
Process/Thread Migration and Checkpointing
in Heterogeneous Distributed Systems∗

Hai Jiang and Vipin Chaudhary
Institute for Scientific Computing

Wayne State University
Detroit, MI 48202

{hai, vipin}@wayne.edu

Abstract

Process/thread migration and checkpointing are indis-
pensable for resource sharing, cycle stealing, and other
modes of interaction. To provide a flexible, transparent,
and portable solution in heterogeneous environments, we
have developed a multi-grained migration/checkpointing
package, MigThread, which can migrate/checkpoint multi-
ple threads to different machines or file systems simultane-
ously, and also perform single coarse-grained process mi-
gration/checkpointing. For scalability and portability, com-
putation states are extracted out of their original places
and abstracted to the language level. With the user-level
stack/heap management, MigThread does not rely on any
thread libraries and operating systems. For heterogeneity,
a novel data conversion scheme is proposed to analyze data
types automatically and convert data only on the receiver
side. For safety, MigThread detects and overcomes “un-
safe” factors to qualify virtually all C programs for migra-
tion/checkpointing. Some performance measurements are
given to illustrate its effectiveness.

1. Introduction

From cluster computing to internet computing and now
Grid computing, current computation technologies have fo-
cused more on collaboration, data sharing, cycle stealing,
and other modes of interaction among dynamic and ge-
ographically distributed organizations [1]. Multi-grained
computation migration and checkpointing become indis-
pensable for load balancing, load sharing, fault tolerance
and data locality improvement. The major obstacle prevent-
ing them from achieving widespread use is the complexity
of adding them transparently to systems originally designed

∗This research was supported in part by NSF IGERT grant 9987598,
NSF MRI grant 9977815, and NSF ITR grant 0081696.

to run stand-alone [2]. Heterogeneity further complicates
this situation. Effective solutions are required.

To hide the different levels of heterogeneity, we have de-
veloped an application-level process/thread migration and
checkpointing package, MigThread, which consists of a pre-
processor and a run-time support module [3, 4]. At compile
time, the preprocessor transforms user’s source code and ex-
tracts the computation state out of its original place to ab-
stract it up at the language level so that the run-time support
module can construct it precisely. Since the physical states
are transformed into a logical form, there is no restriction
on thread types and operating systems. MigThread provides
a full-fledged solution, including user-level stack and heap
management as well as pointer updating scheme.

A process is an operating system abstraction representing
an instance of a running computer program [2], whereas a
thread is an execution path within a process. MigThread
supports both coarse-grained processes and fine-grained
threads. Each process may contain multiple threads. These
threads can be treated as a whole for a process; or they can
be handled individually. Some threads might be migrating
to different destinations whereas others can be saving their
states into file systems for checkpointing.

For heterogeneity, computation states are abstracted and
represented in terms of data. Then MigThread is equipped
with a novel “plug-and-play” style data conversion scheme,
called coarse-grain tagged “Receiver Makes Right” (CGT-
RMR), which can detect data types, generate tags, and con-
vert data only on the receiver side. Aggregate type data are
handled as a whole instead of being flattened down by pro-
grammers manually. It is efficient in handling large data
chunks which are common in migration/checkpointing.

Migration/checkpointing-safety concerns ensuring the
correctness: computation states should be constructed pre-
cisely on source nodes, and restored correctly on destina-
tion nodes [4]. Type-unsafe programming languages like C
challenge this, since during execution each memory block

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

can hold data of any type, which could be totally differ-
ent from the type declared in the program. Although type-
safe languages can avoid such type uncertainty, setting it as
a requirement for migration and checkpointing will be too
conservative. The unsafe factors are identified as harmful
pointer casting, pointers in unions, third-party library calls,
and incompatible data conversion. With help from a friendly
user interface and CGT-RMR, MigThread manages to de-
tect and recover from unsafe cases. Therefore, almost all
programs are qualified for migration and checkpointing.

Beyond our previous homogeneous thread migration
scheme [3], the system is strengthened with new function-
alities, including process migration, checkpointing, hetero-
geneity, and safety protection. Then, through configura-
tions, MigThread can accomplish various tasks.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the background of migra-
tion/checkpointing technologies. Section 3 describes the
design and implementation of MigThread in detail. Com-
plexity analysis and some experimental results from bench-
mark programs are shown in Section 4. Section 5 gives an
overview of related work. Finally, our conclusions and con-
tinuing work are presented in Section 6.

2. Migration and Checkpointing Technologies

Process/thread migration concerns saving the current
computation state, transferring it to remote machines, and
resuming the execution at the statement following the mi-
gration point. Checkpointing concerns saving the compu-
tation state to file systems and resuming the execution by
restoring the computation state from saved files. There-
fore, process/thread migration is a real-time “memory-
network-memory” state-transfer scenario while checkpoint-
ing follows an off-line “memory-file-memory” route to
save/retrieve computation state. Although the state-transfer
medium differs, migration and checkpointing share the
same strategy in state handling.

2.1. Process Migration and Checkpointing

A process indicates a coarse-grained computation unit.
Process migration/checkpointing is utilized to move a se-
quential job or a whole parallel computation. According
to the levels at which they are implemented, they can be
classified into three categories: kernel-level, user-level, and
application-level [2].

