
Bio-Sequence Analysis with Cradle’s
3SoC™ Software Scalable System on Chip

Xiandong Meng

Department of Electrical and Computer Engineering
Wayne State University

5050 Anthony Wayne Dr.
MI, Detroit 48202

meng@ece.eng.wayne.edu

Vipin Chaudhary
Institute for Scientific Computing

Wayne State University
5143 Cass Avenue
Detroit, MI 48202

vipin@wayne.edu

ABSTRACT
With the dramatically increasing amounts of genomic sequence
database, there is a need for faster and more sensitive searching
for sequence similarity analysis. The Smith-Waterman algorithm,
which utilizes dynamic programming, is a common method for
performing exact local alignments between two protein or DNA
sequences. The Smith-Waterman algorithm is exhaustive and
generally considered to be the most sensitive, but long
computation times limit the use of this algorithm. This paper
presents a preliminary implementation of Smith-Waterman
algorithm using a new chip multiprocessor architecture with
multiple Digital Signal Processors (DSP) on a single chip leading
to high performance at low cost.

Categories and Subject Descriptors
J.3 [Computer Applications]: LIFE AND MEDICAL SCIENCES -
Biology and genetics

General Terms
Design, Performance

Keywords
Smith-Waterman algorithm, Digital Signal Processors, 3SoC chip

1. Introduction
Searching on DNA and protein databases using sequence
comparison algorithm has become one of the most powerful
technique to help determine the biological function of a gene or
the protein it encodes. High sequencesimilarity implies significant
functional similarity. Sequence comparison algorithms based on
the dynamic programming method such as the Needleman-
Wunsch [8] and Smith-Waterman [11] algorithms, provide
optimal solutions. However, they are computationally expensive.
For this reason, algorithm based on heuristics, such as FASTA,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC ’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/04…$5.00.

BLAST [1, 2], which are able to run faster but are less accurate,
are widely used. Moreover, special purpose hardware [6] has been
constructed to perform sequence searches at high speed, but these
machines are quite expensive.

Smith-Waterman algorithm is the most sensitive algorithm to find
the most similar subsequences of two sequences by dynamic
programming. Several investigators [9, 12] have used SIMD
based technology to speed up the Smith-Waterman algorithm.
Other optimized algorithms [4, 7, 10] have been developed to
improve the sequence searches. The algorithm has also been
implemented on 144-PE FPGA [13] and special 512-PE board [5]
to achieve high-speed homology search.

In this paper a method designed to exploit the advantages of
Cradle’s 3SoC™ [14] chip multiprocessor architecture to perform
Smith-Waterman algorithm with both rapid and sensitive database
searches is presented. The Cradle’s 3SoC architecture is a new
silicon architecture that has multiple RISC-like processors, DSP
processors, DMAs, and programmable IOs that has tremendous
heterogeneous compute and IO power to build a complete system.
We investigate the potential of using this Software Scalable
System-on-Chip to accelerate Bio-sequence analysis.

In the reminder of this paper, we first provide background on
3SoC chip architecture and sequence similarity search relevant
details on Smith-Waterman algorithm in sections 2 and 3,
respectively. Section 4 describes the issues with the
implementation of the algorithm on the target architecture.
Section 5 details the implementation of the algorithm on 3SoC.
Section 6 deals with the performance of our preliminary
implementation and conclusions derived. Finally, we end this
paper with some pointers to our continuing work in section 7.

2. 3SoC™ Architecture Overview
Cradle's Software Scalable System on Chip (3SoC) architecture
consists of dozens of high performance RISC-like and digital
signal processors on a single chip with fully software
programmable and dedicated input-output processors. The
processors are organized into small groups, with eight digital
signal processors and four RISC-like processors each sharing a
block of local data and control memory, with all groups having
access to global information via a unique on-chip bus—the Global
Bus. It is because data, signal, and I/O processors are all available
on a single chip, and that the chip is thereby capable of

202

2004 ACM Symposium on Applied Computing

mailto:meng@ece.eng.wayne.edu
mailto:vipin@wayne.edu

implementing entire systems [14]. The block diagram is shown as
Figure 1.

