sun
have also discussed such an approach for their high-volume
markets. In Dec. 2001, both Intel and Sun laid their first plan to
deliver multiprocessing computers on a chip [1]. It is believed in
very near future, Chip Multiprocessors (CMP) will replace all
the single-core processors.

Typical chip multiprocessors consist of processing cores, on-
chip cache hierarchy, interconnection architecture, and channels
to external memory. While a large body of research on system
synthesis has focused on scheduling, partitioning, and mapping
the target application functionality to an optimal set of system
components, often equally important is the choice and design of
the communication architectures for the CMPs. The
communication architecture determines the way in which the
components communicate with each other to synchronize and
exchange data. With the increasing complexity of the SOCs and
computation power of the processing cores, more care has to be
taken in the topological choice, protocol design, and parameter

tuning for communication architecture to avoid it from
becoming a bottleneck of the whole system. Current proposals
for communication architectures for CMP include shared-bus,
ring-based, multi-channel, TDMA-based, on chip crossbar, etc.
Such networking technologies are “micronized” in SOCs to
create the on-chip networks.

Performance evaluation of the above proposals for SOC
communication architectures is obviously important for strategy
decision at the system design stage. Research shows that while
all of the proposals for communication architecture have their
pros and cons, none of them uniformly outperform others—their
performance highly depends on the specific application domains
[6][7][8]. In this paper, we focus primarily on the performance
analysis of shared-bus communication architecture for SOCs,
especially the case study for the Global Bus architecture of
Cradle’s Universal Micro System (UMS).

In this study, we use a simulator based on the analytical model
of the UMS Global Bus and abstracted traces of image
processing applications to give a fast performance analysis for
the Global Bus architecture. Our simulation shows that:

● With carefully designed protocols, shared-bus is
efficient enough for current and future high
performance SOCs.

● Instead of the shared bus, SDRAM is more likely to
be the potential bottleneck, especially for streaming
applications.

● The size of the buffers on the shared bus can be
optimized by simulation. Experiments give the
reference value for both the Quad and SDRAM
interface buffer size, and show that larger size
produces no benefit.

The rest of this paper is organized as follows. Section 2 gives a
brief introduction to UMS with an emphasis on the Global Bus
architecture. Section 3 describes our fast simulation strategy in
detail. Section 4 gives the experiment data and analysis. Section
5 reviews related work done on performance evaluation of SOC
communication architectures. Finally, section 6 summarizes this
paper.

2. HARDWARE ARCHITECTURE OF
UMS AND THE GLOBAL BUS
Cradle's Universal Micro System (UMS) architecture consists of
dozens of high performance, RISC-like and digital signal
processors on a single chip with fully software programmable
and dedicated input-output processors. The processors are
organized into small groups, with eight digital signal processors

and four RISC-like processors each sharing a block of local data
and control memory, with all groups having access to global
information via a unique on-chip bus—the Global Bus. It is the
fact that data, signal and I/O processors are all available on a
single chip, and that the chip is thereby capable of implementing
entire systems, which gives rise to the designation "Universal
Micro System”. The block diagram is shown as Figure 1.

The UMS is a shared memory MIMD (multiple instruction /
multiple data) computer that uses a single 32-bit address space
for all register and memory elements. Each register and memory
element in the UMS has a unique address and is uniquely
addressable.

2.1 Quads
The Quad is the primary unit of replication for UMS. A UMS
chip has one or more Quads, with each Quad consisting of four
RISC-like processors called Processor Elements (PEs), eight
DSP-like processors called Digital Signal Engines (DSEs), and
one Memory Transfer Engine (MTE) with four Memory
Transfer Controllers (MTCs). The MTCs are essentially DMA
engines for background data movement. Within a Quad, PEs
share 32KB of instruction cache and 64KB of data memory, out
of which 32K can be optionally configured as cache. Thirty-two
semaphore registers within each quad provide synchronization
between processors. Figure 2 shows a Quad block diagram.
Note that the Media Stream Processor (MSP) is a logical unit
consisting of one PE and two DSEs.

Processing Element The PE is a 32-bit processor with 16-bit
instructions and thirty-two bit registers. It has a RISC-like
instruction set consisting of both integer and IEEE 754 floating
point instructions. The instructions have a variety of addressing
modes for efficient use of memory. The PE is rated at
approximately 90 MIPS.

Digital Signal Engine The DSE is a 32-bit processor with 128
registers and a local program memory of 512 20-bit instructions
optimized for high-speed fixed and floating point processing. It
uses MTCs in the background to transfer data between the
DRAM and the local memory. The DSE is the primary compute
engine and is rated at approximately 350 MIPS for integer or
floating point performance.

2.2 Global Bus
The UMS Global Bus (GBus) is a 64-bit high speed bus. It uses
uniform addressing with a single 32-bit address for all bus
elements and transfers data with 64 bit width. The Global Bus
has two 32-bit address spaces: a data space and a control space.
The data space is the normal address space for data transfer and
computation. The control address space is for GBus device
configuration registers, control commands, and debug access.