Kernel-level schemes are implemented in operating sys-
tems which can access process states efficiently and support
preemptive migration at virtually any point [2]. Thus, this
approach provides good transparency and flexibility. But
it adds a great deal of complexity to the kernels, and only
works within the same platforms. User-level schemes are

implemented as libraries in user space and linked to user
applications at compile time [6]. This approach relies on
certain non-portable UNIX system calls to fetch computa-
tion state, and thus user-level threads cannot be identified
and scheduled. Application-level schemes are implemented
as a part of the application. Since the computation state is
moved into applications, this approach possesses a great po-
tential to support heterogeneous computations. However, it
typically sacrifices transparency and reusability.

2.2. Thread Migration

Threads are lightweight processes and thread migra-
tion enables fine-grained computation adjustment in paral-
lel computing. As multi-threading becomes a popular pro-
gramming practice, thread migration is increasingly impor-
tant in fine-tuning Grid computing in dynamic and non-
dedicated environments. The core of thread migration is
to construct and transfer thread states. Since applications
can only contact user-level threads directly, thread migration
packages adopt user/application-level strategies and they are
classified based on how they handle pointers.

The first approach requires language and compiler sup-
port to maintain adequate type information and identify
pointers [7]. Portability is the major drawback. The sec-
ond approach scans stacks at run-time to detect and trans-
late pointers [8]. However, it is possible that some point-
ers cannot be detected and the resumed execution might go
wrong. The third approach necessitates the partitioning of
the address space and reservation of unique virtual address
for the stack of each thread so that the internal pointers re-
main the same values. A common solution is to preallocate
memory space for threads on all machines and restrict each
thread to migrate only to its corresponding address on other
machines[9]. This homogeneous “iso-address” solution re-
quires large address space and scalability is poor.

2.3. Heterogeneity

For heterogeneous computations, both programs and
data should be portable. Naturally, the intuitive option is vir-
tual machines [18], which usually suffer with performance
drawback. Most practical migration systems choose to in-
stall corresponding execution code on all different machines
and only manage to achieve portability for data.

Most data conversion schemes, such as XDR (External
Data Representation) [10], adopt a canonical intermediate
form strategy which provides an external representation for
each data type. This approach requires the sender to convert
data to canonical form and the receiver to convert data from
canonical form, even on the same platforms. Obviously,
this incurs tremendous overhead in homogeneous environ-
ments. XDR only encodes the data instead of data types,

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

which have to be determined by application protocols. For
each data type, there are corresponding routines for encod-
ing/decoding. And each platform is only equipped with a
set of routines for conversion between local and intermedi-
ate formats. Zhou and Geist [11] proposed an asymmetric
data conversion technique, called “receiver makes it right”
(RMR), where data conversion is performed only on the re-
ceiver side. Thus, the receiver should be able to convert and
accept data from all other machines. If there are n kinds of
different machines, the number of conversion routine groups
will be (n2 − n)/2.

Current symmetric/asymmetric conversion strategies re-
quire flattening complex data structures and associating
packing/unpacking routines with each basic data type be-
cause the padding patterns in aggregate types are a conse-
quence of the processor, operating system and compiler, and
cannot be determined until run-time. This type flattening
process incurs tremendous coding burden for programmers.

2.4. Migration/Checkpointing Safety

Migration/checkpointing-safety concerns ensuring cor-
rectness, e.g., computation states should be constructed and
restored correctly [12, 4]. Type-unsafe programming lan-
guage such as C challenge this since during execution each
memory block can hold data of any type, which could be
totally different from the type declared in the program.
Then, states of such programs can be hard to construct and
migration/checkpointing might go wrong. Type-safe lan-
guages can avoid certain type uncertainty and help achieve
correct states. However, “type safety” is not the same as
“migration/checkpointing safety” [12]. “Type safety” con-
cerns type clarity and program correctness whereas the lat-
ter one focuses on constructing correct states. They can-
not guarantee each other. “Type safety” does eliminate
some migration/checkpointing-unsafe factors in languages,
meanwhile some type-unsafe programs can still be quali-
fied for migration/checkpointing. Without formal defini-
tions of migration/checkpointing-safety, most existing mi-
gration/checkpointing systems declare to only work with
“safe” programming [12, 14] and leave the safety issues to
programmers. Mechanism is on demand to identify unsafe
factors in order to free programmers.

3. Design and Implementation of MigThread

MigThread provides multi-grained migration and check-
pointing functionalities for sequential and parallel compu-
tations in heterogeneous or Grid computing systems. Both
coarse-grained processes and fine-grained threads are sup-
ported and both migration and checkpointing are available,
as shown in Figure 1. For a certain process, its threads
can simultaneously checkpoint to file systems or migrate

checkpointing

Process migration

Thread
migration

Process Threads

Process
Threads

Process

Workstation

Threads

File System

. . .

Process Threads

Process
Threads

Process
Threads

File System

Workstation

Figure 1. Process/thread and migra-
tion/checkpoing options in MigThread.

to different destinations. This brings sufficient flexibility
into parallel computing. For process migration and check-
pointing, all internal threads as well as their shared global
data are processed together. Therefore, process migra-
tion/checkpointing could be the summation of the ones for
all the internal threads.

