
MigThread: Thread Migration in DSM Systems∗

Hai Jiang
Institute for Scientific Computing

Wayne State University
Detroit, MI 48202
haj@cs.wayne.edu

Vipin Chaudhary
Institute for Scientific Computing

Wayne State University
and Cradle Technologies, Inc.

vipin@wayne.edu

Abstract

Distributed Shared Memory (DSM) systems provide a
logically shared memory over physically distributed mem-
ory to enable parallel computation on Networks of Work-
stations (NOWs). In this paper, we propose an infrastruc-
ture for DSM systems to utilize idle cycles in the network by
thread migration.

To maintain high portability and flexibility, a generic
thread migration package, MigThread, is implemented at
language level. At compile-time, a preprocessor scans
C programs to build thread state, detects possible thread
adaptation points, and transforms the source code accord-
ingly. At runtime, MigThread moves DSM threads around
to utilize idle cycles on remote machines. Since the physical
thread state is transformed into a logical form, MigThread
is ready to be used in heterogeneous DSM systems. We im-
plemented MigThread in a DSM system Strings. A compar-
ison with other migration schemes and some performance
measurements on real applications are reported to show the
efficiency.

Key Words: Software Distributed Shared Memory,
adaptive parallel computing, thread migration, thread
scheduling, compile-time code transformations .

1 Introduction

Recent improvements in commodity processors and
networks have provided an opportunity to support high-
performance parallel applications within an everyday com-
puting infrastructure. However, applications for such dis-
tributed systems are cumbersome to develop due to the need
for programmers to handle communication primitives ex-
plicitly. Distributed shared memory (DSM) systems are

∗This research was supported in part by NSF IGERT grant 9987598,
NSF MRI grant 9977815, NSF ITR grant 0081696, US Army Contract
DAEA-32-93-D-004, Ford Motor Company Grants 96-136R and 96-628R,
and Institute for Scientific Computing.

gaining popularity for providing a logically shared mem-
ory over physically distributed memory. The programmer
is given the illusion of a large global address space encom-
passing all available memory, eliminating the task of ex-
plicitly moving data between processes located on separate
machines [5, 2]. DSM systems combine programming ad-
vantages of shared memory and the cost advantages of dis-
tributed memory.

Studies have indicated that a large fraction of worksta-
tions could be unused for a large fraction of time[1]. Batch-
processing systems that utilize idle workstations for running
sequential jobs have been in production use for many years.
However, the utility of harvesting idle workstations for par-
allel computation, such as the ones on DSM systems, is less
clear. When a workstation is reclaimed by its primary user,
the remaining workstations in the same DSM system have to
stop. In order for DSM systems to proceed and exploit idle
cycles in networks, one should require the computation and
DSM systems be reconfigurable, especially in terms of the
degree of parallelism, or the number of processors required.
Reconfiguration may need data and loop repartitioning, and
data and/or computation migration. Since threads are the
computation units in multi-threaded DSM systems, we fo-
cus on thread migration when computation migration is re-
quired. Besides idle cycle utilization, thread migration is
also useful for load balancing, fault tolerance, data access
locality and system administration [7, 8].

The semantic of thread migration is to stop the thread
computation, migrate the thread state to the destination
node, and resume the execution at the statement follow-
ing the migration point there. The thread state consists of
process state (inherited from the process containing the cur-
rent thread), computation state (variables and register con-
tents), and communication state (e.g., open files and mes-
sage channels). Normally the process state should be shared
by threads within the same process. But in DSM systems,
it should stay in globally shared areas so that all threads
can access it for the same data image. Thus, DSM systems
help handle the process state efficiently. Freedman [6] ob-

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

serves that long-running computations typically use oper-
ating system services in the beginning and ending phases
of execution, while most of their time is spent in number
crunching. We prefer to put more attention on the dominant
phase of execution. Therefore, in DSM systems, the thread
state refers to the computation state. Communication state
requires “migration-aware” communication protocols [15]
and is not addressed here.

In this paper, we make the following contributions:

• Propose an infrastructure to utilize idle cycles locally
and remotely.