Figure 1: 3SoC Block diagram

The 3SoC is a shared memory MIMD (multiple
instruction/multiple data) computer that uses a single 32- bit
address space for all register and memory elements. Each register
and memory element in the 3SoC has a unique address and is
uniquely addressable.

2.1. Quads
The Quad is the primary unit of replication for 3SoC. A 3SoC
chip has one or more Quads, with each Quad consisting of four
PEs, eight DSEs, and one Memory Transfer Engine (MTE) with
four Memory Transfer Controllers (MTCs). In addition, PEs share
32KB of instruction cache and Quads share 64KB of data
memory, 32K of which can be optionally configured as cache.
Thirty-two semaphore registers within each quad provide the
synchronization mechanism between processors. Figure 2 shows a
Quad block diagram. Note that the Media Stream Processor
(MSP) is a logical unit consisting of one PE and two DSEs.

Processing Element--The PE is a 32-bit processor with 16-bit
instructions and thirty-two 32-bit registers. The PE has a RISC-
like instruction set consisting of both integer and IEEE 754
floating point instructions. The instructions have a variety of
addressing modes for efficient use of memory. The PE is rated at
approximately 90 MIPS.

Digital Signal Engine--The DSE is a 32-bit processor with 128
registers and local program memory of 512 20-bit instructions
optimized for high-speed fixed and floating point processing. It
uses MTCs in the background to transfer data between the DRAM
and the local memory. The DSE is the primary compute engine
and is rated at approximately 350 MIPS for integer or floating-
point performance.

Figure 2: Quad Block diagram

2.2. Communication and Synchronization

Communication--Each Quad has two 64-bit local buses: an
instruction bus and a data bus. The instruction bus connects the
PEs and MTE to the instruction cache. The data bus connects the
PEs, DSEs, and MTE to the local data memory. Both buses
consist of a 32-bit address bus, a 64-bit write data bus, and a 64-
bit read data bus. This corresponds to a sustained bandwidth of
2.8 Gbytes/s per bus.

The MTE is a multithreaded DMA engine with four MTCs. An
MTC moves a block of data from a source address to a destination
address. The MTE is a modified version of the DSE with four
program counters (instead of one) as well as 128 registers and 2K
of instruction memory. MTCs also have special functional units
for BitBLT, Reed Solomon, and CRC operations.

Synchronization--Each Quad has 32 globally accessible
semaphore registers that are allocated either statically or
dynamically. The semaphore registers associated with a PE, when
set, can also generate interrupts to the PE.

2.3. Software Architecture and Tools
The 3SoC chip can be programmed using standard ANSI C or a
C-like assembly language (“CLASM”) or a combination thereof.
The chip is supplied with GNU-based optimizing C-compilers,
assemblers, linkers, debuggers, a functional and performance
accurate simulator, and advanced code profilers and performance
analysis tools. Please refer to 3SoC programmer’s guide [15].

Cradle’s 3SoC is new hybrid parallel computer architecture for
high performance computing. Hybrid architectures are the
combination of the SIMD (single instruction/multiple data) and
MIMD (multiple instruction/multiple data) paradigm within a
parallel architecture in order to accelerate compute intensive
tasks.

The 3SoC chip board can be easily connected to a host computer
which runs WINDOWS by configuring an EPP compatible
parallel port in system BIOS.

3. The Smith-Waterman algorithm
The Smith-Waterman algorithm [11] is perhaps the most widely
used local similarity algorithm for biological sequence
comparison. In Smith-Waterman database searches, the dynamic
programming method is used to compare every database sequence
to the query sequence and assign a score to each result. The
dynamic programming method checks every possible alignment
between two given sequences. The two sequences define a matrix
in which every cell represents the alignment of two specific
positions in the two sequences. The value of each cell depends on
the residues located in these positions.