Data is transferred between bus masters and bus targets. Bus
masters initiate the transactions, which are completed by the
targets. Bus masters are the PEs, DSEs and the MTCs, while bus
targets are the SDRAM, host interface registers, internal cache
and memories, and global registers, etc. Both masters and
targets have their FIFOs and interfaces. Each GBus interface has
a unique hardware assigned device number that identifies itself
for receiving data. The 16 bits device number is wired within
the GBus wires (besides the 64 Address/Data lines). A device
number of zero selects all devices to receive the data. Each
target interface also has a range of GBus addresses, called My
Global Address Range that identifies the addresses to which the
target will respond. Every master or target interface also has
two FIFOs for data write and data read. Figure 3 shows the
GBus block diagram.

2.2.1 Bus Transactions
The Global Bus is a single transaction write, split transaction
read bus. It has four types of transfer types: data write, data
read, control write, and control read.

A data write operation by a bus master sends the transfer
command in the first bus cycle, followed by one or more data
octets in the following cycles. The transfer of the data to the bus
completes the write cycle. A data read operation by a bus
master sends the transfer command in the first bus cycle, and
then releases the bus. The targeted device receives the
command. When the read data is ready, the target arbitrates for
the bus and sends the read data to the bus master indicated in the
command octet. The transfer of the data to the requesting device
completes the read cycle.

A control write is an address variant of a data write operation
with a single data octet: it writes data to the control address
space. All targets receive the command and data octet,
completing the cycle. Control writes are used to send the base
addresses to each Quad, and to send base addresses and
configuration data to all other GBus devices such as the Global

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY C
LO

C
KS

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY D
R

AM

C
O

N
TR

O
L

DRAM

Global Bus

PROG I/O PROG I/O PR
O

G
 I/

O

PR
O

G
 I/

O

PR
O

G
 I/

O

PROG I/O PROG I/O PROG I/O PROG I/O

PR
O

G
 I/O

PR

O
G

 I/O

NVMEM

M
S
P

M
S
P

M
S
P

MEMORY

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY

M
S
P

PE DSE
MEM

Multi Stream Processor
750 MIPS/GFLOPS

Shared
Prog
Mem

Shared
Data
Mem

Shared
DMA

DSE
MEM

I/O
 B

us

Figure 1: UMS Block Diagram

P E

D S E

M E M

D S E

M E M

P E

D S E

M E M

D S E

M E M

P E

D S E

M E M

D S E

M E M

P E

D S E

M E M

D S E

M E M

P R O G R A M
M E M /

C A C H E

D A T A
M E M /

C A C H E

IN T E R F A C E
G L O B A L B U S

A rb ite r

M S P

M T E

Figure 2: Quad Block Diagram

Registers. Control write is also used to send global timing
signals and global wake-up interrupts to all Quads. Control read
is a counterpart to control write. Control read allows the host or
configuring device to read base addresses and configuration
registers in the GBus control address space as well as write to
them.

Each Global Bus Master has only one transaction in process at
any one time. It cannot initiate another transaction until its
current transaction is complete. But the bus can have many
transactions in progress at a time. For example, during the delay
between the two steps of the read operation—read initiation and
read completion, neither the master nor the target is on the bus.
While a master is waiting for completion of its read, the bus can
support other transactions-- other masters can perform write
transfers and initiate other read transfers.

The recommended Global Bus transfer atom is four words of
eight bytes (octets) each, with one and two octet transfers as
special cases. A four-octet transfer has a bus efficiency of 80%,
at one command octet per four data octet. All transfers are
written to a FIFO on the bus. Addresses and data are pipelined.

2.2.2 Transfer Acknowledge, Command Reject, and
Back Off Strategy
The target device receives each octet transferred on the GBus
and acknowledges the octet by activating the Transfer
Acknowledge (TACK) line of the bus. The introduction of
TACK line is a good idea for two reasons: first no special
transactions for acknowledge will be involved on the bus;
second it detects the bus error when no device has responded to
a command immediately, without having to wait for a bus time
out.

Target devices can reject transfer commands by activating the
CRJ (Command Reject) lines. Command reject occurs when the
target is busy servicing a prior transfer request while a new
request is received. This can happen when two bus devices try
to transfer data to or from the same target in quick succession.

Since the bus is much faster than the targets, a second master
can request transfer from a target before the target has had a
chance to respond to the request from the first master. The
command from the second master must be rejected in this case.

Command reject is handled by each Global Bus interface. The
response is to retry the command after a waiting period called
the back off time. If multiple commands are rejected when the
target device is busy, the commands will be retried in the order
in which they were rejected. The first command rejected should
get the shortest back off code (01). The second command
rejected should get the medium back off code (10), and the third
and all further commands should get the longest back off code
(11). If the GBI receives a command reject, it should wait for
16, 32 or 64 GBus clocks for codes of 01, 10 or 11, respectively,
before retrying the command.