• Design and implement an efficient and scalable thread
migration scheme, MigThread that

– Supports fast thread state retrieval.
– Does not trace on pointers and pointer arithmetic

to guarantee efficiency.
– Detects adaptation points automatically for DSM

systems.

• Incorporate adaptivity into a DSM system, Strings.

Like other language-level migration schemes [7, 9, 10],
MigThread enables migration feature for “migration-safe”
C programs. For unsafe code, MigThread gives warning
messages for the possible risks.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the adaptive DSM systems. Section 3 shows
the details of MigThread improved from an existing imple-
mentation [3]. In Section 4, we analyze the performance of
MigThread. In Section 5, we show some experimental re-
sults on benchmark programs. Section 6 gives an overview
of related work. We wrap up with conclusions and continu-
ing work in Section 7.

2 Adaptive DSM systems

Parallel programs running on top of DSM systems know
nothing about the physical situation in networks, i.e., they
cannot distinguish if they are running on supercomputers or
NOWs. DSM systems are in charge of hiding system con-
figurations from programs. Traditionally, DSM systems are
static and never change their configuration once the execu-
tion starts. To fit the dynamic situation in NOWs, we in-
corporate adaptivity into DSM systems to reconfigure them
dynamically, utilize idle cycles on local or remote machines,
and evict when machine owners come back.

2.1 Strings

DSM system Strings is built using POSIX threads, which
can be multiplexed on kernel lightweight processes. The
kernel can schedule these lightweight processes across mul-
tiple processors on symmetrical multiprocessors (SMPs) for

Inter−scheduler

CPU CPU CPU...

Intra−scheduler
Kernel

Adaptive DSM Strings

...

Process
Threads

MigThread

Monitor

CPU CPU CPU...

Intra−scheduler
Kernel

Adaptive DSM Strings

...

Process
Threads

MigThread

Monitor

...

SMP SMP

Figure 1. Two-level thread scheduling in
Strings

better performance. Therefore, in Strings, each thread could
be assigned to any processor on the SMP if there is no spe-
cial request, and all local threads could run in parallel if
there are enough processors. Strings is designed to exploit
data parallelism at the application level and task parallelism
at the run-time level [5].

2.2 Thread scheduling

To import MigThread, Strings utilizes a two-level thread
scheduling scheme: intra-scheduling and inter-scheduling,
as shown in Figure 1. The intra-scheduling comes from the
scheduler in the kernel on each SMP. It can assign, context
switch, and migrate POSIX threads across multiple proces-
sors within the SMP because of kernel-level thread char-
acteristic. When a processor becomes idle, the kernel can
assign any available thread to that CPU. Operating systems
utilize the idle cycles efficiently on local SMPs, i.e., the ker-
nel supports local thread migration.

Monitor is a daemon process running on each SMP ma-
chine in the network. It monitors and reports local ma-
chine’s workload (including CPU, memory and network
card usages) and the “owner-is-returning” event to inter-
scheduler periodically. Monitors are separate from DSM
systems.

The inter-scheduler runs on a predefined machine which
maintains load distribution information, obtains migration
policy decision, and orchestrates migration activity across
multiple machines. The inter-scheduler can only talk with
DSM systems through MigThread. Normally the inter-
scheduler passes the thread migration request to DSM sys-
tems based on load information collected by monitors.
When machines leave or join, the inter-scheduler helps
DSM systems re-distribute data and threads for reconfigura-
tion. There is a potential for DSM systems to activate thread

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

migration for load balance under more elaborate migration
policy.

With this two-level scheduling scheme, each DSM thread
can virtually move to any idle processor in the system.
Threads can utilize new machines and evict from old ones
without programs’ notification. Since adaptive DSM sys-
tems can use more processors dynamically, eventually the
whole system’s job throughput is expected to improve.

2.3 DSM migration policy

DSM systems could be more aggressive if they apply
complicated migration policy[4]. For example, they can
make a choice between page and thread migration. The de-
fault option is page migration/replication. But if a thread ac-
cesses data on a certain remote machine too frequently and
page migration cost is much larger than thread migration,
the latter one is a better choice. To identify such situations,
DSM systems need to check thread access history, inves-
tigate data and thread locality, and contact inter-scheduler
for the load information on remote machines. After all, if
thread migration seems more efficient, DSM systems will
work with MigThread and inter-scheduler to start migration.
This fine-tuned DSM system works well based on heuristic
algorithms in migration policy which is out of the scope of
this paper. The point is that DSM systems have sufficient
utility to balance their workload well for parallel computing
speedup and thread migration is the necessity.