Typically states consist of process data segments, stacks,
heaps and register contents. In MigThread, the computa-
tion state is moved out from its original location (libraries or
kernels) and abstracted up to the language level. Thus, the
physical state is transformed into a logical form to achieve
platform-independence and reduction in restrictions. Both
the portability and the scalability of stacks are improved.

MigThread consists of two parts: a preprocessor and a
run-time support module. The preprocessor is designed
to transform user’s source code into a format from which
the run-time support module can construct the computation
state precisely and efficiently. Its power can improve the
transparency drawback in application-level schemes. The
run-time support module constructs, transfers, and restores
computation state dynamically as well as provides other
run-time safety checks.

3.1. State Construction

Handling computation state, the core of migra-
tion/checkpointing, is done by both the preprocessor and
the run-time support module. At compile time, all infor-
mation related to stack variables, function parameters, pro-
gram counters, and dynamically allocated memory regions,
is collected into certain pre-defined data structures [3].

For globally shared variables, non-pointer variables are
collected in GThV whereas pointers are gathered in GThP.
For each user defined function, its local variables are put
into MThV/MThP instead of GThV/GThP pair. Since the
address spaces of a thread could be different on source and
destination machines, and stacks and heaps need to be re-
created on destination machines, values of pointers refer-

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

foo()
{
 int a;
 double b;
 int *c;
 double **d;
 .
 .
 .
}

Figure 2. The original function.

MTh_foo()
{

struct MThV_t {
 void *MThP;
 int stepno;

 int a;
 double b;
 } MThV;

struct MThP_t {
 int *c;
 double **d;
 } MThP;

 MThV.MThP = (void *)&MThP;
 .
 .
 .
}

Figure 3. The transformed function.

encing stacks or heaps might become invalid after migra-
tion/checkpointing. It is the preprocessor’s responsibility to
identify and mark pointers at the language level so that they
can easily be traced and updated later. Collecting all point-
ers in GThP and MThP eases the pointer updating process.

Figures 2 and 3 illustrate an example for this data col-
lection process. A function foo() is defined with four
local variables as in Figure 2. MigThread’s preproces-
sor transforms the function and generates a correspond-
ing MTh foo() shown in Figure 3. Within MThV, field
MThV.MThP is the only pointer, pointing to the second
structure, MThP, which may or may not exist. Similarly,
GThV.GThP is used to trace GThP for global pointers. In
stacks, each function’s activation frame contains MThV and
MThP to record the current function’s computation status.
The overall stack status can be obtained by collecting all of
these MThV and MThP data structures spread in activation
frames.

The program counter (PC) is the memory address of the
current execution point within a program. It indicates the
starting point after migration/checkpointing. When the PC
is moved up to the language level, it should be represented in
a portable form. We represent the PC as a series of integer
values declared as MThV.stepno in each affected function, as
shown in Figure 3. Since all possible adaptation points have
been detected at compile-time, different integer values of
MThV.stepno correspond to different adaptation points. In
the transformed code, a switch statement is inserted to dis-
patch execution to each labelled point according to the value
of MThV.stepno, and executed after the function initializa-
tion. The switch and goto statements help control jump to

Preprocessing
Source
Code

Parsing

Type System

Tag
Definition

Transformed
Code

Platform 1

Compilation

Execution

Tag
Generation

Normal
Computation

Platform 2

Compilation

Execution

Tag
Generation

Normal
Computation

migration

Figure 4. Tag definition and generation.

resumption points quickly.
In C, the parameters of a function carry information and

status, and consequently the state. Therefore, this informa-
tion needs to be restored on the destination nodes. Fields
with the same types and names are defined in MThV or
MThP depending on whether they are non-pointer variables
or pointers. During initialization, the values of these fields
are set by function parameters. Later on, all references to
function parameters will be substituted by the ones in these
fields. This strategy benefits from the “pass-by-copy” func-
tion call method in C.

MigThread also supports user-level memory manage-
ment for heaps. In application programs, when malloc() and
free() are invoked to allocate and deallocate memory space,
statements MTh mem reg() and MTh mem unreg() are
appended to trace memory blocks correspondingly. Eventu-
ally, all computation state related contents, including stacks
and heaps, are moved out to the user space and handled by
MigThread directly. This builds the foundation for correct
state retrieval and fulfills the pre-condition for portability.

3.2. The Data Conversion Scheme

Computation states can be abstracted to language level
and transformed into pure data. For different platforms,
states constructed on one platform need to be interpreted
by another. Thus, data conversion is unavoidable.

In MigThread, we proposed a data conversion scheme,
called Coarse-Grain Tagged “receiver makes it right” (CGT-
RMR) [5], to tackle data alignment and padding physically,
convert data structures as a whole, and eventually gener-
ate a lighter workload compared to existing standards. It
accepts ASCII character sets, handles byte ordering, and
adopts IEEE 754 floating-point standard because of its dom-
inance in the market.