2.2.3 GBus Arbiter and BIDD
Each bus, local or global, has an arbitrator for bus transfer. Each
bus master element submits a request to the bus arbiter for bus
transfer and receives a bus grant from the arbiter. Arbitration is
sequential, for example, if a PE in Quad 1 wants to write a word
to a memory in Quad 2, it will have to request the local bus of
Quad 1 and get a grant; then the Quad 1 master interface will
generate a request to GBus and get a grant; when the request
arrives to the Quad 2 target interface, it will send a request to
the local bus of Quad 2 and get a grant; finally the memory in
Quad 2 gets this request and writes the word.

The arbitration priority of the GBus is round-robin. When a
Global Bus transaction requests a Quad local bus at the same
time as a local transaction requests for that local bus, Global
Bus transaction will have the priority.

When the Global Bus is idle, no active device is selected to
drive the bus. If no active device is selected, the arbiter selects a
default device, the Bus Idle Default Device (BIDD), to drive the
bus. Otherwise, the device lines would float, potentially causing
noise and errors. The Idle Device drives the bus signals to a safe
default state. It drives the bus command lines to the idle state,

D

at
a

M
em

or
y

In
st

ru
ct

io
n

M
em

or
y

In
st

ru
ct

io
n

C
ac

he

Target

FIFOs
 Target I/F

Master

FIFOs
 Master I/F

Target

FIFOs
 Target I/F

Master

FIFOs
 Master I/F

Target

FIFOs
Target I/F

Master

FIFOs
 Master I/F

Quad Quad Quad

Local Bus Local
Bus

Local
Bus

Global Bus
SGBI

Global bus Control:

Gbus Arbiter

+ BIDD

Target

FIFOs

Target I/F

 SDRAM Target

FIFOs

 Target I/F

Global Registers

Local Bus Local Bus

 P
Es

 D

SE
s

M

TE
s

D
at

a
M

em
or

y

In
st

ru
ct

io
n

M
em

or
y

In
st

ru
ct

io
n

C
ac

he

 P
Es

 D

SE
s

M

TE
s

D
at

a
M

em
or

y

In
st

ru
ct

io
n

M
em

or
y

In
st

ru
ct

io
n

C
ac

he

 P
Es

 D

SE
s

M

TE
s …

Figure 3: UMS Global Bus Block Diagram

the address/data lines are held at their previous values (for low
power); the byte enables to inactive; the target device number to
all ones and the CRJ lines to inactive.

3. PERFORMANCE ANALYSIS
METHODOLOGY
In this section, we describe the proposed simulation strategy for
fast performance analysis of the UMS Global Bus. The
methodology is shown in Figure 4.

Our performance analysis methodology can be roughly divided
into two parts: Traffic Patterns Generation (TPG) and Simulator
Generation (SG). For TPG, first the traffic statistics can be
gathered from the execution profiles generated by running the
applications on Cradle’s UMS Inspector. The traffic patterns are
then constructed based on the traffic statistics, and different
assumptions for data distributions. For SG, an accurate model
for the Global Bus is setup. The model is a combination of a
series of queuing models of the UMS component; the
combination is based on the abstraction of the Global Bus
Protocol. UMS hardware parameters are used to give
quantitative information for the model. The detailed description
of SG and TPG is given in the following two subsections.

3.1 Simulator Generation
In creating the analytical model for the Global Bus, we follow
two general rules. It should be: (I) as accurate as possible; (II) as
simple as possible. The first rule requires careful analysis of the
Global Bus Protocol, while the second rule allows us to abstract
out some trivial (for performance evaluation, not for the
architecture itself) details. For example, we don’t consider
control write and control read in our model, because they are
unusual bus transactions, especially after the system has been
configured. Similarly, BIDD does not show up in our model
since it will not produce much traffic on the Global Bus. When
these two rules conflict with each other, a trade-off has to be
made. The model for Global Bus with 4 Quads is shown in
Figure 5. It is quite easy to extend this model to n Quads (n>4).

The model is a Directed Graph (DG), in which the Global Bus
and Global Bus devices are the vertices. Every vertex is a single
M/M/1 queuing model or a group of them. A path from one
vertex to another could be an integrated Global Bus Transaction
(GBT), but not all paths are legal GBTs. For example, a path
starting at GBus can not be a legal GBT. Thus, the set of GBTs
is really a subset of the set of all paths. Also, note that GBT is
not vertex disjoint.

We use a simple example to briefly explain the model.
Following is the transaction showing a PE in Quad 1 (denotes as
Q1) reading data from the SDRAM:

►Q1 LP (Local Process) sends request to Q1 LB (Local
Bus) and gets a grant;

►Served by Q1 MW (Q1 master interface write logic set);

►Sends request to the GBus, gets a grant and transferred;

►Sends request to the SDRAM TW (SDRAM target
interface write logic set) and gets a grant (if SDRAM
TW buffer is not full);

►Sends request to the SDRAM Local Bus, gets a grant
and transferred;

►Sends request to the SDRAM.