2.4 Adaptation points

The overheads associated with destroying a thread, trans-
ferring the thread state, creating a thread and initiating re-
mote execution are not negligible. Hence, there should be
sufficient amount of computation between two consequent
migration actions to amortize the overhead.

MigThread provides thread migration at certain prede-
fined points. Programs check the condition variables in
MigThread for possible thread migration requests from the
inter-scheduler or DSM systems. Since programs cannot
contact the inter-scheduler directly, no communication is
involved here. Therefore, the cost of adaptation points is
limited if no migration happens. This adaptive strategy en-
ables MigThread to insert adaptation points with low cost
and improves the sensitivity to the environment.

If the memory model of the DSM system is the tradition-
ally sequential consistency, the system is always in consis-
tent state and threads can be migrated anytime with a guar-
antee of correctness of resumed execution. It is MigTh-
read’s responsibility to identify how far apart each two
adaptation points should be. If they are too far away, DSM
systems might be too insensitive to the dynamic situation.
But if they are too close, it will slow down the computation.

Most DSM systems, for better performance, adopt re-
laxed memory models such as release consistency model
to reduce both the number of messages and the amount of
data transferred between processors. Under such specula-
tive models, some virtually shared data could be in incon-
sistent states when they are between two synchronization
points (barriers), i.e., their copies on physically different
machines might have different values. If migration takes
place between these machines at this time and these data are
accessed (especially read) later, the resumed computation
could be incorrect. To ensure correctness, thread migration
can only be allowed at synchronization points or barriers
(adaptation points). Note that Strings uses release consis-
tency model.

MigThread scans the source code, detects adaptation
points automatically, and inserts suitable thread migration
primitives. If two adaptation points are too far away, MigTh-
read can insert barriers and migration primitives at certain
suitable positions, such as before and after loops. At the
same time users can insert such adaptation points as they
want which is difficult in some thread migration schemes
because of their inefficient thread state construction strate-
gies.

3 Thread Migration system: MigThread

MigThread extends our previous implementation [3] and
aims at providing thread migration feature with high porta-
bility and scalability. As other language-level migration
schemes, MigThread supports “migration-safe” C programs
without unsafe features, such as pointer casting. MigTh-
read consists of two parts: preprocessor and runtime sup-
port module. At compile time, its preprocessor scan the
source code and collect related thread state information into
some data structures which will be integrated into the thread
state at runtime. With the support of dynamically allocated
memory, data in heap are also migrated and restored re-
motely. Because source and destination nodes might use
different address spaces, pointers referencing stack or heap
could be invalid after migration. MigThread detects and
marks pointers at language level so that at runtime it just
accesses the predefined data structures to update pointers
precisely. Since the physical thread state is transformed into
a logical form, MigThread has great potential to be used in
heterogeneous environments without relying on the types of
thread library or operating system. More design and imple-
mentation details are in [3].

3.1 MigThread’s preprocessor

The preprocessor conducts the source-to-source transfor-
mation. This includes marking pointers, defining the thread
state, and detecting adaptation points.

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

3.1.1 The thread state

The thread state consists of a program counter (PC), a set of
registers, and a stack of procedure records containing vari-
ables local to each procedure. Normally this state is buried
in thread libraries or kernels. MigThread’s preprocessor ab-
stracts the thread state up to the language level. No infor-
mation from low level devices, such as registers, need to be
retrieved. Therefore, the whole control of thread is moved
up to the application level.

In DSM systems, some variables can be locally or glob-
ally shared by threads. Threads belong to different pro-
cesses which contain locally shared variables for their con-
tained threads. Since all threads should have identical im-
ages about shared information, these locally shared vari-
ables are disallowed in DSM systems. Therefore, the pro-
cess state of the thread state is only a group of globally
shared variables placed in Strings’s global regions.