Scores in the first row and column are defined as zero. Entries L(i,
j)in all other cells of the matrix are defined as the score of the best
alignment ending in the position matching xi and yj, and are
calculated using the following recurrences:

L(i, j) =max{E(i,j), L(i-1, j-1)+s(xi, yj), F(i, j), 0};
where

E(i, j)=max{ L(i, j-1)+a, E(i, j-1)+b}
F(i, j)=max{ L(i-1, j)+a, F(i-1, j)+b}

203

where s(xi, yj) is the score of a match or mismatch between xi and
yj. In the above equations, a is the opened gap penalty and b is the
extended gap penalty.

All the searching process can be divided into two phases. In the
fist phase, all the elements of two sequences have to be compared
and form a scoring matrix. Following this recurrence equation in
Figure 2, the matrix is filled from top left to bottom right with
each entry Li, j requiring the entries Li-1, j, Li, j-1 and Li-1, j-1 with gap
penalty a=b at each step.

Once scores in all cells are calculated, the second phase of the
algorithm identifies the best local alignments. Since they might be
biological relevant, alignments with score value above a given
threshold are reported. Thus, for each element of the matrix a
backtracking procedure is applied to find out the best local
alignment. Our performance evaluation is based on the first phase
because the workload of comparing two given sequences is fixed,
but the trace-back of an alignment segment is dynamic. The final
alignment may be longer or shorter highly depending on
similarity.

 add s(xi, yj)
 +a for a gap

 +a for a gap

Figure 3: Dynamic programming illustration

In all, for a pair of sequence lengths m and n, the problem can be
solved readily in O(m×n) time and O(m×n) space. Moreover, the
order of computation of the values in the alignment matrix is strict
because the value of any cell cannot be computed before the value
of all cells to the left and above it have been computed.

4. Parallel Smith-Waterman algorithm Design
4.1 Background Analysis
The Smith-Waterman algorithm produces the most sensitive local
pairwise alignments. However, Smith-Waterman has a high
complexity, O(m×n), where m and n are lengths of the sequences
being compared. The following is a breakdown by core
component of the relative time taken in the unoptimized Smith-
Waterman [12], as indicated by the Vtune Performance Analyzer.

Code portion % of total time
Upper element plus gap penalization 25%
Left element plus gap penalization 15%
Upper-left element plus gap penalization 25%
Value choice 15%
Recording result 10%
Other 10%
Figure 4. Time distribution of Smith-Waterman algorithm

As should be evident from this table, the most significant time-
sinks are the upper element and upper-left element calculation, but
over 90% work is worthy of mapping to DSE processor.

Figure 5 shows the data dependencies in Smith-Waterman
algorithm. As mentioned in the previous section, there are three
possible alignments to choose from when calculating one element:
alignment of the symbol in the row considered with gap --
horizontal arrow, alignment between the symbols in the row and
column considered with match or mismatch – diagonal arrow, and

 Sequence b

 b1 b2 b3 b4 b5

a1

a2

a3

a4

Sequence
a

Figure 5: Data dependency in Smith-Waterman alignment
matrix

Li-1, j-1 Li-1, j alignment of the symbol in the column considered with a gap –
vertical arrow. This means that rows or columns can’t be
computed in parallel. The only elements on each successive anti-
diagonal (labeled dashed line in figure 5) are processed in parallel.
These data dependencies present a serious challenge for sufficient
parallel execution on a general-purpose parallel processor.
Although it exposes parallelism, it brings some additional
problems. If one element is processed by one processor at one
time, the computation requires a large quantity of processors and
synchronization overhead will be high. An additional problem is
unbalanced workload. For example, if the computation would start
from the upper left corner of an n*n matrix, the efficiency of each
processor is only 50% on average. Based on the above analysis,
for achieving the maximum performance, we let each DSE
compare one database sequence with the query sequence
individually in parallel.