Till now, the first phase of the transaction has been finished.
The second phase of this transaction starts after the SDRAM has
prepared the data Q1 required.

►SDRAM sends request to the SDRAM Local Bus and
gets a grant;

►Served by the SDRAM TR (SDRAM target interface
read logic set);

►Sends request to the GBus, gets a grant and transferred;

►Served by Q1 MR (Quad 1 master interface read logic
set);

Cradle’s
UMS Inspector

Performance
Data Set 1

Global Bus Protocol

Parameters from
UMS Specifications

Analytical
Model for
Global Bus

Performance
Data Set 2

Performance
Data Set n

CSIM18 Assumptions for
Distributions

Traffic pattern 1

Traffic pattern 2

Traffic pattern m

…
…

Traffic Patterns Generation

Simulator Generation

Simulator of Global Bus

Object
Applications

 Execution Profiles

 Traffic Statistics

Figure 4: Performance Analysis Methodology

►Sends request to Q1 LB, gets a grant and transferred;

►Sends data to Q1 LR (Q1 Local Resource, PE in this
example).

Now the transaction is done. During the above transaction, if the
buffer of SDRAM TW is full when the request is sent to it, then
the command will be rejected and retried. Other transactions are
similar.

The parameters of UMS hardware are very important; they
provide quantitative information for the model. Parameters like
the mean service time of the Quad local bus, and the mean
service time of the GBus master/target interface are not difficult
to define. However, due to the locality attribute of the traffic,
SDRAM and Quad local memory read/write mean service time
are difficult to define accurately. In our simulation, we use
Average Access Time (AAT) / Average Access Cycles (AAC)
to describe the SDRAM and Quad local memory services. The
cycles here refer to the Global Bus cycles, thus the combination
of the AAT and the Global Bus frequency gives the AAC. For
example, if the Global Bus runs at 350MHz and AAT=142.9ns,
then the AAC is 50. We use AAC in the model for simulation,
and AAT to describe the experiment data in section 4. The
access response latency (different from AAT/AAC) depends on
the traffic load on the SDRAM and Quad local memory. For
example, Table 1 gives the SDRAM read latency (when
AAC=50) for different SDRAM utilizations sampled from
simulation.

Table 2 gives the description of the parameters we used in the
model.
We implement the simulator in C++ using CSIM18, a library of
routines for use in constructing process-oriented, event-driven
simulation models (Detailed information of CSIM18 can be
found at (http://www.mesquite.com).

3.2 Traffic Patterns Generation
We take image processing applications as our object
applications, which include image negation, tetrahedron color
conversion, image filtering, and JPEG decoding. These
applications are implemented on UMS as described in Table 3.

The application are then run on Cradle’s UMS inspector, which
is a simulator & debugging tool for developing UMS
applications. The profiles provided by this tool can give us
information like: active cycles, total numbers of local and global
operations, and the distributions of the local and global traffic,
etc., for PEs, DSEs, and MTEs of every Quad respectively.
Traffic patterns are built based on such information. While the
implementations on UMS for these applications are not using all
the resources of Quads, we scale the traffic patterns to fit 4
Quads, and keep the same computation-communication ratio as
they have. For example, the image negation uses 8 MSPs, when
creating the traffic pattern for it, we double the traffic abstracted
for the profiles, to get the traffic patterns for 4 Quads (16
MSPs). We call the traffic pattern abstracted from the profiles

SDRAM utilization 10% 20% 30% 40% 50% 60% 70% 80% 90%

Read latency (UMS cycles) 56.2 62.6 70.3 84.9 97.8 122.9 169.5 272.3 534.6

 Q 0 MR

 Q 1 MR

 Q 2 MR

 Q 3 MR

 Q0 LP

 Q1 LP

 Q2 LP

 Q3 LP

 Q 0 TW

 Q 1 TW

 Q 2 TW

 Q 3 TW

 Full ?

 Full ?

 Full ?

 Full ?

 Q 0 LB

 Q 1 LB

 Q 2 LB

 Q 3 LB

 SDRAM

W11/R11

W11/R11

W11/R11

W11/R11

 R21

 R21

 W12/R12

 W12/R12

 W12/R12

R21/ R22

 Q 0 LR

 Q 1 LR

 Q 2 LR

 Q 3 LR W12/R12//R22

R22 R21

 Global Registers SDRAM TW

 Global Regs TW

 Full ?

 Full ?

Other Quads?

 SDRAM ?

Global Regs LB

 SDRAM LB

 R21

 W12/R12

 W12/R12

 W12/R12

W11/R11

R21

......

......

 Full ?

 Full ?

 Full ?

 Full ?