The thread state contains local variables, parameters, and
Program Counters (PC) of functions activated by threads.
The preprocessor collects all local variables, and puts them
into two data structures, sr var and sr ptr, depending on
if they are pointers or not. For variables with complicated
data types, the outer most type will determine which data
structure they belong to. Then the preprocessor re-scans the
functions, locates all references to the original local vari-
ables and replaces them with the references to the corre-
sponding fields in sr var and sr ptr which contain most of
the thread state.

One of major advances of MigThread is its efficient
thread state generation. Many application level migration
schemes [9, 10] have to add variables one-by-one into the
thread state at each adaptation point. This is very time-
consuming and places a big obstacle if users want to insert
more adaptation points by themselves. MigThread only re-
ports the thread state once and the runtime system knows
how to construct it. This efficient design benefits Strings
substantially.

3.1.2 Pointers and pointer arithmetic

Manipulating pointers determines the thread migration ap-
proach’s efficiency and practicality. Some approaches
[14, 16] keep pointers the same by pre-allocating memory
spaces on each involved machine which is a hard restriction
on systems. Otherwise, pointers will become invalid and
be required to be updated accordingly after the migration.
MigThread’s strategy is to identify pointers at language
level and collect them into sr ptr. On the destination node,
MigThread scans the memory area for sr ptr to translate all
pointers. If some structure type variables in sr var contain
pointer fields, they need to be referenced by newly created
pointer variables in sr ptr which are initialized right after
the sr ptr declaration. For example, in Figure 2, structure

 .
 .
 .
struct addr_t {
 char *street;
 int[10] phoneno;
};

struct sr_var_t {
 void *sr_ptr;
 int stepno;
 struct addr_t home;
} sr_var;

struct sr_ptr_t {
 struct addr_t *office;
 void * resv_1;
} sr_ptr;

sr_var.sr_ptr = (void *)&sr_ptr;
sr_var.stepno = 0;
sr_ptr.resv_1 = (void *)&sr_var.home.street;
 .
 .
sr_ptr.office = malloc(5*sizeof(struct addr_t));
STR_mig_reg(sr_ptr.office, 5*sizeof(struct addr_t),
 sizeof(struct addr_t));
STR_mig_reg((void *)&sr_ptr.office−>street, 0, 0);
 .
 .
STR_mig_unreg(sr_ptr.office);
free(sr_ptr.office);
 .
 .

Figure 2. Operations related to pointers.

type variable sr var.home contains a pointer field street.
Then, an extra pointer field resv 1 is declared in sr ptr
pointing to the address of sr var.home.street. At the ini-
tialization time, the value of sr ptr.resv 1 is set, as shown
in Figure 2.

If some pointer variables in sr ptr contain pointer
type subfields, such as sr ptr.office’s field street in
Figure 2, the preprocessor will register them by calling
STR mig reg() when they are used by dynamically allo-
cated memory operations and MigThread will take care of
them at runtime. The typical situation for this is the creation
of linked lists.

MigThread does not trace pointers, making it more effi-
cient than approaches[9, 10]. Therefore, pointer arithmetic
is not a concern for MigThread. No matter how pointers are
manipulated, only the current values of variables and point-
ers hold the correct thread state. This “ignore-strategy” re-
duces side-effects on performance.

3.1.3 Adaptation points

In Section 2.4, we have discussed the strategy to determine
adaptation points in adaptive DSM systems. These positions
have to be labeled and matched with certain PC’s values. A
switch statement is inserted to dispatch the execution based

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

on the value of PC. Not only are the adaptation points la-
beled, but also the positions right before the transformed
function call. The reason is that the resumed computation
on destination nodes needs to go through the execution path
once again. Thus, we need to trace execution at application
level. The implementation details are in [3].

 .
 .
STR_barrier();
 .
 .
if (STR_psd_check()) {
 STR_barrier();
 .
 .
}
 .
STR_barrier();
 .
 .

after barrier:
insert migration primitive

after barrier:
insert migration primitive

after inserting
a pseudo−barrier:
insert migration primitive

Figure 3. Adding pseudo-barriers for more
adaptation points

To work with relaxed memory model of DSM sys-
tems, MigThread is extended to detect more adaptation
points. If two barriers are too far away, the preproces-
sor inserts pseudo-barriers (see Figure 3) where a primitive
STR psd check() is called to contact the runtime support
module. When thread migration is requested, the actual
barrier command and migration primitive are executed to
migrate threads with consistent data state. This strategy en-
ables more adaptation points in Strings without sacrificing
the performance much.

