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ABSTRACT 
With the dramatically increasing amounts of genomic sequence 
database, there is a need for faster and more sensitive searching 
for sequence similarity analysis. The Smith-Waterman algorithm, 
which utilizes dynamic programming, is a common method for 
performing exact local alignments between two protein or DNA 
sequences. The Smith-Waterman algorithm is exhaustive and 
generally considered to be the most sensitive, but long 
computation times limit the use of this algorithm. This paper 
presents a preliminary implementation of Smith-Waterman 
algorithm using a new chip multiprocessor architecture with 
multiple Digital Signal Processors (DSP) on a single chip leading 
to high performance at low cost. 
 
Categories and Subject Descriptors 
J.3 [Computer Applications]: LIFE AND MEDICAL SCIENCES - 
Biology and genetics   
 
General Terms 
Design, Performance 
 
Keywords 
Smith-Waterman algorithm, Digital Signal Processors, 3SoC chip 
 
1. Introduction 
Searching on DNA and protein databases using sequence 
comparison algorithm has become one of the most powerful 
technique to help determine the biological function of a gene or 
the protein it encodes. High sequencesimilarity implies significant 
functional similarity. Sequence comparison algorithms based on 
the dynamic programming method such as the Needleman-
Wunsch [8] and Smith-Waterman [11] algorithms, provide 
optimal solutions. However, they are computationally expensive. 
For this reason, algorithm based on heuristics, such as FASTA,  
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BLAST [1, 2], which are able to run faster but are less accurate, 
are widely used. Moreover, special purpose hardware [6] has been 
constructed to perform sequence searches at high speed, but these 
machines are quite expensive. 
 
Smith-Waterman algorithm is the most sensitive algorithm to find 
the most similar subsequences of two sequences by dynamic 
programming. Several investigators [9, 12] have used SIMD 
based technology to speed up the Smith-Waterman algorithm. 
Other optimized algorithms [4, 7, 10] have been developed to 
improve the sequence searches. The algorithm has also been 
implemented on 144-PE FPGA [13] and special 512-PE board [5] 
to achieve high-speed homology search. 
 
In this paper a method designed to exploit the advantages of 
Cradle’s 3SoC™ [14] chip multiprocessor architecture to perform 
Smith-Waterman algorithm with both rapid and sensitive database 
searches is presented. The Cradle’s 3SoC architecture is a new 
silicon architecture that has multiple RISC-like processors, DSP 
processors, DMAs, and programmable IOs that has tremendous 
heterogeneous compute and IO power to build a complete system. 
We investigate the potential of using this Software Scalable 
System-on-Chip to accelerate Bio-sequence analysis. 
 
In the reminder of this paper, we first provide background on 
3SoC chip architecture and sequence similarity search relevant 
details on Smith-Waterman algorithm in sections 2 and 3, 
respectively. Section 4 describes the issues with the 
implementation of the algorithm on the target architecture. 
Section 5 details the implementation of the algorithm on 3SoC. 
Section 6 deals with the performance of our preliminary 
implementation and conclusions derived. Finally, we end this 
paper with some pointers to our continuing work in section 7. 
 
2. 3SoC™ Architecture Overview 
Cradle's Software Scalable System on Chip (3SoC) architecture 
consists of dozens of high performance RISC-like and digital 
signal processors on a single chip with fully software 
programmable and dedicated input-output processors. The 
processors are organized into small groups, with eight digital 
signal processors and four RISC-like processors each sharing a 
block of local data and control memory, with all groups having 
access to global information via a unique on-chip bus—the Global 
Bus. It is because data, signal, and I/O processors are all available 
on a single chip, and that the chip is thereby capable of 
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implementing entire systems [14]. The block diagram is shown as 
Figure 1. 

 
 

Figure 1: 3SoC Block diagram 
 
The 3SoC is a shared memory MIMD (multiple 
instruction/multiple data) computer that uses a single 32- bit 
address space for all register and memory elements. Each register 
and memory element in the 3SoC has a unique address and is 
uniquely addressable. 
 