 R22

 Back Off Reject

 Back Off Reject
 Q 0 TR

 Global Regs TR

 SDRAM TR

 Q 0 MW

 Q 2 MW

 Q 4 MW

GBus R+G GBus Transfer
GBus

Figure 5: The model for Global Bus with 4 Quads

Table 1: The SDRAM read latency

the prime traffic pattern. The prime traffic pattern for Image
Negation is shown in Table 4.

Table 5 shows the prime traffic patterns for other image
processing applications, note that in this table, only quantum of
the patterns are listed, we assume they have the same
distribution as the Image Negation; we also assume every Quad

has the same possibility to be accessed by other Quads.

The usefulness of a single prime traffic pattern is quite limited.
Different traffic patterns could be constructed by changing the
specific parameters of the prime traffic pattern. For example,
decreasing the inter-arrival cycles of global operations can
increase the traffic load; modifying the ratio between the Quad-

Services Queuing Model

/Characteristics

Parameters Values

(UMS cycles)

Request and Grant M/M/1 Mean service time 2.0 Global
Bus Command transfer M/M/1 Mean transfer time Depends on the mean operation

size of specific traffic pattern

Global Bus Interface (including
MR, MW, TR, TW)

M/M/1 Mean service time 5.0

SDRAM M/M/1 AAC 50.0

Quad Local Memory M/M/1 AAC 15.0

Global Registers M/M/1 Mean service time 10.0

Quad Local Bus M/M/1 Mean service time 5.0

SDRAM Local Bus M/M/1 Mean service time 5.0

Global Registers Local Bus M/M/1 Mean service time 5.0

Back Off after Rejection Exponential Back off timer 16.0, 32.0, 64.0 for back off code
01, 10, 11 respectively

Items Quantum Distribution

IRI: the Inter-Request Interval of global operations 49.0 UMS cycles Poisson

QQ: # of Quad-Quad operations / # of total global operations 35%

QS: # of Quad-SDRAM operations / # of total global operations 65%

Bernoulli

QQR: # of Quad-Quad read / # of total Quad-Quad operations 15%

QQW: # of Quad-Quad write / # of total Quad-Quad operations 85%

Bernoulli

QSR: # of Quad-SDRAM read / # of total Quad-SDRAM operations 75%

QSW: # Quad-SDRAM write / # of total Quad-SDRAM operations 25%

Bernoulli

MOS: Mean of Operation Size. 2.94 octets (1 octet=8 bytes) Poisson

The possibility for one Quad to be accessed by other Quads Uniformly Random

 Description Implementation on UMS

Image Negation Perform for the data transferring; PEs
image negation

8 MSPs involved; DSEs do the image negation row by row; MTEs are
responsible do the data partitioning, initialize and control the DSEs and
MTEs.

Tetrahedron Color
Conversion

Perform tetrahedron color conversion 8 MSPs involved; DSEs do tetrahedron interpolation; MTEs are
responsible for the data transferring; PEs do the data partitioning, initialize
and control the DSEs and MTEs.

JPEG Decoding Decode baseline JPEG image 1 MSP involved; DSEs do the Haffman decoding and IDCT, MTEs are
responsible for the data transferring; PEs do the data partitioning, initialize
and control the DSEs and MTEs.

Image Blurring

Image Sharpening

Edge Filtering

Blurring / Sharpening / Filtering image
edge

8 MSPs involved; DSEs do the image filtering and dithering; MTEs are
responsible for the data transferring; PEs do the data partitioning, initialize
and control the DSEs and MTEs.

Table 4: The prime traffic pattern for Image Negation

Table 2: Parameters for the model of the Global Bus

Table 3. Implementation of the image processing applications on UMS

to-Quad traffic and the Quad-to-SDRAM traffic can show us
how these kinds of traffic influence the performance, etc. We
call these constructed traffic patterns derivative traffic patterns.

Our experiments are designed on the above traffic pattern
variants to explore the performance, the limits, and the potential
problems with the UMS Global Bus.

4. EXPERIMENT DATA AND ANALYSIS
The experiments are designed mainly to address the following
questions:

● How do the traffic patterns influence the
performance of the Global Bus? What could be the
performance space?

● Is the Global Bus the potential bottleneck? If not,
which components could most possibly be the
bottleneck?

● How do buffers affect performance?

Following subsections give a detailed description on the
experiments design and data analysis. All experiments are
running on a 4-Quads model, and assume that the Global Bus
runs at 350MHz and the Quads run at 200MHz.

4.1 Effects of Traffic Distribution and Inter-
Request Intervals
While every parameter of the prime traffic pattern described in
section 3 can be modified to construct a new pattern, to keep the
important characteristics of the image processing applications,
only the Inter-Request Intervals (IRI) and the ratio of Quad-to-
Quad communications to Quad-to-SDRAM communications are
made as variables to explore the performance space of the
Global Bus.

Through simulations we found that for the performance of the
Global Bus, the Tetrahedron Color Conversion and Image
Negation show similar characteristics, while JPEG Decoding,
Image Blurring, Image Sharpening, and Edge Filtering show
similar characteristics. We will give detailed description for the
experiment results of Tetrahedron Color Conversion and JPEG
Decoding. For other applications, we use tables to summarize
the results.