3.2 MigThread at runtime

At runtime, MigThread needs to maintain, transfer and
restore thread states. After updating pointers, it can resume
the computation on destination nodes.

3.2.1 Thread Control Area

MigThread maintains a thread control area (TCA) which
holds a record for each thread which contains references to
a stack, a control block for memory segments in the heap,
and a pointer translation table.

Once a function calls STR mig init() to register the ad-
dresses and sizes of sr var and sr ptr, MigThread gener-
ates an activation frame and pushes it onto the stack. After
each function call, primitive STR mig cleanup() is used to
pop up the top frame from the stack. This application-level
stack enables the portability.

In user applications, when malloc() and free() are in-
voked to allocate and deallocate memory spaces, the prepro-
cessor inserts STR mig reg() and STR mig unreg() ac-
cordingly to let MigThread create and delete memory seg-
ment records at runtime. MigThread maintains a linked

Mem_segment
 Control

head

tail

current

.

.

.

first mem

base_addr
size

unit_size
ptr_list

base_addr
size

unit_size
ptr_list

last mem

dist_1

.
dist_2

.

.

.

unit
size

size

base_addr

unit
size

unit
size

unit
size

Figure 4. Handling pointers in dynamically al-
located memory

list of memory segment records, traces all dynamically al-
located memory in local or shared heap, and provides the
information for pointer updating. Each segment record con-
sists of the address, size and single data structure’s size (unit
size) of the referenced memory block, with an extra linked
list of offsets for inner pointer subfields, ptr list, which is
used to trace and update the pointer fields in the memory
segments. Each element in ptr list contains an offset from
the base address of the current memory segment in the first
unit block, as shown in Figure 4 (the shadowed areas are
pointer fields). At runtime, MigThread uses pointer arith-
metic to detect other pointer fields in the whole memory
block. Primitive STR mig reg() is called with size 0 to re-
port offsets of pointer subfields (see Figure 2). Again, the
dynamically allocated memory management is moved up to
application level.

3.2.2 Thread state transfer and restoration

The application-level thread state consists of a stack, a
linked list of memory segment records, and their associated
memory blocks. MigThread packs the thread state, trans-
fers it by UDP/IP, and restores it by recreating everything
on new nodes. To update pointers, MigThread simply scans
sr ptr for local pointer variables and the linked list of mem-
ory records for dynamic pointer fields. The stack implies
the order and depth of the execution of functions. A new
thread just re-runs the functions in the same order to resume
computation with the same state. The details are in [3].

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

4 Performance Analysis

We compare the complexity of MigThread with similar
application level schemes Porch [9] and SNOW [10]. The
major difference is the state construction. Porch and SNOW
are similar in collecting and restoring data. They need to
deal with variables and pointers one-by-one explicitly at
each adaptation point. This slows down the whole system
dramatically and makes it hard for users to insert adapta-
tion points by themselves if they prefer. On the other hand,
MigThread only registers variables and pointers once and
is much faster to construct the thread state. The complex-
ity comparisons are listed in Table 1 where Nvar and Nptr

represent number of variables and pointers.

Table 1. Complexity comparison in state con-
struction

System Collect/restore Collect/restore
Variables Pointers

Porch O(Nvar) O(Nptr)
SNOW O(Nvar) O(Nptr)
MigThread 1 1

Pseudo-barriers added for more adaptation points in
DSM systems introduce extra overhead. Whereas regular
barriers synchronize both computation progress and data
copies, pseudo-barriers are light-weight and intended only
for synchronizing threads’ progress. The data synchroniza-
tion happens only when migration is required. Pseudo-
barriers start affecting computation after the slowest thread
arrives. The actual time depends on how the centralized
inter-scheduler activates threads. For n threads, the cost of
pseudo-barrier Bpseudo is

RTT ≤ Bpseudo ≤ RTT +
(n − 1) ∗ RTT

2
(1)

where RTT is the Round-Trip-Time for a thread to contact
the inter-scheduler. We borrow Strings’s synchronization
mechanism to combine local threads’ messages into single
one for cost reduction. Pseudo-barriers slow down the re-
laxed consistency model DSM systems for migration op-
tions. But the overall system is still faster than DSM sys-
tems with sequential consistency model which keep consis-
tent data all the time.