The programmers do not need to worry about data for-
mats since the preprocessor parses the source code, sets up
type systems, transforms source code, and communicates
with the run-time support module through inserted primi-

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

MTh_foo()
{
 .
 .
 .
 char MThV_heter[60];
 char MThP_heter[41];

 int MTh_so2 = sizeof(double);
 int MTh_so1 = sizeof(int);
 int MTh_so4 = sizeof(struct MThP_t);
 int MTh_so3 = sizeof(struct MThV_t);
 int MTh_so0 = sizeof(void *);

 MThV.MThP = (void *)&MThP;

 sprintf(MThV_heter,
"(%d,-1)(%d,0)(%d,1)(%d,0)(%d,1)(%d,0)(%d,1)(%d,0)", MTh_so0,
(long)&MThV.stepno-(long)&MThV.MThP-MTh_so0, MTh_so1,
(long)&MThV.a-(long)&MThV.stepno-MTh_so1, MTh_so1,(long)&MThV.b-
(long)&MThV.a- MTh_so1, MTh_so2,(long)&MThV+MTh_so3-(long)&MThV.b-
MTh_so2);

 sprintf(MThP_heter, "(%d,-1)(%d,0)(%d,-1)(%d,0)",
MTh_so0,(long)&MThP.d-(long)&MThP.c-MTh_so0,
MTh_so0,(long)&MThP+MTh_so4-(long)&MThP.d-MTh_so0);
 .
 .
 .
}

Figure 5. Tag definition at compile time.
 char MThV_heter[60]="(4,-1)(0,0)(4,1)(0,0)(4,1)(0,0)(8,0)(0,0)”;
 char MThP_heter[41]=”(4-1)(0,0)(4,-1)(0,0)”;

Figure 6. Tag calculation at run-time.

tives. It can also analyze data types, flatten down aggre-
gate types recursively, detect padding patterns, and define
tags as in Figure 4. But the actual tag contents can be set
only at run-time and they may not be the same on different
platforms. Since all of the tedious tag definition work has
been performed by the preprocessor, the programming style
becomes extremely simple. Also, with global control, low-
level issues such as data conversion status can be conveyed
to upper-level scheduling modules. Therefore, easy coding
style and performance gains come from the preprocessor.

In MigThread, tags are used to describe data types and
paddings so that data conversion routines can handle ag-
gregate types as well as common scalar types. As we dis-
cussed above, global variables and function local variables
are collected into their corresponding structure type vari-
ables GThV/GThP and MThV/MThP. Tags are defined and
generated for these structures as well as dynamically allo-
cated memory blocks in the heap.

For the example in Figures 2 and 3, its transformed code
will be equipped with tags MThV heter and MThP heter for
MThV and MThP, respectively, as in Figure 5. At compile
time, it is still too early to determine tag contents. The pre-
processor defines rules to calculate structure members’ sizes
and variant padding patterns, and inserts sprintf() to glue
partial results together. The actual tag generation has to take
place at run-time when the sprintf() statement is executed.
On a Linux machine, the simple example’s tags can be two
character strings as shown in Figure 6.

A tag is a sequence of (m,n) tuples, and can be expressed
as follows (where m and n are positive numbers):

• (m,n) : scalar types. The item “m” is simply the size

of the data type, and “n” indicates the number of such
scalar types.

• ((m′, n′)...(m′′, n′′), n) : aggregate types. The “m”
in the tuple (m,n) can be substituted with another tag
(or tuple sequence) repeatedly. Thus, a tag can be ex-
panded recursively for those enclosed aggregate type
fields until all fields are converted to scalar types. The
second item “n” still indicates the number of the top-
level aggregate types.

• (m,−n) : pointers. The “m” is the size of pointer
type on the current platform. The “-” sign indicates
the pointer type, and the “n” still means the number of
pointers.

• (m, 0) : padding slots. The “m” specifies the number
of bytes this padding slot can occupy. The (0, 0) is a
frequently occuring case and indicates no padding.

At compile time, only one statement is issued for each data
type, whether it is a scalar or aggregate type. The flattening
procedure is accomplished by the preprocessor during tag
definition instead of the encoding/decoding process at run-
time. Hence, programmers are freed from this burden.

All memory segments for GThV/GThP and MThV/MThP
are represented in a “tag-block” format. Each stack be-
comes a sequence of these structures and their tags. Mem-
ory blocks in heaps are also associated with tags for the ac-
tual layout in memory space. Therefore, the computation
state physically consists of a group of memory segments as-
sociated with their own tags in a “tag-segment” pair format.

3.3. State Restoration

Only the receivers or processes resuming from check-
pointing files need to convert the computation state, i.e.,
data, as required. Since activation frames in stacks are re-
run and heaps are recreated, a new set of segments in “tag-
block” format is available on the new platform. MigThread
first compares architecture tags by strcmp(). If they are
identical and the blocks have the same sizes, the platforms
remain unchanged and the old segment contents are simply
copied over by memcpy() to the new architectures. This en-
ables prompt processing between homogeneous platforms
while symmetric conversion approaches still suffer data
conversion overhead on both ends.

If platforms have been changed, conversion routines are
applied on all memory segments. For each segment, a
“walk-through” process is conducted against its correspond-
ing old segment from the previous platform, as shown in
Figure 7. In these segments, according to their tags, memory
blocks are viewed to consist of scalar type data and padding
slots alternately. The high-level conversion unit is data slots
rather than bytes in order to achieve portability. The “walk-
through” process contains two index pointers pointing to a

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

Walk
through

Old tag: (m1,n1)(m2,n2)… New tag: (m1’,n1’)(m2’,n2’)…

Old block New block

padding padding

Figure 7. Walk through segments.

pair of matching scalar data slots in both blocks. The con-
tents of the old data slots are converted and copied to the
new data slots if byte ordering changes, and then the index
pointers are moved down to the next slots. In the mean time,
padding slots are skipped over, although most of them are
defined as (0, 0) to indicate that they do not physically ex-
ist. In MigThread, data items are expressed in “scalar type
data - padding slots” pattern to support heterogeneity.