Figure 7 shows the effects of IRI and QQ values (see section 3)
on the utilization of Global Bus for the Tetrahedron Color
Conversion application. In most situations, we find the Global
Bus utilization to be less than 30%, which shows that the Global
Bus can handle such traffic very well. The utilization of the
Global Bus generally increases with decreasing IRI because of
the increasing load. For the same inter-request interval, we can
see that the utilization is inversely proportional to QQ. This can
be explained by Quad-to-Quad communications generally
having a smaller request size than Quad-to-SDRAM
communications.

One interesting point is that the “bars” for some series in Figure
7 disappear at some inter-request intervals. This is explained by
Figure 8, which shows the SDRAM utilization among different
combinations of IRI and QQ values. From Figure 8, we see that
the SDRAM is totally saturated in several series when IRI drops
down below a certain value. For example, the SDRAM
utilization of the series for QQ=10% is 100% when IRI is less
than 42 cycles. During this situation, the system becomes
unstable and finally halts the simulation. Image Negation has
very similar result; the SDRAM Utilization goes to 100% as
early as Global Bus has less than 30% Utilization.

The Global Bus and SDRAM Utilization for the JPEG Decoding
are shown in Figure 9 and Figure 10, respectively. Compared to
Tetrahedron Color Conversion and Image Negation, we found
that JPEG Decoding has much less utilization of Global Bus and

 Tetrahedron Color Conversion JPEG Decoding Image Blurring Image Sharpening Edge Filtering

IRI 42.0 UMS cycles 147.0 UMS cycles 133.0 UMS cycles 159.0 UMS cycles 201.0 UMS cycles

QQ 40% 40% 35% 35% 35%

QS 60% 60% 65% 65% 65%

QQR 16% 24% 38% 34% 31%

QQW 84% 76% 62% 66% 69%

QSR 70% 65% 60% 60% 60%

QSW 30% 35% 40% 40% 40%

MOS 2.91octets 3.03 octets 3.39 octets 3.31 octets 3.26 octets

Table 5: Prime traffic patterns for other image processing applications

0
10
20
30
40

102 92 82 72 62 52 42 32 22

Inter-Request-Intervals (cycles)

Th
e

G
lo

ba
l B

us

U
til

iz
at

io
n

QQ=10%
QQ=20%
QQ=30%
QQ=40%
QQ=50%
QQ=60%
QQ=70%
QQ=80%
QQ=90%

Figure 7: Effects on IRI and QQ on the performance of the Global Bus for the Tetrahedron Color Conversion

SDRAM because JPEG Decoding involves more computation,
which increases the IRIs. Table 6 summarizes the results for all
the image processing applications.

Figure 11 shows that the SDRAM limits the performance space
of the Global Bus. In Figure 11, we compare the utilization of
SDRAM and the Global Bus for Tetrahedron Color Conversion
and JPEG Decoding, respectively. In the left part of this graph,
which is for the Tetrahedron Color Conversion, we see that
SDRAM gets saturated as early as 30% Global Bus utilization.
Although this situation is not seen in the right part of the graph
for the JPEG Decoding, the SDRAM Utilization grows much
faster than the Global Bus Utilization; it is expected that
SDRAM will block the increase the Global Bus Utilization
when we have smaller IRIs.

Figure 12 goes further to show how much the performance of
the Global Bus can be improved if the SDRAM AAT decreases
from 142.9ns cycles to 71.5ns cycles. We see the maximum
throughput of Global Bus with SDRAM AAC=71.5ns almost
double its counterpart with SDRAM AAC=142.9ns, until it

nearly reaches the theoretical limit (2.8GBytes/s for 350MHz
Global Bus).

4.2 Effects of the Buffer Size
Every Global Bus master or target device has two FIFOs to
buffer read or write commands. With deeper buffers, fewer
commands will be rejected, thus the retries are reduced and the
effective bandwidth of the Global Bus increases. But buffers are
expensive in space utilization. So to find the relationship
between the depth of the buffer and the optimal value of the
depth has practical significance.

Figure 13 compares the commands rejection rate for Quad’s
interface at different buffer sizes, when QQ has value of 90%
(The cases with QQ value less than 90% are not shown in graph,
because they have less commands rejection rate than this case).
This graph tells us that buffers of Quad’s interface with size
larger than 8 commands provide no benefits for general cases
(QQ equal or less than 90%). Similarly, Figure 14 shows that
...