The overhead of MigThread comes from two areas: pre-
processor and runtime support module. The preprocessor
transforms the application code to enable migration feature.
For each function, at least two assignment statements and
one switch statement are added and each function parame-
ter will bring in one assignment statement. The migration
cost of MigThread at runtime could be expressed as follows:

Cthread = tstatic + tinit + tS + tT + tR (2)
where tstatic is the time to execute assignment statements
inserted by preprocessor, tinit is the state initialization time
at runtime, tS is the time to contact inter-schedulers, tT is
the thread state transfer cost, and tR is the state restora-
tion time. Since tstatic and tinit may vary with the thread
stack length or amount of activation frames, and tT and tR
are proportional to the thread stack size, the cost could be
rewritten as:

Cthread =
n∑

i=1

ci + c0flen + tS + δ(ssize) + λssize (3)

where tstatic is represented by a summation of statement
execution time ci for all functions, c0 is the cost of tinit in
a single function, flen is the amount of activation frames
in the stack, ssize is the thread state size, λ is a constant,
and δ is a function of the stack size. Obviously, besides a
constant fundamental cost, stack size is the factor for thread
migration overhead [3].

In page-based DSM systems, the page migration cost
Cpage is a function of page size psize:

Cpage = δ′(psize) (4)

With MigThread, DSM systems can compare costs and cal-
culate a threshold as follows:

∆thread =
∑n

i=1 ci + c0flen + tS + δ(ssize) + λssize

δ′(psize)
(5)

Based on ∆thread, DSM systems should be able to deter-
mine which migration scheme is more efficient and fine-
tune the runtime performance well.

The migration platform is a cluster of SMPs (SUN Ul-
traEnterprise 3000s) connected by fast Ethernet. Each SMP
contains four 330Mhz UltraSparc processors. The thread
migration costs vary based on thread state size [3]. For most
software DSM systems, page migration is the main mech-
anism to maintain locality. In Strings, the page size is 8
Kbytes and the page migration cost is 2.0 ms. Since data
are moved by pages, the page migration cost is discrete and
could be expressed by a function of page quantity. The cost
relationship between page and thread migration is shown
in Figure 5. For bigger thread states and smaller shared
data, page migration is preferred. Otherwise thread migra-
tion should be considered. At runtime, DSM systems cal-
culate and compare thread migration cost by the state size
and page migration cost by page quantity to determine effi-
ciency. Since these costs are predictable, DSM systems are
able to fine-tune their performance dynamically.

5 MigThread on real applications

To evaluate the thread migration cost, we use several
applications from the SPLASH-2 application suite, matrix

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

2018.78

4037.56

6056.34

8075.12

0 16 32 48 64

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Thread state size (Kbytes)

1-Page Migration

2-Page Migration

3-Page Migration

4-Page Migration

1-Thread Migration

Figure 5. Cost relationship between page and
thread migration

multiplication, and Molecular Dynamics (MD) simulation
which is used to study friction forces of sliding hydrox-
ylated α-aluminum oxide surfaces [17]. The parallelized
programs are run on two SMP machines with one thread on
each. The communication layer is UDP/IP. Since the in-
serted primitives do not cause any noticeable slowdown, we
only focus on the migration cost and compare it with pure
execution time on two SMP nodes.

MigThread’s preprocessor scans and transforms these C
programs. It is the preprocessor’s responsibility, not pro-
gram’s, to conduct this transformation. Normally program-
mers do not need to be involved unless they want to add
more precise adaptation points. This one-time transform
procedure takes only 1-8 seconds for these programs.