3.4. Safety Issues

In order to remove the “safe programming” requirement
on programmers, MigThread detects and handles some “un-
safe” features, including pointer casting, pointers in unions,
library calls, and incompatible data conversion. States of
more programs will be precisely constructed to make them
eligible for migration/checkpointing.

Pointer casting does not mean the cast between different
pointer types, but the cast to/from integral types, such as in-
teger, long, or double. The problem is that pointers might
hide in integral type variables. The central issue is to detect
those integral variables containing pointer values (or mem-
ory addresses) so that they could be updated during state
restoration. Casting could be direct or indirect. There are
four ways to hide pointers in integral type variables (shown
in Figure 8):

1. Cast pointers directly or indirectly. In Figure 8, case
(1) only shows the direct cast. If num is assigned
to another integral type variable, indirect cast happens
and it also can cause problems.

2. Memory addresses are cast into integral type variables
directly.

3. Functions’ returning values are cast in.
4. Integral variables are referenced indirectly by pointers

or pointer arithmetic and their values are changed by
all the above three cases.

To avoid dangerous pointer casting, MigThread investi-
gates pointer operations at compile time. The preproces-
sor creates a pointer-group by collecting pointers, functions
with pointer type return values, and integral variables that
have already been cast in pointer values. When the left-hand

function
declaration

case (1)

case (2)

case (3)

int * foo();
 .
 .
unsigned long num;
int ivar, *ptr;
 .
 .
num = (unsigned long) ptr;
 .
 .
num = (unsigned long) &ivar;
 .
 .
num = (unsigned long) foo();
 .
 .
ptr = #
*ptr = (unsigned long)&ivar; case (4)

Figure 8. Hiding pointers in integral variables.

 exist
together

union u_type {
 struct s_type {
 int idx;
 int *first;
 int *second;
 } a;
 int *b;
 int c;
};

Figure 9. Pointers in Union.

side of an assignment is an integral type variable, the pre-
processor checks the right-hand side to see if pointer cast-
ing can happen. If members of pointer-group exist without
changing their types, the left-hand side variable should also
be put into pointer-group for future detection and reported
to the runtime support module for possible pointer update.
All other cases may be ignored.

The preprocessor is insufficient for the indirect access
and pointer arithmetic as in case (4) in Figure 8. A prim-
itive MTh check ptr(mem1, mem2) is inserted to check
if mem1 is actually an integral variable’s address (not on
pointer trees) and mem2 is an address (pointer type). If so,
mem1 will be registered as a pointer which could also be
unregistered later. Here mem1 is the left-hand side of as-
signment and mem2 is one member of right-hand side com-
ponents. If there are multiple components on the right-hand
side, this primitive will be called multiple times. Frequently
using pointer arithmetic on the left-hand side can definitely
cause heavy burden on tracing and sacrifice performance.
This is a rare case since normally pointer arithmetic is ap-
plied more on the right-hand side. Thus, computation is not
affected dramatically. During the migration/checkpointing,
registered pointers will be updated no matter if their original
types are pointer ones or not. The preprocessor and run-time
support module work together to find out memory addresses
hidden in integral variables and update them for safety [4].

Union is another construct where pointers can evade up-
dating. In the example of Figure 9, using member a means

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

int *ptr;
 .
 .
 .
ptr = library_call();
 .
 .

Program

int * library_call()
{
 int *tmp;
 static int i_var;
 .
 .
 .
 tmp = (int *)malloc(...);
 .
 .
 if (tmp == NULL)
 return &i_var;
 else
 return tmp;
}

library (binary code)

Figure 10. Pointers dangling in libraries.

two pointers are meaningful; member b indicates one; and
member c requires no update. Migration schemes have
to identify dynamic situations on the fly. When a union
variable is declared, the compiler automatically allocates
enough storage to hold the largest member of the union.
In the program, once the preprocessor detects that a certain
member of the union variable is in use, it inserts primitive
MTh union upd() to inform the runtime support module
which member and its corresponding pointer fields are in
activation. The records for previous members’ pointer sub-
fields become invalid because of the ownership changing in
the union variable. We use linked list to maintain these in-
ner pointers and get them updated later.

Library calls bring difficulties to all schemes since it is
hard to detect what happens inside the library code. Without
source code, it is even harder for application-level schemes.
In the example of Figure 10, the pointer ptr might be point-
ing to an address of static local variable i var for which
compilers create permanent storage or a dynamically allo-
cated memory block. Both of them are invisible to migra-
tion/checkpointing schemes. Pointers pointing to these un-
registered locations are also called “dangling pointers”, as
those pointing to de-allocated memory blocks. This phe-
nomena indicates that schemes are unable to catch all mem-
ory allocations because of the “blackbox” effect. The cur-
rent version of MigThread provides a user interface to spec-
ify the syntax of certain library calls so that the preprocessor
can know how to insert proper primitives for memory man-
agement and trace pointers.