2.1. Quads 
The Quad is the primary unit of replication for 3SoC. A 3SoC 
chip has one or more Quads, with each Quad consisting of four 
PEs, eight DSEs, and one Memory Transfer Engine (MTE) with 
four Memory Transfer Controllers (MTCs). In addition, PEs share 
32KB of instruction cache and Quads share 64KB of data 
memory, 32K of which can be optionally configured as cache. 
Thirty-two semaphore registers within each quad provide the 
synchronization mechanism between processors. Figure 2 shows a 
Quad block diagram. Note that the Media Stream Processor 
(MSP) is a logical unit consisting of one PE and two DSEs. 
 
Processing Element--The PE is a 32-bit processor with 16-bit 
instructions and thirty-two 32-bit registers. The PE has a RISC-
like instruction set consisting of both integer and IEEE 754 
floating point instructions. The instructions have a variety of 
addressing modes for efficient use of memory. The PE is rated at 
approximately 90 MIPS. 
 
Digital Signal Engine--The DSE is a 32-bit processor with 128 
registers and local program memory of 512 20-bit instructions 
optimized for high-speed fixed and floating point processing. It 
uses MTCs in the background to transfer data between the DRAM 
and the local memory. The DSE is the primary compute engine 
and is rated at approximately 350 MIPS for integer or floating-
point performance. 

 
 

Figure 2: Quad Block diagram 
 
2.2. Communication and Synchronization 

Communication--Each Quad has two 64-bit local buses: an 
instruction bus and a data bus. The instruction bus connects the 
PEs and MTE to the instruction cache. The data bus connects the 
PEs, DSEs, and MTE to the local data memory. Both buses 
consist of a 32-bit address bus, a 64-bit write data bus, and a 64-
bit read data bus. This corresponds to a sustained bandwidth of 
2.8 Gbytes/s per bus. 
 
The MTE is a multithreaded DMA engine with four MTCs. An 
MTC moves a block of data from a source address to a destination 
address. The MTE is a modified version of the DSE with four 
program counters (instead of one) as well as 128 registers and 2K 
of instruction memory. MTCs also have special functional units 
for BitBLT, Reed Solomon, and CRC operations. 
 
Synchronization--Each Quad has 32 globally accessible 
semaphore registers that are allocated either statically or 
dynamically. The semaphore registers associated with a PE, when 
set, can also generate interrupts to the PE. 
 
2.3. Software Architecture and Tools 
The 3SoC chip can be programmed using standard ANSI C or a 
C-like assembly language (“CLASM”) or a combination thereof. 
The chip is supplied with GNU-based optimizing C-compilers, 
assemblers, linkers, debuggers, a functional and performance 
accurate simulator, and advanced code profilers and performance 
analysis tools. Please refer to 3SoC programmer’s guide [15]. 
 
Cradle’s 3SoC is new hybrid parallel computer architecture for 
high performance computing. Hybrid architectures are the 
combination of the SIMD (single instruction/multiple data) and 
MIMD (multiple instruction/multiple data) paradigm within a 
parallel architecture in order to accelerate compute intensive 
tasks. 
 
The 3SoC chip board can be easily connected to a host computer 
which runs WINDOWS by configuring an EPP compatible 
parallel port in system BIOS. 
 
3. The Smith-Waterman algorithm 
The Smith-Waterman algorithm [11] is perhaps the most widely 
used local similarity algorithm for biological sequence 
comparison. In Smith-Waterman database searches, the dynamic 
programming method is used to compare every database sequence 
to the query sequence and assign a score to each result. The 
dynamic programming method checks every possible alignment 
between two given sequences. The two sequences define a matrix 
in which every cell represents the alignment of two specific 
positions in the two sequences. The value of each cell depends on 
the residues located in these positions.  
 