Li, j-1 Li, j

4.2 General Strategy
The structure of the sequence similarity problem and dynamic
programming lead to many opportunities for parallel computation
within the 3SoC architecture. At the lowest level, micro-
parallelism techniques have been used to take advantage of
specific features of 3SoC parallel architecture. At a higher level,
the searching of large databases leads itself to an implementation
with multiples searches distributed across separate processors.

An individual search job specifies one query sequence to be
searched against one or more sequence databases. In order to
achieve parallel speed-up, database is split into multiple small
subsequences, and 3SoC chip processes these subsequences in
parallel, and integrates the results into a unified output. The PE
coordinates the following activities on multiple DSE processors:
• Initialization of sequence alignment tasks, each of which
requires the comparison of a query sequence against a block of
databases sized so that the entire task can be distributed within the
all-available DSE processors.
• Creation of the standard Smith-Waterman algorithm on all
DSEs.
• Integration of the task results into a unified output.

204

MSP is a logical processing unit in 3SoC chip. There are one PE
and two DSEs in each MSP. Therefore, 12 MSPs consisting of 24
DSEs can process 24 database sequences simultaneously in a
three quad 3SoC. Here PE is a master or coordinator, which
controls two corresponding DSEs to do the computation and one
MTE to transfer data between on-chip memory and DRAM. This
approach guarantees to generate the correct results as the serial
version of Smith-Waterman since each DSE uses exactly same
executable to perform the search computation.

4.3 Task Scheduling Strategy
In order to obtain an efficient parallel implementation, it is
fundamental to achieve a good distribution for both data and
computation. Our strategy is to fully take advantage of the
hardware architecture in keeping processors busy, separation of
tasks and so on. The task scheduling strategy is based on a
master/slave approach. In essence, the PE acts as a master,
scheduling and dispatching blocks of database sequence to the
slaves, DSE processors, which perform the algorithm calculations.
When the DSEs report results for one block, the PE sends a new
block of sequence. Additional improvements are obtained by
applying double buffering strategies (pre-fetching data) that
reduce or eliminate DSE processor inactivity while waiting for a
new block of sequences. The DSE has one new block ready for
computation as soon as the other block is completed.

High performance is achieved in two ways. First, a large database
is partitioned evenly so that all the DSE processors have enough
work to do and the dynamic scheduling enables load balancing.
Second, the DSE processors are kept busy by using double
buffering strategy.

5. Implementation Details
The implementation of Smith-Waterman algorithm on 3SoC chip,
composed of a master and a number of workers (slaves), is a
parallel application.

Master: The Master process, executing on a PE processor,
accepts an initial search task and sets it up for processing by the
workers. The Master process manages tasks execution, database
access, data transfer, worker coordination, and outputs unified
results. Another important part of the Master is the data provider,
which manages the genomic databases used for Smith-Waterman
tasks. It delivers the block of databases to the workers.
Essentially, the workers may think of as having data in their own
local memories, i.e., they search their local cached copies only.

The Master is also charged with moving the result of the
computation matrix for backtracking. In the previous section we
mentioned that for each element, the program has to send 3
calculated values to compare. One solution to this problem is to
divide the computation matrix into blocks, where PE0 controls
two buffers of DSE0 for block assignment. The maximum block
size is fixed in order to fit into the quad local memory. So, for
short sequences, the computation sub-matrix may fit completely
into local memory, and the adjacent data can be always kept in
double buffers. In this way, DSE does all local reads without
doing the expensive DRAM reading. And for long sequences, the
sub-matrix has to be divided into several segments to move
multiple times.

Workers: Worker processes execute on DSE processors that
performs the actual alignment search by running a local copy of
the standard Smith-Waterman algorithm. In the case of Smith-
Waterman searching, each DSE makes use of double buffering
scheduling algorithm to decide what part of database search to
perform. DSE does the computation on a large number of
independent data and must be processed efficiently in parallel.