The runtime overheads are shown in Table 2 which fits
previous analysis and microbenchmarks well. For most ap-
plications, their thread states range from 100 to 184 bytes,
and their migration time is around 2.4 ms. Even though
the thread state of OCEAN-c is increased to 432 bytes, it
is still not big enough to change migration time since the
dominant factor transfer cost tT and overall cost display
stair-like behavior [3]. Only the thread states of RADIX
and MD are big enough to make difference. For most pro-
grams, we only choose small problems (by input sizes) to
indicate that even in these small cases migration overhead
is small. Cases with bigger problem sizes make thread mi-
gration look more efficient since in Strings thread state sizes
are invariant to problem sizes (see Table 2). Shared data are
in global shared regions which do not migrate with threads.
This makes MigThread very efficient in Strings. Compared
to programs’ execution time, migration cost is very small
(most of them are less than 1% and at most 3%) for bench-
mark programs and real programs like MD.

For most cases, page migration happens frequently for
data accesses. Their overall cost is much higher than single

thread migration’s. This suggests that thread migration may
be an effective tool for DSM systems to balance workload
and improve data locality. The only exception one is the
DM application whose huge thread state makes the thread
migration cost about half the page migration cost. For such
applications, thread migration is only suitable for idle cycle
utilization situation.

The chosen programs are popular, but all array-based.
Fortunately MigThread does not slow down particularly
for pointer-intensive applications because pointers are not
traced at runtime. Definitely more memory blocks incur
bigger overhead, which is inevitable.

6 Related Work

The major concern in thread migration is that the ad-
dress space could be totally different on different machines
and internal self-referential pointers may no longer be valid.
There are three approaches to handle the pointer issue.
The first approach is to use language and compiler support
to maintain enough type information, identify and update
pointers[4, 11], such as Emerald[12], Arachne[11], and Tui
system [7]. But they reply on new languages and compil-
ers. The second approach requires scanning the stacks at
runtime to detect and translate the possible pointers dynam-
ically, as in Ariadne[13]. Since some pointers in stack are
probably misidentified, the resumed execution can be incor-
rect. The third approach is most popular and necessitates the
partitioning of the address space and reservation of unique
virtual addresses for the stack of each thread so that the up-
date of internal pointers becomes unnecessary. This solu-
tion requires large address space and is not scalable[16, 4].
Another drawback of this method is that thread migra-
tion is restricted to homogeneous systems. Amber[14] and
Millipede[16] use this “iso-address” approach.

Application-level migration schemes could be heteroge-
neous without relying on new languages and compilers. The
SNOW [10] is one of them. It handles communication state
with “connection-aware” protocols. The Porch system [9]
uses the same way as in SNOW to construct process/thread
state dynamically. They need to register pointers one-by-
one which can cause flexibility and efficiency problems.
The thread migration approach in [3] is similar to MigTh-
read but has limitations. MigThread improves the handling
of pointer arithmetic, pointers in heap, and memory man-
agement. A significant improvement in MigThread is that it
cooperates with the inter-scheduler to exchange information
with DSM systems, and eventually incorporates adaptivity
into DSM systems.

7 Conclusion and future work

MigThread is shown to be generic in its scope. It handles

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

Table 2. Migration Overhead in real applications

Program Input Size State size Transform Execution # of Page Single Migr.
(bytes) (sec) (ms) Page Migr. Thread / Exec.

Faults (ms) Migr. (ms) Rate(%)

FFT
64 Points 160 5.87 85 12 22.68 2.42 2.85
1024 Points 160 5.87 112 21 42.63 2.46 2.20

LU-c
16 x 16 184 4.19 77 5 9.65 2.35 3.05
512 x 512 184 4.19 7,699 368 885.58 2.41 0.03

LU-n
16 x 16 176 4.17 346 2 4.20 2.34 0.68
128 x 128 176 4.17 596 34 61.21 2.37 0.40

MatMult
16 x 16 100 1.34 371 13 24.23 2.32 0.63
128 x 128 100 1.34 703 56 113.25 2.47 0.35

OCEAN-c
18 x 18 432 7.98 2,884 89 166.94 2.45 0.08
258 x 258 432 7.98 14496 1082 2041.31 2.40 0.02

RADIX
64 keys 32,984 2.86 688 25 46.46 5.12 0.74
1024 keys 32,984 2.86 694 25 45.84 5.14 0.74

MD 5,286 Atoms 7,040,532 2.45 52,243 74 148.60 83.65 0.16

pointers accurately, constructs thread state promptly, brings
adaptivity into DSM systems, and helps utilize idle cycles
in networks of SMPs. MigThread erases many restrictions
placed on most thread migration approaches and only re-
quires that migration happen at certain predefined points
which fits well with DSM systems. The language level mi-
gration strategy makes it ready for heterogeneous DSM sys-
tems. Comparison with similar approaches and experiments
on real applications indicate that the overhead of MigThread
is minimal.