Scores in the first row and column are defined as zero. Entries L(i, 
j)in all other cells of the matrix are defined as the score of the best 
alignment ending in the position matching xi and yj, and are 
calculated using the following recurrences:  
 

L(i, j) =max{E(i,j), L(i-1, j-1)+s(xi, yj), F(i, j), 0}; 
where 

E( i, j)=max{ L(i, j-1)+a, E(i, j-1)+b} 
F( i, j)=max{ L(i-1, j)+a, F(i-1, j)+b} 
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where s(xi, yj) is the score of a match or mismatch between xi and 
yj. In the above equations, a is the opened gap penalty and b is the 
extended gap penalty.  
 
All the searching process can be divided into two phases. In the 
fist phase, all the elements of two sequences have to be compared 
and form a scoring matrix. Following this recurrence equation in 
Figure 2, the matrix is filled from top left to bottom right with 
each entry Li, j requiring the entries Li-1, j, Li, j-1 and Li-1, j-1 with gap 
penalty a=b at each step.    
 
Once scores in all cells are calculated, the second phase of the 
algorithm identifies the best local alignments. Since they might be 
biological relevant, alignments with score value above a given 
threshold are reported. Thus, for each element of the matrix a 
backtracking procedure is applied to find out the best local 
alignment. Our performance evaluation is based on the first phase 
because the workload of comparing two given sequences is fixed, 
but the trace-back of an alignment segment is dynamic. The final 
alignment may be longer or shorter highly depending on 
similarity. 

 
 

          add s(xi, yj) 
  +a for a gap 

 
 
 

        +a for a gap 
 

Figure 3: Dynamic programming illustration 
 
In all, for a pair of sequence lengths m and n, the problem can be 
solved readily in O(m×n) time and O(m×n) space. Moreover, the 
order of computation of the values in the alignment matrix is strict 
because the value of any cell cannot be computed before the value 
of all cells to the left and above it have been computed.  
 
4. Parallel Smith-Waterman algorithm Design  
4.1 Background Analysis 
The Smith-Waterman algorithm produces the most sensitive local 
pairwise alignments. However, Smith-Waterman has a high 
complexity, O(m×n), where m and n are lengths of the sequences 
being compared. The following is a breakdown by core 
component of the relative time taken in the unoptimized Smith-
Waterman [12], as indicated by the Vtune Performance Analyzer. 
 

Code portion % of total time 
Upper element plus gap penalization 25% 
Left element plus gap penalization 15% 
Upper-left element plus gap penalization 25% 
Value choice 15% 
Recording result 10% 
Other 10% 
Figure 4. Time distribution of Smith-Waterman algorithm 

 
As should be evident from this table, the most significant time-
sinks are the upper element and upper-left element calculation, but 
over 90% work is worthy of mapping to DSE processor. 
 

Figure 5 shows the data dependencies in Smith-Waterman 
algorithm. As mentioned in the previous section, there are three 
possible alignments to choose from when calculating one element: 
alignment of the symbol in the row considered with gap -- 
horizontal arrow, alignment between the symbols in the row and 
column considered with match or mismatch – diagonal arrow, and 

 
                               Sequence b 

               b1   b2  b3  b4   b5 
 
 
 
 
 
 
 
 
 

a1
 
a2
 
a3
 
a4

Sequence 
a 

 
Figure 5: Data dependency in Smith-Waterman alignment 
matrix 
 

Li-1, j-1 Li-1, j alignment of the symbol in the column considered with a gap – 
vertical arrow. This means that rows or columns can’t be 
computed in parallel. The only elements on each successive anti-
diagonal (labeled dashed line in figure 5) are processed in parallel. 
These data dependencies present a serious challenge for sufficient 
parallel execution on a general-purpose parallel processor. 
Although it exposes parallelism, it brings some additional 
problems. If one element is processed by one processor at one 
time, the computation requires a large quantity of processors and 
synchronization overhead will be high. An additional problem is 
unbalanced workload. For example, if the computation would start 
from the upper left corner of an n*n matrix, the efficiency of each 
processor is only 50% on average. Based on the above analysis, 
for achieving the maximum performance, we let each DSE 
compare one database sequence with the query sequence 
individually in parallel. 