5.1 Double Buffering Optimization
In each quad of 3SoC processor, there is a special Memory
Transfer Engine (MTE) processor providing each quad with four
Memory Transfer Controllers (MTCs) transferring data between
the local memory and the DRAM in the background. Note that
each Quad has 64KB of data and cache, and each quad has 8 DSE
processors. Therefore, each DSE has up to two 4KB local memory
buffers for data transfer. MTE has ability to move block of data
from DRAM to the local memory of PE/DSE with high speed.
Once the MTE has finished transferring the data, it interrupts the
PE, signaling the completion of the data transfer. The PE then lets
DSE start its computations. Hardware semaphores are used for
interrupts.

Figure 6: 3SoC Double Buffering Architecture

Double buffering strategy is used to transfer the database
sequence to local memory from DRAM and move the
computation matrix block back to DRAM as shown in Figure 6.
This keeps the DSEs working uninterrupted at high speed. PE and
DSE communicate using shared flags.

5.2 SIMD Optimization
SIMD instructions enable a DSE processor to exploit parallelism
by dividing wide registers into smaller units and applying an
instruction on each unit simultaneously. The DSE consists of the
following: 128 word dual port data memory, ALU, multiplier,
external memory read and write FIFOs, field access unit and a
Program Control Unit (PCU).

Each character occupies one byte memory. When DSE starts to
read the block sequence in its local memory, the database
sequence and query sequence can be stored in the DSE FIFO
memory. Each DSE read is one word (four bytes). The read FIFO
is 128 characters deep to insure that the DSE has enough data to
work with while the read logic is out getting more.

A set of Field Access registers, which was originally deigned for
graphics, is used here. When the DSE applies the Smith-
Waterman algorithm, it has to break one word into four parts
using FD, FAC and FA registers, i.e., it retrieves four bytes

205

(characters) from one register to do the sequence similarity
alignment one by one, then write the corresponding results to
computation matrix. For example, in Figure 7 (left), FA is used as
a data source register in an instruction, the contents of FD will be
rotated right by 8 bits at the end of the instruction, i.e., the register
contents will be rotated after the field extraction.

Figure 7 (right) is an example DSE CLASM code to show how
the FA retrieve four characters in seven instructions. In this
example, a 32-bit number contains ATGC format is disassembled
into the A, T, G and C fields. The FA values show the 32-bit
value of the extracted fields. Setting correct value to FAC control
register can achieve the above result.

FD Register

A T G C
C A T G
G C A T
T G C A

FA Register

Figure 7: FD & FA re

6. Performance a
The proposed strategy
3SoC chip taking adva
The results here compa
350 MHz Pentium II p
GHz Pentium IV proce
a 21M elements protei
Smith-Waterman algor
2.5 times faster than a
times faster than a 400
1.7 GHz Pentium IV pr

Figure 8: Compariso

In our preliminary imp
performance efficient a
though the current p
designed hardware, 512
this is a valuable base

general-purpose DSP processor. Other factors that make 3SoC
very attractive are its cost. A three quad 3SoC based PCI card
would cost a fraction of the cost of the competition. Moreover, the
low power of the processor enables design of a system with
multiple 3SoC chips on a single board leading to the creation of a
powerful system in small space that can be plugged into a desktop
or server.

7. Future Work
We are currently working to optimize our current implementation
by utilizing other available resources on 3SoC. A system is being
designed that will enable multiple 3SoC chips to be integrated on
a single PCI card thereby enabling much faster sequence
alignment. We are also looking into the redesign of our strategy
for implementation on a new version of 3SoC, which has
significantly more SIMD MAC instructions that could speedup
our current implementation tremendously.
8. References
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and

Lipman, D.J. Basic local alignment search tool. J. Mol.
Biol.215, (1990), 403-410

[2] Bjornson, R.D., Sherman, A.H., Weston, S.B., Willard, N. and
Wing, J. TurboBLAST: A Parallel Implementation of BLAST
Built on the TurboHub, International Parallel and Distributed
Processing Symposium: IPDPS Workshops (2002), p.0183

[3] Eyre, J. and Bier, J DSP Processors Hit the Mainstream.