0
20
40
60
80

100
120

102 92 82 72 62 52 42 32 22

Inter-Request-Intervals (cycles)

Th
e

SD
R

A
M

 U
til

iz
at

io
n

QQ=10%
QQ=20%
QQ=30%
QQ=40%
QQ=50%
QQ=60%
QQ=70%
QQ=80%
QQ=90%

0

5

10

197 187 177 167 157 147 137 127 117

Inter-Request-Intervals (cycles)

Th
e

G
Lo

ba
l B

us

U
til

iz
at

io
n

(%
) QQ=10%

QQ=20%
QQ=30%
QQ=40%
QQ=50%
QQ=60%
QQ=70%
QQ=80%
QQ=90%

0
10
20
30
40
50

197 187 177 167 157 147 137 127 117

Inter-Request-Intervals (cycles)

Th
e

SD
R

A
M

 U
til

iz
at

io
n

(%
)

QQ=10%
QQ=20%
QQ=30%
QQ=40%
QQ=50%
QQ=60%
QQ=70%
QQ=80%
QQ=90%

 Image Negation Tetrahedron Color
Conversion

JPEG Decoding Image Blurring Image Sharpening Edge Filtering

The Global Bus Utilization 4.41%--24.53% 4.95%--28.78% 2.72%--7.66% 2.97%--8.10% 2.79%--7.53% 2.72%--7.66%

The SDRAM Utilization 2.25%--100% 4.93%--100% 2.54%--38.63% 1.30%--37.88% 1.27%--35.87% 1.04%--26.50%

 Figure 8: The SDRAM Utilization for Figure 7

Figure 9: Effects on IRI and QQ on the performance of the Global Bus for the JPEG Decoding

 Figure 10: The SDRAM Utilization for Figure 9

Table 6: Summary of the Global Bus and SDRAM Utilization for the image processing applications

0

20

40

60

80

100

120

102 92 82 72 62 52 42 32 22

Inter-Request-Intervals (cycles)

Th
e

G
lo

ba
l B

us
/S

D
R

A
M

 U
til

iz
at

io
n

(%
)

SDRAM Utilization w ith
QQ=20%

SDRAM Utilization w ith
QQ=40%

SDRAM Utilization w ith
QQ=60%

GBus Utilization w ith
QQ=20%

GBus Utilization w ith
QQ=40%

GBus Utilization w ith
QQ=60%

0

5

10

15

20

25

30

35

40

197 187 177 167 157 147 137 127 117

Inter-Request-Intervals (cycles)

Th
e

G
lo

ba
l B

us
/S

D
R

A
M

 U
til

iz
at

io
n

(%
)

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90

The QQ Values

Th
e

M
ax

im
um

 T
hr

ou
gp

ut
 o

f t
he

G

lo
bl

a
B

us
 (M

B
/s

)

SDRAM AAT= 142.9ns
SDRAM AAT=71.5ns

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90

The QQ Values

Th
e

M
ax

im
um

 T
hr

ou
gh

pu
t o

f t
he

G

Lo
ba

l B
us

 (M
B

/s
)

0
0.5

1
1.5
2

2.5
3

3.5
4

4.5

C
om

m
an

d
R

ej
ec

tio
n

R
at

e
(%

)

1 2 4 8 16 32

Buffer Size (# of
commands)

Negation, QQ=90%,
IRI=29.0

Conversion,
QQ=90%, IRI=22.0

JPEG, QQ=90%,
IRI=117.0

Blur, QQ=90%,
IRI=113.0

Sharp, QQ=90%,
IRI=119.0

Edge Filter, QQ=90%,
IRI=161.0

0
10
20
30
40
50
60
70

C
om

m
an

d
R

ej
ec

tio
n

R
at

e
(%

)

1 2 4 8 16 32 64

Buffer Size (# of
commands)

Negation, QQ=10%,
IRI=49.0

Conversion,
QQ=10%, IRI=52.0

JPEG, QQ=10%,
IRI=117.0

Blur, QQ=10%,
IRI=113.0

Sharp, QQ=10%,
IRI=119.0

Edge Filter,
QQ=10%, IRI=161.0

the optimal buffer size for SDRAM interface is between 32 and
64 commands.

5. RELATED WORK
Lahiri, et al., compare the performance of several types of
popular SOC communication architectures, including priority
based shared bus, hierarchical bus, two-level TDMA
architecture, ring based architecture, and multi-channel
architectures in [5][6][9]. The experiments in these papers show

Figure 11: Comparison of the utilization of the Global Bus and the SDRAM for Tetrahedron
Color Conversion (left) and JPEG Decoding (right)

Figure 12: The performance enhancement with lower SDRAM AAT for
Tetrahedron Color Conversion (left) and JPEG Decoding (right)

Figure 13: Commands rejection rate for Quad’s
interface at different buffer Size

Figure 14: Commands rejection rate for the SDRAM’s
interface at different buffer Size

that while all of these architectures have their pros and cons,
none of them uniformly outperforms others--their performance
highly depends on the traffic characteristics – thus the specific
application domains. Carim, et al., propose a novel
communication architecture for a 8-cpu network processor—
Octagon architecture in [8]; the authors compare the
performance of shared bus, on-chip crossbar and Octagon,
arguing that Octagon yields higher performance while keeping
low implementation cost making it especially suitable for high
speed network processors. Varatkar, et al. investigate the traffic
analysis for on-chip network design of multimedia applications,
introducing self-similarity as a fundamental property exhibited
by the bursty traffic between on-chip modules in typical MPEG-
2 video applications [7].