Li, j-1 Li, j 

 
4.2 General Strategy 
The structure of the sequence similarity problem and dynamic 
programming lead to many opportunities for parallel computation 
within the 3SoC architecture. At the lowest level, micro-
parallelism techniques have been used to take advantage of 
specific features of 3SoC parallel architecture. At a higher level, 
the searching of large databases leads itself to an implementation 
with multiples searches distributed across separate processors. 
 
An individual search job specifies one query sequence to be 
searched against one or more sequence databases. In order to 
achieve parallel speed-up, database is split into multiple small 
subsequences, and 3SoC chip processes these subsequences in 
parallel, and integrates the results into a unified output. The PE 
coordinates the following activities on multiple DSE processors: 
• Initialization of sequence alignment tasks, each of which 
requires the comparison of a query sequence against a block of 
databases sized so that the entire task can be distributed within the 
all-available DSE processors. 
• Creation of the standard Smith-Waterman algorithm on all 
DSEs. 
• Integration of the task results into a unified output. 
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MSP is a logical processing unit in 3SoC chip. There are one PE 
and two DSEs in each MSP. Therefore, 12 MSPs consisting of 24 
DSEs can process 24 database sequences simultaneously in a 
three quad 3SoC. Here PE is a master or coordinator, which 
controls two corresponding DSEs to do the computation and one 
MTE to transfer data between on-chip memory and DRAM. This 
approach guarantees to generate the correct results as the serial 
version of Smith-Waterman since each DSE uses exactly same 
executable to perform the search computation. 
 
4.3 Task Scheduling Strategy 
In order to obtain an efficient parallel implementation, it is 
fundamental to achieve a good distribution for both data and 
computation. Our strategy is to fully take advantage of the 
hardware architecture in keeping processors busy, separation of 
tasks and so on. The task scheduling strategy is based on a 
master/slave approach. In essence, the PE acts as a master, 
scheduling and dispatching blocks of database sequence to the 
slaves, DSE processors, which perform the algorithm calculations. 
When the DSEs report results for one block, the PE sends a new 
block of sequence. Additional improvements are obtained by 
applying double buffering strategies (pre-fetching data) that 
reduce or eliminate DSE processor inactivity while waiting for a 
new block of sequences. The DSE has one new block ready for 
computation as soon as the other block is completed. 
 
High performance is achieved in two ways. First, a large database 
is partitioned evenly so that all the DSE processors have enough 
work to do and the dynamic scheduling enables load balancing. 
Second, the DSE processors are kept busy by using double 
buffering strategy. 
 
5. Implementation Details 
The implementation of Smith-Waterman algorithm on 3SoC chip, 
composed of a master and a number of workers (slaves), is a 
parallel application. 
 
Master: The Master process, executing on a PE processor, 
accepts an initial search task and sets it up for processing by the 
workers. The Master process manages tasks execution, database 
access, data transfer, worker coordination, and outputs unified 
results. Another important part of the Master is the data provider, 
which manages the genomic databases used for Smith-Waterman 
tasks. It delivers the block of databases to the workers. 
Essentially, the workers may think of as having data in their own 
local memories, i.e., they search their local cached copies only. 
 
The Master is also charged with moving the result of the 
computation matrix for backtracking. In the previous section we 
mentioned that for each element, the program has to send 3 
calculated values to compare. One solution to this problem is to 
divide the computation matrix into blocks, where PE0 controls 
two buffers of DSE0 for block assignment. The maximum block 
size is fixed in order to fit into the quad local memory. So, for 
short sequences, the computation sub-matrix may fit completely 
into local memory, and the adjacent data can be always kept in 
double buffers. In this way, DSE does all local reads without 
doing the expensive DRAM reading. And for long sequences, the 
sub-matrix has to be divided into several segments to move 
multiple times. 

Workers: Worker processes execute on DSE processors that 
performs the actual alignment search by running a local copy of 
the standard Smith-Waterman algorithm. In the case of Smith-
Waterman searching, each DSE makes use of double buffering 
scheduling algorithm to decide what part of database search to 
perform. DSE does the computation on a large number of 
independent data and must be processed efficiently in parallel. 
 