The final unsafe factor is the incompatible data conver-
sion. Between incompatible platforms, if data items are
converted from higher precision formats to lower precision
formats, precision loss may occur. But if the high end por-
tions contain all-zero content, it is safe to throw them away
since data values still remain unchanged. MigThread in-
tends to convert data unless precision loss occurs. This ag-
gressive data conversion enables more programs for migra-
tion and checkpointing without aborting them too conserva-
tively. Detecting incompatible data formats and conveying

 Compilation Preprocessing

Source
Code

Transformed
Source
Code

Preprocessor Compiler

Executable
File

Run-time
Support
Library

Human Assistance
(Only for unsafe third-party

library calls)

Figure 11. Compile/run-time support.

this low-level information up to the scheduling module can
help abort data restoration promptly.

3.5. Compile/Run-time Support

The compile-time support is implemented in our prepro-
cessor that is based on LEX. First, the user compiles his pro-
grams using a conventional C compiler to ensure syntax cor-
rectness. Then, if process/thread migration and checkpoint-
ing functionalities are required, the preprocessor is used to
transform the source code. Finally, the transformed code
is compiled and linked with MigThread’s run-time support
library to generate the eventual executable files, as shown
in Figure 11. Most of the time, programmers are not re-
quired for assistance unless the preprocessor encounters un-
solvable third-party library calls which are troubles to all
migration/checkpointing systems. Manual support is a ne-
cessity for this case.

The preprocessor conducts the following tasks:

• Information Collection : Collect related information
for future state construction.

– Fetch stack data, such as globally shared vari-
ables, local variables, function parameters, and
program counters, etc.

– Fetch heap data, such as dynamically allocated
memory segments.

• Tag Definition : Create tags for data structures and
memory blocks.

• Renaming : Rename functions and variables.

• Position Labelling : Detect and label adaptation posi-
tions.

• Control Dispatching : Insert switch statements to or-
chestrate execution flows.

• Safety Protection : Detect and overcome unsafe cases;
seek human assistance/instruction for third-party li-
brary calls; and leave other unresolved cases to the run-
time support module.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

Table 1. Complexity comparison in data collecting
System Collect Collect Collect Save Save Allocate

Variables Pointers Memory Blocks Variables Pointers Memory Blocks
Porch O(Nvar) O(Nptr) O(Nmem) O(Nvar) O(Nptr) O(Nmem ∗ logNmem)
SNOW O(Nvar) O(Nptr) O(Nmem ∗ logNmem) O(Nvar) O(Nptr) O(Nmem)
MigThread 1 1 O(Nmem) 0 0 O(Nmem ∗ logNmem)

Table 2. Complexity comparison in data restoration
System Restore Restore Update Re-allocate Delete

Variables Pointers Pointers Memory Blocks Memory Blocks
Porch O(Nvar) O(Nptr) O(Nptr ∗ logNmem) O(Nmem) O(Nmem ∗ logNmem)
SNOW O(Nvar) O(Nptr) O(Nptr ∗ Nmem) O(Nmem) O(N2

mem)
MigThread 1 1 O(Nptr ∗ logNmem) O(Nmem) O(Nmem ∗ logNmem)

The run-time support module is activated through prim-
itives inserted by the preprocessor at compile time. It is
required to link this run-time support library with user’s ap-
plications in the final compilation. During the execution, its
task list includes:

• Stack Maintenance : Keep a user-level stack of acti-
vation frames for each thread.

• Tag Generation : Fill out tag contents which are
platform-dependent.

• Heap Maintenance : Keep a user-level memory man-
agement subsystem for dynamically allocated memory.

• Migration and Checkpointing : Construct, transfer,
and restore computation state.

• Data Conversion : Translate computation states for
destination platforms.

• Safety Protection : Detect and recover the unsafe
cases unresolved at compile time.

• Pointer Updating : Identify and update pointers after
migration and checkpointing.

4. Complexity Analysis and Experiments

Besides MigThread, there are several other applica-
tion level migration/checkpointing systems, including Porch
[13] and SNOW [14] which collect and restore variables
one-by-one explicitly at each adaptation point in time
O(N). This makes it hard for users to insert adaptation
points by themselves. MigThread only registers variables
once in time O(1) and at adaptation points the programs
only check for condition variables. Therefore, MigThread
is much faster in dealing with computation states.

For memory blocks, Porch and MigThread have similar
complexity because they both maintain memory informa-
tion in red-black trees. SNOW uses a memory space rep-
resentation graph, which is quick to create a memory node,

but extremely slow for other operations because searching
for a particular node in a randomly generated graph is time-
consuming. Also, SNOW traces all pointers and slows down
much for pointer-intensive programs. MigThread virtually
only cares about results (“ignore process”) and is therefore
less dependent on the types of programs. We summarize
the complexity of these three systems, and list the results in
Table 1 and 2. The Nvar, Nptr and Nmem represent num-
bers of variables, pointers and dynamically allocated mem-
ory blocks. It is obvious that MigThread is extremely fast in
stack data collection and shows better overall performance
in heap data operations.