0 0 0 C
0 0 0 G
0 0 0 T
0 0 0 A
//DSE CLASM code
// 4 buffers get A, T, G and C respectively

//Set the FAC register to 0x00208208;
fac = nfac;

//FIFO READ () reads 4 bytes at one time
READ (seqa_ptr, 1);

Fd = FIFO; // Data put into FD

Buffer1 =fa; // char C in buffer1
Buffer2 =fa; // char G in buffer2
Buffer3 =fa; // char T in buffer3
Buffer4 =fa; // char A in buffer4
gister usage and CLASM code example

nd Conclusions
 has been implemented and tested on the
ntage of its unique features, using 24 DSEs.
re a single 100 MHz 3SoC chip with dual
rocessors, 400 MHz Sun Sparc and a 1.7
ssor. Figure 10 reports times for searching
n database, for various query lengths with
ithm as the first phase search. 3SoC chip is
 dual 350 MHz Pentium II processor, 3.5
 MHz Sun Sparc, and a little bit faster than
ocessor.

n of database search speed on different

Processors

lementation, 3SoC has proved to be highly
nd scalable for sequence alignment. Even
erformance is lower than some special
-PE board [5] or 1536-PE Fuzion 150[10],

line to do the biosequence alignment on a

IEEE Computer Magazine (1998) Vol. 31, No. 8. pp. 51-59
[4] Gotoh, O. An improved algorithm for matching biological

sequences J. Mol.Biol.(1982) 162, 705-708
[5] Grate, L., Diekhan, M., Dahle, D. and Hughey, H. Sequence

Analysis With the Kestrel SIMD parallel Processor.Pacific
Symposium on Biocomputing 2001 pp.263-74

[6] Hughey, R. Parallel hardware for sequence comparison and
alignment. (1996) Comput. Appl. Biosci. 12, 473-479

[7] Lau, F. An Integrated Approach to Fast, Sensitive, and Cost-
Effective Smith-Waterman Multiple Sequence Alignment.
Bioinformatics Module, (2000) MB&B 452

[8] Needleman, S. and Wunsch, C. A general method applicable
to the search for similarities in the amino acid sequence of
two sequences. . J. Mol. Biol., 48(3), (1970), 443-453

[9] Rogens, T. and Seeberg. E. Six-fold speed-up of Smith-
Waterman sequence database searches using parallel
processing on common microprocessors. Bioinformatics, 16,
(2000), 699-706.

[10] Schmidt, B., Schroder, H. and Schimmler, M. Massively
Parallel Solutions for Molecular Sequence Analysis,
International Parallel and Distributed Processing
Symposium: IPDPS Workshops (2002), p. 0186

[11] Smith, T.F. and Waterman, M.S. Identification of common
molecular subsequences. J. Mol. Biol., 147, (1981), 195-197

[12] Taylor, Stewart Applying MMX Technology to the Smith-
Waterman Algorithm. Department of Electrical Engineering,
Stanford University,
www.stanford.edu/~sntaylor/mis299/report.htm

[13] Yamagucchi Y., Maruyama, T. High Speed Homology
Search with FPGA. Pacific Symposium on Biocomputing
2002

[14] 3SoC Documentation--3SoC 2003 Hardware Architecture,
Cradle Technologies, Inc. Mar 2002.

[15] 3SoC Programmer’s Guide, Cradle Technologies, Inc.,
http://www.cradle.com, Mar 2002.

206

http://www.stanford.edu/~sntaylor/mis299/report.htm