5.1 Double Buffering Optimization 
In each quad of 3SoC processor, there is a special Memory 
Transfer Engine (MTE) processor providing each quad with four 
Memory Transfer Controllers (MTCs) transferring data between 
the local memory and the DRAM in the background. Note that 
each Quad has 64KB of data and cache, and each quad has 8 DSE 
processors. Therefore, each DSE has up to two 4KB local memory 
buffers for data transfer. MTE has ability to move block of data 
from DRAM to the local memory of PE/DSE with high speed. 
Once the MTE has finished transferring the data, it interrupts the 
PE, signaling the completion of the data transfer. The PE then lets 
DSE start its computations. Hardware semaphores are used for 
interrupts. 

 
Figure 6: 3SoC Double Buffering Architecture 

 
Double buffering strategy is used to transfer the database 
sequence to local memory from DRAM and move the 
computation matrix block back to DRAM as shown in Figure 6. 
This keeps the DSEs working uninterrupted at high speed. PE and 
DSE communicate using shared flags. 
 
5.2 SIMD Optimization 
SIMD instructions enable a DSE processor to exploit parallelism 
by dividing wide registers into smaller units and applying an 
instruction on each unit simultaneously. The DSE consists of the 
following: 128 word dual port data memory, ALU, multiplier, 
external memory read and write FIFOs, field access unit and a 
Program Control Unit (PCU). 
 
Each character occupies one byte memory. When DSE starts to 
read the block sequence in its local memory, the database 
sequence and query sequence can be stored in the DSE FIFO 
memory. Each DSE read is one word (four bytes). The read FIFO 
is 128 characters deep to insure that the DSE has enough data to 
work with while the read logic is out getting more. 
 
A set of Field Access registers, which was originally deigned for 
graphics, is used here. When the DSE applies the Smith-
Waterman algorithm, it has to break one word into four parts 
using FD, FAC and FA registers, i.e., it retrieves four bytes 
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(characters) from one register to do the sequence similarity 
alignment one by one, then write the corresponding results to 
computation matrix. For example, in Figure 7 (left), FA is used as 
a data source register in an instruction, the contents of FD will be 
rotated right by 8 bits at the end of the instruction, i.e., the register 
contents will be rotated after the field extraction.  
 
Figure 7 (right) is an example DSE CLASM code to show how 
the FA retrieve four characters in seven instructions. In this 
example, a 32-bit number contains ATGC format is disassembled 
into the A, T, G and C fields. The FA values show the 32-bit 
value of the extracted fields. Setting correct value to FAC control 
register can achieve the above result. 
 
FD Register 
 
A T G C 
C A T G 
G C A T 
T G C A 
 
FA Register 

 
 
 
 
 

 
Figure 7: FD & FA re
 
6. Performance a
The proposed strategy
3SoC chip taking adva
The results here compa
350 MHz Pentium II p
GHz Pentium IV proce
a 21M elements protei
Smith-Waterman algor
2.5 times faster than a
times faster than a 400
1.7 GHz Pentium IV pr
 

Figure 8: Compariso

 
In our preliminary imp
performance efficient a
though the current p
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this is a valuable base

general-purpose DSP processor. Other factors that make 3SoC 
very attractive are its cost. A three quad 3SoC based PCI card 
would cost a fraction of the cost of the competition. Moreover, the 
low power of the processor enables design of a system with 
multiple 3SoC chips on a single board leading to the creation of a 
powerful system in small space that can be plugged into a desktop 
or server. 
 
7. Future Work 
We are currently working to optimize our current implementation 
by utilizing other available resources on 3SoC. A system is being 
designed that will enable multiple 3SoC chips to be integrated on 
a single PCI card thereby enabling much faster sequence 
alignment. We are also looking into the redesign of our strategy 
for implementation on a new version of 3SoC, which has 
significantly more SIMD MAC instructions that could speedup 
our current implementation tremendously. 
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