We are currently investigating more complex schedul-
ing policies to make a choice of data or thread migration
for better data locality and communication minimization,
expanding MigThread to handle more “migration-unsafe”
cases, and implementing it on multiple platforms for het-
erogeneity.

References

[1] A. Acharya, G. Edjlali and J. Saltz, The Utility of Exploiting
Idle Workstations for Parallel Computation Proceedings of
the Conference on Measurement and Modeling of Computer
Systems, 1997.

[2] E. Speight and J. K. Bennett, Brazos: A Third Generation
DSM System, Proc. of the USENIX Windos NT Workshop,
1997.

[3] Hai Jiang and Vipin Chaudhary, Compile/Run-time Support
for Thread Migration, Proc. of 16th International Parallel
and Distributed Processing Symposium, Fort Lauderdale,
Florida, April 15-19, 2002.

[4] K. Thitikamol and P. Keleher, Thread Migration and Com-
munication Minimization in DSM Systems, The Proceed-
ings of the IEEE, March 1999.

[5] S. Roy and V. Chaudhary, Design Issues for a High-
Performance Distributed Shared Memory on Symmetrical
Multiprocessor Clusters,Cluster Computing: The Journal of
Networks, Software Tools and Applications, No. 2, 1999.

[6] D. Freedman, Experience Building a Process Migration Sub-
system for UNIX, Proceedings of the Winter USENIX Con-
ference, page 349-355, Jan. 1991.

[7] P. Smith and N. Hutchinson, Heterogeneous process migra-
tion: the TUI system, Tech rep 96-04, University of British
Columbia, Feb. 1996.

[8] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S.
Zhou, Process Migration, ACM Computing Surveys, 2000.

[9] V. Strumpen, Compiler Technology for Portable Check-
points, submitted for publication (http://theory.lcs.
mit.edu/ strumpen/porch.ps.gz), 1998.

[10] K. Chanchio and X.H. Sun, Data Collection and Restoration
for Heterogeneous Process Migration, Proceedings of 21st
International Conference on Distributed Computing Systems
(ICDCS), April 2001.

[11] B. Dimitrov and V. Rego, Arachne: A Portable Threads
System Supporting Migrant Threads on Heterogeneous Net-
work Farms, IEEE Transactions on Parallel and Distributed
Systems, 9(5), May 1998.

[12] E. Jul, H. Levy, N. Hutchinson, and A. Blad, Fine-Grained
Mobility in the Emerald System, ACM Transactions on
Computer Systems, Vol. 6, No. 1, Feb. 1998.

[13] E. Mascarenhas and Vernon Rego, Ariadne: Architecture
of a Portable Threads system supporting Mobile Processes,
Technical Report CSD-TR 95-017, Dept. of Computer Sci-
ences, Purdue University, 1995 .

[14] J. Chase, F. Amador, E. Lazowska, H. Levy and R. Little-
field, The Amber System: Parallel Programming on a Net-
work of Multiprocessors, ACM Symposium on Operating
System Principles, Dec. 1989.

[15] K. Chanchio, and X.H. Sun, Communication State Transfer
for the Mobility of Concurrent Heterogeneous Computing,
International Conference on Parallel Processing (ICPP),
September, 2001.

[16] A. Itzkovitz, A. Schuster, and L. Wolfovich, Thread Migra-
tion and its Applications in Distributed Shared Memory Sys-
tems,Journal of Systems and Software,Vol.42,No.1, 1998.

[17] V. Chaudhary, W. Hase, H. Jiang, L. Sun, and D. Thaker,
Comparing Various Parallelizing Approaches for Tribology,
4th International Workshop on High Performance Scientific
and Engineering computing with Applications, Aug. 2002.

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