In terms of simulation methodologies, trace-driven simulation is
widely studied and used in evaluation of computer systems. But
strict trace-driven simulation may not be the best choice for
evaluating SOC communication architectures, especially when
we want to give a fast evaluation. The reason is a number of
factors make trace-driven simulation difficult in practice.
Collecting a complete and detailed address trace may be hard,
especially if it is to represent a complex workload consisting of
multiple processes. Another practical problem is that address
traces are typically very large, potentially consuming gigabytes
of storage space. Finally, processing a trace to simulate the
target system is a time-consuming task [10].

Lahiri, et al., give a fast performance analysis of bus-based SOC
communication architecture in [9]. The main strategy of
performance evaluation can be spilt into three steps: (i) initial
co-simulation performed after HW/SW partitioning and
mapping, with the communication between components
modeled in an abstract manner (e.g., as events or data transfers),
(ii) extraction of abstracted symbolic traces, represented as a
Bus and Synchronization Event (BSE) Graph, (iii) manipulation
of the BSE Graph using the bus parameters, to derive the
behavior of the system accounting for effects of the bus
architecture.

Recently for improving the performance of memory system,
optimizing the access strategy has been proposed as a promising
approach, beside enhancing the speed of SDRAM itself by
introducing new memory architecture (like SLDRAM or Direct
Rambus, etc), Rixner, et al. introduces memory access
scheduling, a technique of reordering memory references to
exploit locality within the 3-D memory architecture (banks,
rows, and columns) in [11]. The experiment in this paper shows
93% bandwidth improvement by using aggressive reordering for
media processing applications. Being aware that the access
conflict with the increase of embedded-DRAM masters (CPUs,
DSPs, etc) will significantly degrade the SOC performance,
Wantanbe, et al. propose an “access optimizer”, a logic
attachment for embedded DRAMs which consists of three
control units for self-prefetching, address alignment, and inter-
bank non-blocking access in [12]. The access optimizer can
successfully suppress the degradation of the CPU performance
introduced by the access conflicts.

6. CONCLUSION
This paper focused on the performance evaluation of the share-
based Global Bus architecture of the UMS. By the proposed fast

performance analysis methodology, we studied the performance
space of the Global Bus, especially for image processing
applications. We concluded that carefully designed share based
bus architecture like Global Bus can be efficient enough as the
communication backbone of current and future SOCs. While the
Global Bus itself is very unlikely to be the system bottleneck,
the SDRAM subsystem may heavily influence the overall
system performance. This paper also analyzed the impact of
buffer size on the bus performance; references for the optimal
buffer depth are given by simulation.

REFERENCES
[1] Rick Merritt, Intel, Sun sketch multiprocessor chip plans,
http://www.eetimes.com/story/OEG20011210S0069.
[2] Jaehyuk Huh, et al., Maximizing Area Efficiency for Single-
Chip Server Processors, 2nd Annual Austin CAS Conference,
Feb. 2001
[3] White paper --The Universal Micro System, Cradle
Technologies, Inc., Sep. 2001
[4] UMS Documentation -- UMS2003 Hardware Architecture,
Cradle Technologies, Inc., Mar. 2002
[5] Kanishka Lahiri, et al., Performance Analysis of Systems
with Multi-Channel Communication Architectures, Proc. Intl.
Conf. on VLSI Design, pp.530-537, Calcutta, India, Jan. 2001.
[6] Kanishka Lahiri, et al., Evaluation of the Traffic-
Performance Characteristics of System-on-Chip Communication
Architectures, Proc. Intl. Conf. on VLSI Design, pp.21-35,
Bangalore, India, Jan. 2001.
[7] Cirish Varatkar, Radu Marculescu, Traffic analysis for on-
chip networks design of multimedia applications, Proceedings
of the 39th conference on Design automation, June 2002
[8] Faraydon Carim, et al., On-chip communication architecture
for OC-768 network processors, Proceedings of the 38th
conference on Design automation, June 2001.
[9] Kanishka Lahiri, et al., Fast performance analysis of bus-
based system-on-chip communication architectures, Proceeding
of the 1999 international conference on Computer-aided design,
Nov. 1999.
[10] Richard A. Uhlig, Trevor N. Mudge, Trace-driven memory
simulation: A survey, ACM Computing Surveys, vol. 29, no. 2,
June 1997.
[11] Scott Rixner, William J. Dally, et al., Memory Access
Scheduling, Proceedings of the 27th International Symposium
on Computer Architecture, on June 2000.
[12] Takao Wantanbe, et al., Access Optimizer to Overcome the
future Walls of Embedded DRAMs in the Era of Systems on
Silicon, 1999 IEEE International Solid-State Circuits
Conference, Feb. 1999.