One of our experimental platforms is a SUN Enterprise
E3500 with 330Mhz UltraSparc processors and 1Gbytes of
RAM, running Solaris 5.7. The other platform is a PC with
a 550Mhz Intel Pentium III processor and 128Mbytes of
RAM, running Linux. CGT-RMR is applied for data conver-
sion between these two different machines. With predefined
adaptation points, FFT, continuous and non-continuous ver-
sions of LU from the SPLASH-2 suite, and matrix multi-
plication applications are used for evaluation. The detailed
overheads are listed in Table 3. Under program names,
the numbers in parentheses indicate the function activation
times. In our design, tags for each function are only gen-
erated once. This optimized tag generation strategy reduce
overhead dramatically since some functions might be ac-
tivated many times. For example, in LU-c, functions are
called 2.8M times, which can cause noticeable slowdown.
Numbers outside of parentheses indicate the problem sizes
for these applications.

To test the heterogeneity, we perform migration and
checkpointing across same and different platforms. For
migration, computation states are constructed on the fly
and transferred to the memory space on remote machines.
Meanwhile, for checkpointing, computation states are first
saved into file systems and then read by another process on

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

Table 3. Migration and Checkpointing Overheads in real applications (Microseconds)

Program Platform State Save Read Send Convert Convert Update
(Func. Act.) Pair Size (B) Files Files Socket Stack Heap Pointers

Solaris-Solaris 78016 96760 24412 26622 598 1033 364
FFT Linux-Solaris 78024 48260 24492 29047 1581 57218 459
(2215) Solaris-Linux 78016 96760 13026 16948 923 28938 443
1024 Linux-Linux 78024 48260 13063 17527 387 700 399

Solaris-Solaris 2113139 2507354 4954588 4939845 589 27534 5670612
LU-c Linux-Solaris 2113170 1345015 4954421 5230449 1492 3158140 6039699
(2868309) Solaris-Linux 2113139 2507354 7011277 7045671 863 2247536 8619415
512x512 Linux-Linux 2113170 1345015 7058531 7131833 385 19158 8103707

Solaris-Solaris 135284 165840 51729 53212 528 2359 306
LU-n Linux-Solaris 135313 85053 51501 62003 1376 103735 322
(8867) Solaris-Linux 135284 165840 40264 44901 837 52505 359
128x128 Linux-Linux 135313 85053 40108 56695 357 1489 377

Solaris-Solaris 397259 501073 166539 164324 136 2561 484149
MatMult Linux-Solaris 397283 252926 120229 220627 385 306324 639281
(6) Solaris-Linux 397259 501073 166101 129457 862 604161 482380
128x128 Linux-Linux 397283 252926 120671 130107 100 3462 640072

another similar or different platform. In this experiment,
computation state sizes can vary from 78K to 2M bytes.
Even for the same applications, sizes of their computation
states might be different on same platforms.

The saving, re-reading, and transferring costs are listed in
Table 3. Checkpointing splits the state transfer process into
two parts and therefore causes more overheads. But in the
meantime, it provides more flexibility. These I/O events can
cause dominant overheads, no matter whether they are file
I/O operations or TCP/IP communications. Normally, data
conversion costs are relatively small, especially in homo-
geneous environments. This indicates the advantage of our
data conversion scheme CGT-RMR [5]. Many other conver-
sion standards perform conversion twice even on the same
platforms, and therefore, incur more overheads.

In most cases, migrating and restarting processes after
checkpointing produce similar overheads because the only
difference between them is the medium where they send and
fetch the computation states. Total costs (including the time
to checkpoint and restart) in homogeneous environments are
smaller than heterogeneous ones. Again, this is the conse-
quence of our data conversion scheme CGT-RMR. Migra-
tion/checkpointing schemes under symmetric data conver-
sion standards are not able to achieve such results [5].

5. Related Research

There have been a number of notable attempts at design-
ing process migration and checkpointing schemes. An ex-
tension of the V migration mechanism is proposed in [15].

It required both compiler and kernel support. Data has to
be stored at the same address in all migrated versions of the
process to avoid pointer updating and variant padding pat-
terns in aggregate types. Another approach is proposed by
Theimer and Hayes in [16]. Their idea was to construct an
intermediate source code representation of a running pro-
cess at the migration point, migrate the new source code,
and recompile it on the destination platform. This requires
a low-level, non-portable debugger interface to examine all
available process state information on each platform. An
extra compilation might incur more delays. The Tui sys-
tem [12] is an application-level process migration package
which utilize a compiler support and a debugger interface
to examine and restore process state. It applies an inter-
mediate data format, just as in XDR. Relying on the ACK
(Amsterdam Compiler Kit) hurts its portability. Process In-
trospection (PI) [17] is a general approach for checkpoint-
ing and applies the “Receiver Makes Right” (RMR) strat-
egy. Data types are maintained in tables and conversion
routines are deployed for all supported platforms. Program-
mers have to flatten down aggregate data types by them-
selves. SNOW [14] is another heterogeneous process mi-
gration system which tries to migrate live data instead of
the stack and heap data. However, with pointer casting and
pointer arithmetic, it is virtually impossible to capture the
precise process states. PVM installation is a requirement
and based on this, communication states are supported.

Virtual machines are the intuitive solution to provide ab-
stract platforms in heterogeneous environments. Some mo-
bile agent systems such as the Java-based IBM Aglet [18]

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

use such an approach to migrate computation. However, it
suffers from slow execution due to interpretation overheads
and cannot handle legacy systems.

There are few thread migration systems. Emerald[19]
is a new language and compiler designed to support fine-
grained object mobility. Compiler-produced templates are
used to describe data structures and translate pointers.
Arachne[7] supports thread migration by adding three key-
words to the C++ language and using a preprocessor to gen-
erate pure C++ code. No pointer and heap are supported
here. Ariadne[8] achieves thread context-switch by call-
ing C-library setjmp() and longjmp(). On destination nodes,
stacks are scanned for pointer detection which can fail and
lead to wrong results. Many thread migration systems,
such as Millipede[9], adopt “iso-address” strategy. This ap-
proach’s strict restrictions on resources affect their scalabil-
ity and make them inapproprate for Grid computing.

6. Conclusions and Future Work

With MigThread, flexible combinations of pro-
cess/thread and migration/checkpointing enable ap-
plications, especially parallel computations, to adjust
themselves based on dynamic situations in heterogeneous
non-dedicated computing environments. Both application
performance and system resource utilization are improved.

New data conversion scheme CGT-RMR does not per-
form actual conversion in homogeneous environments and
only converts once in heterogeneous environments. It an-
alyzes data layout, assigns tags to data segments, flat-
tens complex data structures, and converts data only on
the receiver side. It reduces coding complexity dramati-
cally and improves overall performance. Unlike other sys-
tems, MigThread defines, detects and overcomes most un-
safe cases automatically. More programs become qualified
for migration and checkpointing.

Future work is to add more new functionalities such as
“I/O operations forwarding”. These I/O operations include
communication, file, and other input/output device accesses.
Shadow process [6] concept will be applied to forward com-
munication messages or send back I/O commands back to
improve transparency and achieve a virtually unchanged
working platform. With this feature, virtually all programs
will be qualified for migration/checkpointing.

References

[1] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “Grid Ser-
vices for Distributed System Integration”, Computer, 35(6),
pp. 37-46, 2002.

[2] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and
S. Zhou, “Process Migration”, ACM Computing Surveys,
32(8), pp. 241-299, 2000.

[3] H. Jiang and V. Chaudhary, “Compile/Run-time Support for
Thread Migration”, Proc. of 16th Int’l Parallel and Dis-
tributed Processing Symposium, pp. 58-66, 2002.

[4] H. Jiang and V. Chaudhary, “On Improving Thread Migra-
tion: Safety and Performance”, Proc. of Int’l Conf. on High
Performance Computing, pp. 474-484, 2002.

[5] H. Jiang and V. Chaudhary, “Data Conversion for Pro-
cess/Thread Migration and Checkpointing”, Proc. of Int’l
Conf. on Parallel Processing, 2003.

[6] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny,
“Checkpoint and Migration of UNIX Processes in the Con-
dor Distributed Processing System”, Technical Report 1346,
University of Wisconsin-Madison, April 1997.

[7] B. Dimitrov and V. Rego, “Arachne: A Portable Threads Sys-
tem Supporting Migrant Threads on Heterogeneous Network
Farms”, IEEE Transactions on Parallel and Distributed Sys-
tems, 9(5), pp. 459-469, May 1998.

[8] E. Mascarenhas and V. Rego, “Ariadne: Architecture of
a Portable Threads system supporting Mobile Processes”,
Technical Report CSD-TR 95-017, CS, Purdue Univ., 1995.

[9] A. Itzkovitz, A. Schuster, and L. Wolfovich, “Thread Migra-
tion and its Applications in Distributed Shared Memory Sys-
tems”, J. of Systems and Software, 42(1), pp. 71-87, 1998.

[10] R. Srinivasan, XDR: External Data Representation Stndard,
RFC 1832, Aug. 1995.

[11] H. Zhou and A. Geist, ““Receiver Makes Right” Data Con-
version in PVM”, Proc. of the 14th Int’l Conf. on Computers
and Communications, pp. 458-464, 1995.

[12] P. Smith and N. Hutchinson, “Heterogeneous process migra-
tion: the TUI system”, Tech rep 96-04, University of British
Columbia, Feb. 1996.

[13] V. Strumpen, “Compiler Technology for Portable Check-
points”, submitted for publication (http://theory.lcs.
mit.edu/ strumpen/porch.ps.gz), 1998.

[14] K. Chanchio and X.H. Sun, “Data Collection and Restoration
for Heterogeneous Process Migration”, Proc. of Int’l Parallel
and Distributed Processing Symposium, pp. 51-51, 2001.

[15] C. Shub, “Native Code Process-Originated Migration in a
Heterogeneous Environment”, Proc. of the 1990 Computer
Science Conference, pp. 266-270, 1990.

[16] M. Theimer and B. Hayes, “Heterogeneous Process Migra-
tion by Recompilation”, Proc. of the 11th Int’l Conf. on Dis-
tributed Computing Systems, pp. 18-25, 1991.

[17] A. Ferrari, S. Chapin, and A. Grimshaw, “Process introspec-
tion: A checkpoint mechanism for high performance hetero-
genesous distributed systems”, Technical Report CS-96-15,
Computer Science Dept., University of Virginia, 1996.

[18] D. Lange and M. Oshima, Programming Mobile Agents in
Java - with the Java Aglet API, Addison-Wesley Longman:
New York, 1998.

[19] E. Jul, H. Levy, N. Hutchinson, and A. Blad, “Fine-Grained
Mobility in the Emerald System”, ACM Transactions on
Computer Systems, 6(1), pp. 109-133, 1998.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10
Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 16:41 from IEEE Xplore. Restrictions apply.

